1
|
Kirk B, Lombardi G, Duque G. Bone and muscle crosstalk in ageing and disease. Nat Rev Endocrinol 2025; 21:375-390. [PMID: 40011751 DOI: 10.1038/s41574-025-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Interorgan communication between bone and skeletal muscle is central to human health. A dysregulation of bone-muscle crosstalk is implicated in several age-related diseases. Ageing-associated changes in endocrine, inflammatory, nutritional and biomechanical stimuli can influence the differentiation capacity, function and survival of mesenchymal stem cells and bone-forming and muscle-forming cells. Consequently, the secretome phenotype of bone and muscle cells is altered, leading to impaired crosstalk and, ultimately, catabolism of both tissues. Adipose tissue acts as a third player in the bone-muscle interaction by secreting factors that affect bone and muscle cells. Physical exercise remains the key biological stimulus for bone-muscle crosstalk, either directly via the release of cytokines from bone, muscle or adipocytes, or indirectly through extracellular vesicles. Overall, bone-muscle crosstalk is considered an inherent process necessary to maintain the structure and function of both tissues across the life cycle. This Review summarizes the latest biomedical advances in bone-muscle crosstalk as it pertains to human ageing and disease. We also outline future research priorities to accommodate the understanding of this rapidly emerging field.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia.
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Lyu J, Liu Z, Gong H, Xu T. The association between body roundness index and sarcopenia in older adults: a population-based study. Front Public Health 2025; 13:1554491. [PMID: 40255379 PMCID: PMC12006143 DOI: 10.3389/fpubh.2025.1554491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Background Sarcopenia, defined by the gradual decline in skeletal muscle mass and functionality, is a common disorder in the aging population and is linked to an elevated risk of falls and osteoporotic fractures. The contemporary diagnosis of sarcopenia depends on intricate and expensive techniques, such as computed tomography (CT) scans or dual-energy X-ray absorptiometry (DXA), which hinder the timely prevention of sarcopenia. Objective This study seeks to explore the association between the Body Roundness Index (BRI) and sarcopenia in the older adult cohort, utilizing data from the National Health and Nutrition Examination Survey (NHANES) in the United States. Methods Our study adopted a cross-sectional design, encompassing 9,411 older individuals, of which 1,147 were diagnosed with sarcopenia. After weighting, the number of individuals with sarcopenia was 23,985,011. The study employed multivariate logistic regression analysis to evaluate the association between BRI and sarcopenia, incorporating stepwise adjustments for potential confounders. Results The outcomes of the multivariate logistic regression analysis revealed that, in contrast to individuals without sarcopenia, those with sarcopenia exhibited significantly higher mean BRI values and a greater prevalence of comorbid conditions, including hypertension and diabetes. A significant positive correlation was observed between BRI and the likelihood of developing sarcopenia. Specifically, after controlling for all covariates, each one-unit increase in BRI was linked to a 64% elevation in the risk of sarcopenia (OR = 1.64, 95% CI = 1.58-1.71). Furthermore, the receiver operating characteristic (ROC) curve analysis indicated that BRI is a robust predictor for diagnosing sarcopenia, with an AUC of 0.744. Conclusion These findings suggest that, within the U.S. older adult population, an elevated BRI is associated with a heightened risk of sarcopenia. BRI can function as a practical and cost-effective anthropometric index for more precise prediction of sarcopenia risk in older adults.
Collapse
Affiliation(s)
- Jing Lyu
- The Department of General Practice, The First Hospital of Lanzhou University, Lanzhou, China
- Geriatrics Ward 4, Department of Geriatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhiwu Liu
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hengjiang Gong
- The Department of General Practice, The First Hospital of Lanzhou University, Lanzhou, China
- Geriatrics Ward 4, Department of Geriatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tengfei Xu
- Medical Laboratory Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Akhter A, Md. Sheikh A, Yoshino J, Kanda T, Nagai A, Matsuo M, Yano S. Inhibiting Myostatin Expression by the Antisense Oligonucleotides Improves Muscle Wasting in a Chronic Kidney Disease Mouse Model. Int J Mol Sci 2025; 26:3098. [PMID: 40243849 PMCID: PMC11988723 DOI: 10.3390/ijms26073098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Sarcopenia, a serious consequence of chronic kidney disease (CKD), is driven by elevated myostatin (MSTN), a key inhibitor of muscle growth. This study explored the potential of an MSTN-specific antisense oligonucleotide (ASO) in reversing CKD-induced muscle wasting in a mouse model. Thirty-two male C57BL/6J mice were randomly assigned to a non-CKD group (n = 8, regular diet) and a CKD group (n = 24, adenine diet). CKD was induced using a 0.2% adenine-supplemented diet for 4 weeks. Following this, the mice were sub-grouped into CKD (saline, n = 8), CKD + Low-Dose ASO (25 mg/kg ASO, n = 8), and CKD + High-Dose ASO (50 mg/kg ASO, n = 8). ASO was administered via subcutaneous injections for 8 weeks. Muscle mass, treadmill performance, grip strength, and muscle fiber morphology were assessed alongside qPCR and Western blot analysis for MSTN, atrogin-1, and MuRF-1 expression. ASO therapy significantly enhanced muscle mass and function and enlarged muscle fibers while effectively downregulating muscle degradation markers. These improvements occurred without compromising renal function, as confirmed by BUN, creatinine, kidney weight, and histological analysis. This study is the first to demonstrate the efficacy of ASO therapy in mitigating CKD-induced sarcopenia, offering a promising targeted gene therapy with significant clinical implications for improving nutritional status and physical performance in CKD.
Collapse
MESH Headings
- Animals
- Myostatin/genetics
- Myostatin/metabolism
- Myostatin/antagonists & inhibitors
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/genetics
- Male
- Mice
- Disease Models, Animal
- Mice, Inbred C57BL
- Muscular Atrophy/metabolism
- Muscular Atrophy/etiology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Sarcopenia/etiology
- Sarcopenia/metabolism
Collapse
Affiliation(s)
- Arju Akhter
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; (A.A.); (A.M.S.)
| | - Abdullah Md. Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; (A.A.); (A.M.S.)
| | - Jun Yoshino
- Department of Nephrology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Takeshi Kanda
- Department of Nephrology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan;
| | - Masafumi Matsuo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; (A.A.); (A.M.S.)
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
| |
Collapse
|
4
|
Samadi M, Daryanoosh F, Mojtahedi Z, Samsamy Pour A, Nobari H, Zarifkar AH, Khoramipour K. Resistance Training and Resveratrol Supplementation Improve Cancer Cachexia and Tumor Volume in Muscle Tissue of Male Mice Bearing Colon Cancer CT26 Cell Tumors. Cell Biochem Biophys 2025; 83:619-631. [PMID: 39412707 DOI: 10.1007/s12013-024-01491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 03/03/2025]
Abstract
Losing muscle functions due to reducing muscle mass and quality is one of the main features of cancer cachexia that impairs patients' quality of life and decrease their survival. This study aimed to investigate the synergistic effects of resistance training and resveratrol supplementation on cachexia induced by CT26 tumors in male mice. Forty-eight mice were divided into eight groups randomly: healthy sedentary vehicle (HSV), healthy exercise vehicle (HEV), healthy sedentary resveratrol (HSR), healthy exercise resveratrol (HER), CT-26 tumor-bearing sedentary vehicle (TSV), CT-26 tumor-bearing exercise vehicle (TEV), CT-26 tumor-bearing sedentary resveratrol (TSR) and CT-26 tumor-bearing exercise resveratrol (TER). Training groups performed ladder climbing with weights tied to their tails, for six weeks. Resveratrol-treated groups received 50 mg/kg daily by gavage. The results showed muscle weight, and mTORC1 phosphorylation decreased in TSV compared to the HSV group. mTORC1 phosphorylation was increased in TER compared to TSV, TEV, and TSR. In addition, AMPK phosphorylation was more elevated in HER compared to HSV, HEV, and HSR. LC3BII/I ratio was higher in TSV than HSV group. Tumor volume was increased in all groups, with the lowest increase in TER group. In tumor tissue, mTORC1 phosphorylation was decreased in TER than in TSV, TEV, and TSR groups; AMPK phosphorylation and LC3BII/I ratio were increased in TSV than in TEV, TSR, and TER groups. In conclusion, the synergistic effect of resistance training and resveratrol supplementation is the most effective in reducing tumor volume. These advantages were mostly in line with molecular findings.
Collapse
Affiliation(s)
- Mahdi Samadi
- Department of Sports Sciences, Shiraz University, Shiraz, Iran
| | | | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Amir Hossein Zarifkar
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran.
| | - Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, 47012, Spain.
| |
Collapse
|
5
|
Aguirre F, Tacchi F, Valero-Breton M, Orozco-Aguilar J, Conejeros-Lillo S, Bonicioli J, Iturriaga-Jofré R, Cabrera D, Soto JA, Castro-Sepúlveda M, Portal-Rodríguez M, Elorza ÁA, Matamoros A, Simon F, Cabello-Verrugio C. CCL5 Induces a Sarcopenic-like Phenotype via the CCR5 Receptor. Antioxidants (Basel) 2025; 14:84. [PMID: 39857418 PMCID: PMC11760477 DOI: 10.3390/antiox14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Sarcopenia corresponds to a decrease in muscle mass and strength. CCL5 is a new myokine whose expression, along with the CCR5 receptor, is increased in sarcopenic muscle. Therefore, we evaluated whether CCL5 and CCR5 induce a sarcopenic-like effect on skeletal muscle tissue and cultured muscle cells. Electroporation in the tibialis anterior (TA) muscle of mice was used to overexpress CCL5. The TA muscles were analyzed by measuring the fiber diameter, the content of sarcomeric proteins, and the gene expression of E3-ligases. C2C12 myotubes and single-isolated flexor digitorum brevis (FDB) fibers were also treated with recombinant CCL5 (rCCL5). The participation of CCR5 was evaluated using the antagonist maraviroc (MVC). Protein and structural analyses were performed. The results showed that TA overexpression of CCL5 led to sarcopenia by reducing muscle strength and mass, muscle-fiber diameter, and sarcomeric protein content, and by upregulating E3-ligases. The same sarcopenic phenotype was observed in myotubes and FDB fibers. We showed increased reactive oxygen species (ROS) production and carbonylated proteins, denoting oxidative stress induced by CCL5. When the CCR5 was antagonized, the effects produced by rCCL5 were prevented. In conclusion, we report for the first time that CCL5 is a novel myokine that exerts a sarcopenic-like effect through the CCR5 receptor.
Collapse
Affiliation(s)
- Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Sabrina Conejeros-Lillo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Josefa Bonicioli
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Renata Iturriaga-Jofré
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Daniel Cabrera
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile;
- Facultad de Ciencias de la Salud, Escuela de Kinesiología, Universidad Bernardo O Higgins, Santiago 8370993, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Translational Immunology Laboratory, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Mauricio Castro-Sepúlveda
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago 7501014, Chile;
| | - Marianny Portal-Rodríguez
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Álvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile; (Á.A.E.); (A.M.)
| | - Andrea Matamoros
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile; (Á.A.E.); (A.M.)
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| |
Collapse
|
6
|
Sharma AR, Chatterjee S, Lee YH, Lee SS. Targeting Crosstalk of Signaling Pathways among Muscles-Bone-Adipose Tissue: A Promising Therapeutic Approach for Sarcopenia. Aging Dis 2024; 15:1619-1645. [PMID: 37815907 PMCID: PMC11272187 DOI: 10.14336/ad.2023.00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/03/2023] [Indexed: 10/12/2023] Open
Abstract
The aging process is associated with the development of a wide range of degenerative disorders in mammals. These diseases are characterized by a progressive decline in function at multiple levels, including the molecular, cellular, tissue, and organismal. Furthermore, it is responsible for various healthcare costs in developing and developed countries. Sarcopenia is the deterioration in the quality and functionality of muscles, which is extremely concerning as it manages many functions in the human body. This article reviews the molecular crosstalk involved in sarcopenia and the specific roles of many mediator molecules in establishing cross-talk between muscles, bone, and fatty tissues, eventually leading to sarcopenia. Besides, the involvement of various etiological factors, such as neurology, endocrinology, lifestyle, etc., makes it exceedingly difficult for clinicians to develop a coherent hypothesis that may lead to the well-organized management system required to battle this debilitating disease. The several hallmarks contributing to the progression of the disease is a vital question that needs to be addressed to ensure an efficient treatment for sarcopenia patients. Also, the intricate molecular mechanism involved in developing this disease requires more studies. The direct relationship of cellular senescence with aging is one of the pivotal issues contributing to disease pathophysiology. Some patented treatment strategies have been discussed, including drugs undergoing clinical trials and emerging options like miRNA and protein-enclosed extracellular vesicles. A clear understanding of the secretome, including the signaling pathways involved between muscles, bone, and fatty tissues, is extremely beneficial for developing novel therapeutics for curing sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
7
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
8
|
Deng C, Ou Q, Ou X, Pan D. Association between non-alcoholic fatty liver disease and risk of sarcopenia: a systematic review and meta-analysis. BMJ Open 2024; 14:e078933. [PMID: 38719326 PMCID: PMC11086578 DOI: 10.1136/bmjopen-2023-078933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/07/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES To determine the association of non-alcoholic fatty liver disease (NAFLD) with the incidence of sarcopenia. DESIGN Systematic review and meta-analysis of observational clinical studies. SETTING AND PARTICIPANTS Adults with NAFLD. METHODS Databases such as PubMed, Embase, Cochrane and Web of Science were searched for eligible studies published from the inception of each database up to 4 April 2023. All cross-sectional studies on the association between NAFLD and sarcopenia were included in this study. The quality of the included studies and risk of bias was assessed using the Agency for Healthcare Research and Quality checklist. STATA V.15.1 software was used for statistical analysis. RESULTS Of the 1524 retrieved articles, 24 were included in this review, involving 88 609 participants. Our findings showed that the prevalence of sarcopenia was higher in the NAFLD group than in the control group (pooled OR 1.74, 95% CI 1.39 to 2.17). In a subgroup analysis by region, patients with NAFLD showed an increased risk of sarcopenia (pooled OR 1.97, 95% CI 1.54 to 2.51) in the Asian group, whereas patients with NAFLD had no statistically significant association with the risk of sarcopenia in the American and European groups, with a pooled OR of 1.31 (95% CI 0.71 to 2.40) for the American group and a pooled OR of 0.99 (95% CI 0.21 to 4.69) for the European group. Similar results were observed in the sensitivity analysis, and no evidence of publication bias was observed. CONCLUSIONS AND IMPLICATIONS The current study indicated a significant positive correlation between NAFLD and sarcopenia, which may be affected by regional factors. This study provides the correlation basis for the relationship between NAFLD and sarcopenia and helps to find the quality strategy of sarcopenia targeting NAFLD.
Collapse
Affiliation(s)
- Chao Deng
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Qifeng Ou
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xuee Ou
- Changsha County Xingsha Hospital, Changsha City, Hunan Province, China
| | - Ding Pan
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Reed CH, Tystahl AC, Eo H, Buhr TJ, Bauer EE, Lee JH, Clark PJ, Valentine RJ. The Influence of Stress and Binge-Patterned Alcohol Drinking on Mouse Skeletal Muscle Protein Synthesis and Degradation Pathways. Biomolecules 2024; 14:527. [PMID: 38785934 PMCID: PMC11118922 DOI: 10.3390/biom14050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Adverse experiences (e.g., acute stress) and alcohol misuse can both impair skeletal muscle homeostasis, resulting in reduced protein synthesis and greater protein breakdown. Exposure to acute stress is a significant risk factor for engaging in alcohol misuse. However, little is known about how these factors together might further affect skeletal muscle health. To that end, this study investigated the effects of acute stress exposure followed by a period of binge-patterned alcohol drinking on signaling factors along mouse skeletal muscle protein synthesis (MPS) and degradation (MPD) pathways. Young adult male C57BL/6J mice participated in the Drinking in the Dark paradigm, where they received 2-4 h of access to 20% ethanol (alcohol group) or water (control group) for four days to establish baseline drinking levels. Three days later, half of the mice in each group were either exposed to a single episode of uncontrollable tail shocks (acute stress) or remained undisturbed in their home cages (no stress). Three days after stress exposure, mice received 4 h of access to 20% ethanol (alcohol) to model binge-patterned alcohol drinking or water for ten consecutive days. Immediately following the final episode of alcohol access, mouse gastrocnemius muscle was extracted to measure changes in relative protein levels along the Akt-mTOR MPS, as well as the ubiquitin-proteasome pathway (UPP) and autophagy MPD pathways via Western blotting. A single exposure to acute stress impaired Akt singling and reduced rates of MPS, independent of alcohol access. This observation was concurrent with a potent increase in heat shock protein seventy expression in the muscle of stressed mice. Alcohol drinking did not exacerbate stress-induced alterations in the MPS and MPD signaling pathways. Instead, changes in the MPS and MPD signaling factors due to alcohol access were primarily observed in non-stressed mice. Taken together, these data suggest that exposure to a stressor of sufficient intensity may cause prolonged disruptions to signaling factors that impact skeletal muscle health and function beyond what could be further induced by periods of alcohol misuse.
Collapse
Affiliation(s)
- Carter H Reed
- Department of Biology, Grand View University, Des Moines, IA 50316, USA;
| | - Anna C. Tystahl
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA; (A.C.T.)
| | - Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA; (A.C.T.)
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Trevor J. Buhr
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Ella E. Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Ji Heun Lee
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA; (A.C.T.)
| | - Peter J. Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Rudy J. Valentine
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
10
|
Jun L, Ding XW, Robinson M, Jafari H, Knight E, Geetha T, Greene MW, Babu JR. Targeting Molecular Mechanisms of Obesity- and Type 2 Diabetes Mellitus-Induced Skeletal Muscle Atrophy with Nerve Growth Factor. Int J Mol Sci 2024; 25:4307. [PMID: 38673892 PMCID: PMC11050157 DOI: 10.3390/ijms25084307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Skeletal muscle plays a critical role in metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM). Muscle atrophy, characterized by a decrease in muscle mass and function, occurs due to an imbalance between the rates of muscle protein synthesis and degradation. This study aimed to investigate the molecular mechanisms that lead to muscle atrophy in obese and T2DM mouse models. Additionally, the effect of nerve growth factor (NGF) on the protein synthesis and degradation pathways was examined. Male mice were divided into three groups: a control group that was fed a standard chow diet, and two experimental groups that were fed a Western diet. After 8 weeks, the diabetic group was injected with streptozotocin to induce T2DM. Each group was then further divided into NGF-treated or non-treated control group. In the gastrocnemius muscles of the Western diet group, increased expressions of myostatin, autophagy markers, and ubiquitin ligases were observed. Skeletal muscle tissue morphology indicated signs of muscle atrophy in both obese and diabetic mice. The NGF-treated group showed a prominent decrease in the protein levels of myostatin and autophagy markers. Furthermore, the NGF-treated group showed an increased Cyclin D1 level. Western diet-induced obesity and T2DM may be linked to muscle atrophy through upregulation of myostatin and subsequent increase in the ubiquitin and autophagy systems. Moreover, NGF treatment may improve muscle protein synthesis and cell cycling.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Autophagy/drug effects
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Diet, Western
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscular Atrophy/metabolism
- Muscular Atrophy/etiology
- Muscular Atrophy/pathology
- Myostatin/metabolism
- Nerve Growth Factor/metabolism
- Obesity/metabolism
- Obesity/complications
- Obesity/pathology
Collapse
Affiliation(s)
- Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xiao-Wen Ding
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Hassan Jafari
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Emily Knight
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Michael W. Greene
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
11
|
Sakuma K, Hamada K, Yamaguchi A, Aoi W. Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells 2023; 12:2422. [PMID: 37830636 PMCID: PMC10572610 DOI: 10.3390/cells12192422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Sarcopenia is characterized by a gradual slowing of movement due to loss of muscle mass and quality, decreased power and strength, increased risk of injury from falls, and often weakness. This review will focus on recent research trends in nutritional and pharmacological approaches to controlling sarcopenia. Because nutritional studies in humans are fairly limited, this paper includes many results from nutritional studies in mammals. The combination of resistance training with supplements containing amino acids is the gold standard for preventing sarcopenia. Amino acid (HMB) supplementation alone has no significant effect on muscle strength or muscle mass in sarcopenia, but the combination of HMB and exercise (whole body vibration stimulation) is likely to be effective. Tea catechins, soy isoflavones, and ursolic acid are interesting candidates for reducing sarcopenia, but both more detailed basic research on this treatment and clinical studies in humans are needed. Vitamin D supplementation has been shown not to improve sarcopenia in elderly individuals who are not vitamin D-deficient. Myostatin inhibitory drugs have been tried in many neuromuscular diseases, but increases in muscle mass and strength are less likely to be expected. Validation of myostatin inhibitory antibodies in patients with sarcopenia has been positive, but excessive expectations are not warranted.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Kento Hamada
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan;
| |
Collapse
|
12
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
13
|
Bermejo-Álvarez I, Pérez-Baos S, Gratal P, Medina JP, Largo R, Herrero-Beaumont G, Mediero A. Effects of Tofacitinib on Muscle Remodeling in Experimental Rheumatoid Sarcopenia. Int J Mol Sci 2023; 24:13181. [PMID: 37685986 PMCID: PMC10487422 DOI: 10.3390/ijms241713181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Sarcopenia is a frequent comorbidity of rheumatoid arthritis (RA). Clinical trials have shown that JAK inhibitors (JAKi) produce an asymptomatic increase in serum creatine kinase (CK) in RA, suggesting an impact on muscle. We evaluated the effect of JAKi in muscle remodeling in an experimental RA model. Antigen-induced arthritis (experimental RA, e-RA) was performed in 14 rabbits. Seven rabbits received tofacitinib (TOFA, orally 10 mg/kg/day). Animals were euthanized one day after the last ovalbumin injection, and muscles were prepared for histology, RT-PCR, and WB. C-reactive protein (CRP) and Myostatin (MSTN) serum concentration were determined by ELISA. Creatine and creatine kinase (CK) were analyzed. An increase in body weight as well as tibialis anterior cross-sectional area and diameter was observed in e-RA+TOFA vs. e-RA. e-RA decreased type II fibers and increased the myonuclei number, with all reverted by TOFA. TOFA did not modify CRP levels, neither did MSTN. TOFA significantly reduced IL-6, atrogin-1, and MuRF-1 compared with e-RA. e-RA+TOFA showed higher CK and lower creatine levels compared with e-RA. No differences in PAX-7 were found, while TOFA prevented the increase in MyoD1 in e-RA. Our model reflects the features of rheumatoid sarcopenia in RA. JAKi increased muscle mass through attenuating IL-6/JAK/STAT activation, decreasing atrogenes, and restoring muscle differentiation markers. These data together with an increase in CK support the role of CK as a valuable marker of muscle gain following JAKi treatment.
Collapse
Affiliation(s)
| | | | | | | | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain
| | | | | |
Collapse
|
14
|
Pallaoro M, Modina SC, Fiorati A, Altomare L, Mirra G, Scocco P, Di Giancamillo A. Towards a More Realistic In Vitro Meat: The Cross Talk between Adipose and Muscle Cells. Int J Mol Sci 2023; 24:ijms24076630. [PMID: 37047600 PMCID: PMC10095036 DOI: 10.3390/ijms24076630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
According to statistics and future predictions, meat consumption will increase in the coming years. Considering both the environmental impact of intensive livestock farming and the importance of protecting animal welfare, the necessity of finding alternative strategies to satisfy the growing meat demand is compelling. Biotechnologies are responding to this demand by developing new strategies for producing meat in vitro. The manufacturing of cultured meat has faced criticism concerning, above all, the practical issues of culturing together different cell types typical of meat that are partly responsible for meat’s organoleptic characteristics. Indeed, the existence of a cross talk between adipose and muscle cells has critical effects on the outcome of the co-culture, leading to a general inhibition of myogenesis in favor of adipogenic differentiation. This review aims to clarify the main mechanisms and the key molecules involved in this cross talk and provide an overview of the most recent and successful meat culture 3D strategies for overcoming this challenge, focusing on the approaches based on farm-animal-derived cells.
Collapse
Affiliation(s)
- Margherita Pallaoro
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Polytechnic University of Milan, Via Luigi Mancinelli, 7, 20131 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Polytechnic University of Milan, Via Luigi Mancinelli, 7, 20131 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Giorgio Mirra
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
15
|
Wang J, Tierney L, Wilson C, Phillips V, Goldman L, Mumaw C, Muang E, Walker CL. Carboxyl-terminal modulator protein (CTMP) deficiency mitigates denervation-induced skeletal muscle atrophy. Biochem Biophys Res Commun 2023; 644:155-161. [PMID: 36652767 DOI: 10.1016/j.bbrc.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Denervated skeletal muscles show decreased Akt activity and phosphorylation, resulting in atrophy. Akt inhibits downstream transcription of atrophy-associated ubiquitin ligases like muscle ring-finger protein 1 (MuRF-1). In addition, reduced Akt signaling contributes to aberrant protein synthesis in muscles. In ALS mice, we recently found that carboxyl-terminator modulator protein (CTMP) expression is increased and correlated with reduced Akt signaling in atrophic skeletal muscle. CTMP has also been implicated in promoting muscle degeneration and catabolism in an in vitro muscle atrophy model. The present study examined whether sciatic nerve injury (SNI) stimulated CTMP expression in denervated skeletal muscle during muscle atrophy. We hypothesized that CTMP deficiency would reduce neurogenic atrophy and reverse Akt signaling downregulation. Compared to the unaffected contralateral muscle, wild-type (WT) gastrocnemius muscle had a significant increase in CTMP (p < 0.05). Furthermore, denervated CTMP knockout (CTMP-KO) gastrocnemius weighed more than WT muscle (p < 0.05). Denervated CTMP-KO gastrocnemius also showed higher Akt and downstream glycogen synthase kinase 3β (GSK3β) phosphorylation compared to WT muscle (p < 0.05) as well as ribosomal proteins S6 and 4E-BP1 phosphorylation (p < 0.001 and p < 0.05, respectively). Moreover, CTMP-KO mice showed significantly lower levels of E3 ubiquitin ligase MuRF-1 and myostatin than WT muscle (p < 0.05). Our findings suggest that CTMP is essential to muscle atrophy after denervation and it may act by reducing Akt signaling, protein synthesis, and increasing myocellular catabolism.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Lydia Tierney
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Christopher Wilson
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Victoria Phillips
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Lillian Goldman
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Christen Mumaw
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA; Neuromusculoskeletal Research Group, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, 46202, USA
| | - En Muang
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Chandler L Walker
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA; Neuromusculoskeletal Research Group, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
16
|
Belcher DJ, Guitart M, Hain B, Kim HG, Waning D, Barreiro E, Nader GA. LP07 and LLC preclinical models of lung cancer induce divergent anabolic deficits and expression of pro-inflammatory effectors of muscle wasting. J Appl Physiol (1985) 2022; 133:1260-1272. [PMID: 36201324 PMCID: PMC9678411 DOI: 10.1152/japplphysiol.00246.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Preclinical models have been instrumental to elucidate the mechanisms underlying muscle wasting in lung cancer (LC). We investigated anabolic deficits and the expression of proinflammatory effectors of muscle wasting in the LP07 and Lewis lung carcinoma (LLC) tumor models. Tumor growth resulted in significant weakness in LP07 but not in LLC mice despite similar reductions in gastrocnemius muscle mass in both models. The LP07 tumors caused a reduction in ribosomal (r)RNA and a decrease in rRNA gene (rDNA) transcription elongation, whereas no changes in ribosomal capacity were evident in LLC tumor-bearing mice. Expression of RNA Polymerase I (Pol I) elongation-associated subunits Polr2f, PAF53, and Znrd1 mRNAs was significantly elevated in the LP07 model, whereas Pol I elongation-related factors FACT and Spt4/5 mRNAs were elevated in the LLC mice. Reductions in RPS6 and 4E-BP1 phosphorylation were similar in both models but were independent of mTOR phosphorylation in LP07 mice. Muscle inflammation was also tumor-specific, IL-6 and TNF-α mRNA increased with LLC tumors, and upregulation of NLRP3 mRNA was independent of tumor type. In summary, although both models caused muscle wasting, only the LP07 model displayed muscle weakness with reductions in ribosomal capacity. Intracellular signaling diverged at the mTOR level with similar reductions in RPS6 and 4E-BP1 phosphorylation regardless of tumor type. The increase in proinflammatory factors was more pronounced in the LLC model. Our results demonstrate novel divergent anabolic deficits and expression of proinflammatory effectors of muscle wasting in the LP07 and LLC preclinical models of lung cancer.NEW & NOTEWORTHY We provide novel data demonstrating significant divergence in anabolic deficits and the expression of proinflammatory effectors of muscle wasting consequent to different lung-derived tumors.
Collapse
Affiliation(s)
- Daniel J Belcher
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Maria Guitart
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Network of Excellence in Lung Diseases (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Brian Hain
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Hyo-Gun Kim
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - David Waning
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Barcelona, Spain
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Network of Excellence in Lung Diseases (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Gustavo A Nader
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Penn State Cancer Institute, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
17
|
Gortan Cappellari G, Semolic A, Ruozi G, Barbetta D, Bortolotti F, Vinci P, Zanetti M, Mak RH, Garibotto G, Giacca M, Barazzoni R. n-3 PUFA dietary lipid replacement normalizes muscle mitochondrial function and oxidative stress through enhanced tissue mitophagy and protects from muscle wasting in experimental kidney disease. Metabolism 2022; 133:155242. [PMID: 35750236 DOI: 10.1016/j.metabol.2022.155242] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION AND METHODS Skeletal muscle mitochondrial dysfunction may cause tissue oxidative stress and consequent catabolism in chronic kidney disease (CKD), contributing to patient mortality. We investigated in 5/6-nephrectomized (Nx) rats the impact of n3-polyunsaturated fatty-acids (n3-PUFA) isocaloric partial dietary replacement on gastrocnemius muscle (Gm) mitochondrial master-regulators, ATP production, ROS generation and related muscle-catabolic derangements. RESULTS Nx had low Gm mitochondrial nuclear respiratory factor-2 and peroxisome proliferator-activated receptor gamma coactivator-1alpha, low ATP production and higher mitochondrial fission-fusion protein ratio with ROS overproduction. n3-PUFA normalized all mitochondrial derangements and pro-oxidative tissue redox state (oxydized to total glutathione ratio). n3-PUFA also normalized Nx-induced muscle-catabolic proinflammatory cytokines, insulin resistance and low muscle weight. Human uremic serum reproduced mitochondrial derangements in C2C12 myotubes, while n3-PUFA coincubation prevented all effects. n3-PUFA also enhanced muscle mitophagy in-vivo and siRNA-mediated autophagy inhibition selectively blocked n3-PUFA-induced normalization of C2C12 mitochondrial ROS production. CONCLUSIONS In conclusion, dietary n3-PUFA normalize mitochondrial master-regulators, ATP production and dynamics in experimental CKD. These effects occur directly in muscle cells and they normalize ROS production through enhanced mitophagy. Dietary n3-PUFA mitochondrial effects result in normalized catabolic derangements and protection from muscle wasting, with potential positive impact on patient survival.
Collapse
Affiliation(s)
| | - Annamaria Semolic
- Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Lab., International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Francesca Bortolotti
- Molecular Medicine Lab., International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Pierandrea Vinci
- Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Michela Zanetti
- Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, USA
| | - Giacomo Garibotto
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Mauro Giacca
- Molecular Medicine Lab., International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Rocco Barazzoni
- Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
18
|
Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications—A Narrative Review. Int J Mol Sci 2022; 23:ijms23116047. [PMID: 35682722 PMCID: PMC9181340 DOI: 10.3390/ijms23116047] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Muscle wasting, known to develop in patients with chronic kidney disease (CKD), is a deleterious consequence of numerous complications associated with deteriorated renal function. Muscle wasting in CKD mainly involves dysregulated muscle protein metabolism and impaired muscle cell regeneration. In this narrative review, we discuss the cardinal role of the insulin-like growth factor 1 and myostatin signaling pathways, which have been extensively investigated using animal and human studies, as well as the emerging concepts in microRNA- and gut microbiota-mediated regulation of muscle mass and myogenesis. To ameliorate muscle loss, therapeutic strategies, including nutritional support, exercise programs, pharmacological interventions, and physical modalities, are being increasingly developed based on advances in understanding its underlying pathophysiology.
Collapse
|
19
|
Clavere NG, Alqallaf A, Rostron KA, Parnell A, Mitchell R, Patel K, Boateng SY. Inhibition of activin A receptor signalling attenuates age-related pathological cardiac remodelling. Dis Model Mech 2022; 15:275323. [PMID: 35380160 PMCID: PMC9118092 DOI: 10.1242/dmm.049424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
In the heart, ageing is associated with DNA damage, oxidative stress, fibrosis and activation of the activin signalling pathway, leading to cardiac dysfunction. The cardiac effects of activin signalling blockade in progeria are unknown. This study investigated the cardiac effects of progeria induced by attenuated levels of Ercc1, which is required for DNA excision and repair, and the impact of activin signalling blockade using a soluble activin receptor type IIB (sActRIIB). DNA damage and oxidative stress were significantly increased in Ercc1Δ/− hearts, but were reduced by sActRIIB treatment. sActRIIB treatment improved cardiac systolic function and induced cardiomyocyte hypertrophy in Ercc1Δ/− hearts. RNA-sequencing analysis showed that in Ercc1Δ/− hearts, there was an increase in pro-oxidant and a decrease in antioxidant gene expression, whereas sActRIIB treatment reversed this effect. Ercc1Δ/− hearts also expressed higher levels of anti-hypertrophic genes and decreased levels of pro-hypertrophic ones, which were also reversed by sActRIIB treatment. These results show for the first time that inhibition of activin A receptor signalling attenuates cardiac dysfunction, pathological tissue remodelling and gene expression in Ercc1-deficient mice and presents a potentially novel therapeutic target for heart diseases. Summary: Attenuated DNA repair is associated with pathological cardiac remodelling and gene expression. Much of this phenotype is attenuated by inhibition of the activin signalling pathway using soluble activin receptor treatment.
Collapse
Affiliation(s)
- Nicolas G Clavere
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ali Alqallaf
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Kerry A Rostron
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrew Parnell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Robert Mitchell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ketan Patel
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| |
Collapse
|
20
|
Bataille S, Dou L, Bartoli M, Sallée M, Aniort J, Ferkak B, Chermiti R, McKay N, Da Silva N, Burtey S, Poitevin S. Mechanisms of myostatin and activin A accumulation in chronic kidney disease. Nephrol Dial Transplant 2022; 37:1249-1260. [PMID: 35333341 DOI: 10.1093/ndt/gfac136] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myostatin and activin A induce muscle wasting by activating the ubiquitin proteasome system and inhibiting the Akt/mTOR pathway. In chronic kidney disease (CKD), myostatin and activin A plasma concentrations are increased, but it is not clear if there is an increased production or a decreased renal clearance. METHODS We measured myostatin and activin A concentrations in 232 CKD patients and studied their correlation with estimated glomerular filtration rate (eGFR). We analyzed the myostatin gene (MSTN) expression in muscle biopsies of hemodialysis (HD) patients. We then measured circulating myostatin and activin A in plasma and the Mstn and Inhba expression in muscles, kidney, liver and heart of two CKD mice models (adenine and 5/6th nephrectomy models). Finally, we analyzed whether the uremic toxin indoxyl sulfate (IS) increased Mstn expression in mice and cultured muscle cells. RESULTS In patients, myostatin and activin A were inversely correlated with eGFR. MSTN expression was lower in HD patients' muscles (vastus lateralis) than in controls. In mice with CKD, myostatin and activin A blood concentrations were increased. Mstn was not up-regulated in CKD mice tissues. Inha was up-regulated in kidney and heart. Exposure to IS did not induce Mstn up-regulation in mice muscles and in cultured myoblasts and myocytes. CONCLUSION During CKD, myostatin and activin A blood concentrations are increased. Myostatin is not overproduced, suggesting only an impaired renal clearance, but activin A is over produced in kidney and heart. We propose to add myostatin and activin A to the list of uremic toxins.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Marion Sallée
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | - Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Bohrane Ferkak
- Service d'Evaluation Médicale, AP-HM, Marseille, France.,Aix Marseille Univ, EA 3279 Self-perceived Health Assessment Research Unit, Marseille, France
| | - Rania Chermiti
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Nathalie McKay
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | | |
Collapse
|
21
|
Almeida PP, de Moraes Thomasi BB, Menezes ÁC, Da Cruz BO, da Silva Costa N, Brito ML, D'Avila Pereira A, Castañon CR, Degani VAN, Magliano DC, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. 5/6 nephrectomy affects enteric glial cells and promotes impaired antioxidant defense in the colonic neuromuscular layer. Life Sci 2022; 298:120494. [PMID: 35339510 DOI: 10.1016/j.lfs.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
AIMS Chronic kidney disease (CKD) produces multiple repercussions in the gastrointestinal tract (GIT), such as alterations in motility, gut microbiota, intestinal permeability, and increased oxidative stress. However, despite enteric glial cells (EGC) having important neural and immune features in GIT physiology, their function in CKD remains unknown. The present study investigates colonic glial markers, inflammation, and antioxidant parameters in a CKD model. MAIN METHODS A 5/6 nephrectomized rat model was used to induce CKD in rats and Sham-operated animals as a control to suppress. Biochemical measures in plasma and neuromuscular layer such as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity were carried out. Kidney histopathology was evaluated. Colon morphology analysis and glial fibrillary acid protein (GFAP), connexin-43 (Cx43), nuclear factor-kappa B (NF-κB) p65, and GPx protein expression were performed. KEY FINDINGS The CKD group exhibited dilated tubules and tubulointerstitial fibrosis in the reminiscent kidney (p = 0.0002). CKD rats showed higher SOD activity (p = 0.004) in plasma, with no differences in neuromuscular layer (p = 0.9833). However, GPx activity was decreased in the CKD group in plasma (p = 0.013) and neuromuscular layer (p = 0.0338). Morphological analysis revealed alterations in colonic morphometry with inflammatory foci in the submucosal layer and neuromuscular layer straightness in CKD rats (p = 0.0291). In addition, GFAP, Cx43, NF-κBp65 protein expression were increased, and GPx decreased in the neuromuscular layer of the CKD group (p < 0.05). SIGNIFICANCE CKD animals present alterations in colonic cytoarchitecture and decreased layer thickness. Moreover, CKD affects the enteric glial network of the neuromuscular layer, associated with decreased antioxidant activity and inflammation.
Collapse
Affiliation(s)
- Patricia Pereira Almeida
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | - Ágatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Nutrition Graduation, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Cecília Ribeiro Castañon
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - D'Angelo Carlo Magliano
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, Université Paul Sabatier (UPS), Toulouse, France
| | - Ana Lúcia Tavares-Gomes
- Neuroscience Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
22
|
Detection of Target Genes for Drug Repurposing to Treat Skeletal Muscle Atrophy in Mice Flown in Spaceflight. Genes (Basel) 2022; 13:genes13030473. [PMID: 35328027 PMCID: PMC8953707 DOI: 10.3390/genes13030473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle atrophy is a common condition in aging, diabetes, and in long duration spaceflights due to microgravity. This article investigates multi-modal gene disease and disease drug networks via link prediction algorithms to select drugs for repurposing to treat skeletal muscle atrophy. Key target genes that cause muscle atrophy in the left and right extensor digitorum longus muscle tissue, gastrocnemius, quadriceps, and the left and right soleus muscles are detected using graph theoretic network analysis, by mining the transcriptomic datasets collected from mice flown in spaceflight made available by GeneLab. We identified the top muscle atrophy gene regulators by the Pearson correlation and Bayesian Markov blanket method. The gene disease knowledge graph was constructed using the scalable precision medicine knowledge engine. We computed node embeddings, random walk measures from the networks. Graph convolutional networks, graph neural networks, random forest, and gradient boosting methods were trained using the embeddings, network features for predicting links and ranking top gene-disease associations for skeletal muscle atrophy. Drugs were selected and a disease drug knowledge graph was constructed. Link prediction methods were applied to the disease drug networks to identify top ranked drugs for therapeutic treatment of skeletal muscle atrophy. The graph convolution network performs best in link prediction based on receiver operating characteristic curves and prediction accuracies. The key genes involved in skeletal muscle atrophy are associated with metabolic and neurodegenerative diseases. The drugs selected for repurposing using the graph convolution network method were nutrients, corticosteroids, anti-inflammatory medications, and others related to insulin.
Collapse
|
23
|
Emmert ME, Aggarwal P, Shay-Winkler K, Lee SJ, Goh Q, Cornwall R. Sex-specific role of myostatin signaling in neonatal muscle growth, denervation atrophy, and neuromuscular contractures. eLife 2022; 11:81121. [PMID: 36314781 PMCID: PMC9873256 DOI: 10.7554/elife.81121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/31/2022] [Indexed: 01/27/2023] Open
Abstract
Neonatal brachial plexus injury (NBPI) causes disabling and incurable muscle contractures that result from impaired longitudinal growth of denervated muscles. This deficit in muscle growth is driven by increased proteasome-mediated protein degradation, suggesting a dysregulation of muscle proteostasis. The myostatin (MSTN) pathway, a prominent muscle-specific regulator of proteostasis, is a putative signaling mechanism by which neonatal denervation could impair longitudinal muscle growth, and thus a potential target to prevent NBPI-induced contractures. Through a mouse model of NBPI, our present study revealed that pharmacologic inhibition of MSTN signaling induces hypertrophy, restores longitudinal growth, and prevents contractures in denervated muscles of female but not male mice, despite inducing hypertrophy of normally innervated muscles in both sexes. Additionally, the MSTN-dependent impairment of longitudinal muscle growth after NBPI in female mice is associated with perturbation of 20S proteasome activity, but not through alterations in canonical MSTN signaling pathways. These findings reveal a sex dimorphism in the regulation of neonatal longitudinal muscle growth and contractures, thereby providing insights into contracture pathophysiology, identifying a potential muscle-specific therapeutic target for contracture prevention, and underscoring the importance of sex as a biological variable in the pathophysiology of neuromuscular disorders.
Collapse
Affiliation(s)
- Marianne E Emmert
- Department of Medical Sciences, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Parul Aggarwal
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Kritton Shay-Winkler
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Se-Jin Lee
- The Jackson LaboratoryFarmingtonUnited States,Department of Genetics and Genome Sciences, University of Connecticut School of MedicineFarmingtonUnited States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Orthopaedic Surgery, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Orthopaedic Surgery, University of Cincinnati College of MedicineCincinnatiUnited States,Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
24
|
Yi X, Tao J, Qian Y, Feng F, Hu X, Xu T, Jin H, Ruan H, Zheng HF, Tong P. Morroniside ameliorates inflammatory skeletal muscle atrophy via inhibiting canonical and non-canonical NF-κB and regulating protein synthesis/degradation. Front Pharmacol 2022; 13:1056460. [PMID: 36618945 PMCID: PMC9816435 DOI: 10.3389/fphar.2022.1056460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
No drug options exist for skeletal muscle atrophy in clinical, which poses a huge socio-economic burden, making development on drug interventions a general wellbeing need. Patients with a variety of pathologic conditions associated with skeletal muscle atrophy have systemically elevated inflammatory factors. Morroniside, derived from medicinal herb Cornus officinalis, possesses anti-inflammatory effect. However, whether and how morroniside combat muscle atrophy remain unknown. Here, we identified crucial genetic associations between TNFα/NF-κB pathway and grip strength based on population using 377,807 European participants from the United Kingdom Biobank dataset. Denervation increased TNFα in atrophying skeletal muscles, which inhibited myotube formation in vitro. Notably, morroniside treatment rescued TNFα-induced myotube atrophy in vitro and impeded skeletal muscle atrophy in vivo, resulting in increased body/muscles weights, No. of satellite cells, size of type IIA, IIX and IIB myofibers, and percentage of type IIA myofibers in denervated mice. Mechanistically, in vitro and/or in vivo studies demonstrated that morroniside could not only inhibit canonical and non-canonical NF-κB, inflammatory mediators (IL6, IL-1b, CRP, NIRP3, PTGS2, TNFα), but also down-regulate protein degradation signals (Follistatin, Myostatin, ALK4/5/7, Smad7/3), ubiquitin-proteasome molecules (FoxO3, Atrogin-1, MuRF1), autophagy-lysosomal molecules (Bnip3, LC3A, and LC3B), while promoting protein synthesis signals (IGF-1/IGF-1R/IRS-1/PI3K/Akt, and BMP14/BMPR2/ALK2/3/Smad5/9). Moreover, morroniside had no obvious liver and kidney toxicity. This human genetic, cells and mice pathological evidence indicates that morroniside is an efficacious and safe inflammatory muscle atrophy treatment and suggests its translational potential on muscle wasting.
Collapse
Affiliation(s)
- Xiangjiao Yi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jianguo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Feng Feng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xueqin Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Taotao Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Hongfeng Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- *Correspondence: Peijian Tong, ; Hou-Feng Zheng, ; Hongfeng Ruan,
| |
Collapse
|
25
|
Sheng H, Guo Y, Zhang L, Zhang J, Miao M, Tan H, Hu D, Li X, Ding X, Li G, Guo H. Proteomic Studies on the Mechanism of Myostatin Regulating Cattle Skeletal Muscle Development. Front Genet 2021; 12:752129. [PMID: 34868225 PMCID: PMC8635237 DOI: 10.3389/fgene.2021.752129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of muscle growth and development. In this study, we performed comparatively the proteomics analyses of gluteus tissues from MSTN+/− Mongolian cattle (MG.MSTN+/−) and wild type Mongolian cattle (MG.WT) using a shotgun-based tandem mass tag (TMT) 6-plex labeling method to investigate the regulation mechanism of MSTN on the growth and development of bovine skeletal muscle. A total of 1,950 proteins were identified in MG.MSTN+/− and MG.WT. Compared with MG.WT cattle, a total of 320 differentially expressed proteins were identified in MG.MSTN cattle, including 245 up-regulated differentially expressed proteins and 75 down-regulated differentially expressed proteins. Bioinformatics analysis showed that knockdown of the MSTN gene increased the expression of extracellular matrix and ribosome-related proteins, induced activation of focal adhesion, PI3K-AKT, and Ribosomal pathways. The results of proteomic analysis were verified by muscle tissue Western blot test and in vitro MSTN gene knockdown test, and it was found that knockdown MSTN gene expression could promote the proliferation and myogenic differentiation of bovine skeletal muscle satellite cells (BSMSCs). At the same time, Co-Immunoprecipitation (CO-IP) assay showed that MSTN gene interacted with extracellular matrix related protein type I collagen α 1 (COL1A1), and knocking down the expression of COL1A1 could inhibit the activity of adhesion, PI3K-AKT and ribosome pathway, thus inhibit BSMSCs proliferation. These results suggest that the MSTN gene regulates focal adhesion, PI3K-AKT, and Ribosomal pathway through the COL1A1 gene. In general, this study provides new insights into the regulatory mechanism of MSTN involved in muscle growth and development.
Collapse
Affiliation(s)
- Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Manning Miao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Haoyun Tan
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Debao Hu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Guangpeng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
26
|
Gungor O, Ulu S, Hasbal NB, Anker SD, Kalantar‐Zadeh K. Effects of hormonal changes on sarcopenia in chronic kidney disease: where are we now and what can we do? J Cachexia Sarcopenia Muscle 2021; 12:1380-1392. [PMID: 34676694 PMCID: PMC8718043 DOI: 10.1002/jcsm.12839] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia or muscle wasting is a progressive and generalized skeletal muscle disorder involving the accelerated loss of muscle mass and function, often associated with muscle weakness (dynapenia) and frailty. Whereas primary sarcopenia is related to ageing, secondary sarcopenia happens independent of age in the context of chronic disease states such as chronic kidney disease (CKD). Sarcopenia has become a major focus of research and public policy debate due to its impact on patient's health-related quality of life, health-care expenditure, morbidity, and mortality. The development of sarcopenia in patients with CKD is multifactorial and it may occur independently of weight loss or cachexia including under obese sarcopenia. Hormonal imbalances can facilitate the development of sarcopenia in the general population and is a common finding in CKD. Hormones that may influence the development of sarcopenia are testosterone, growth hormone, insulin, thyroid hormones, and vitamin D. Although the relationship between free testosterone level that is low in uraemic patients and sarcopenia in CKD is not well-defined, functional improvement may be seen. Unlike testosterone, it is known that vitamin D is associated with muscle strength, muscle size, and physical performance in patients with CKD. Outcomes after vitamin D replacement therapy are still controversial. The half-life of growth hormone (GH) is prolonged in patients with CKD. Besides, IGF-1 levels are normal in patients with Stage 4 CKD-a minimal reduction is seen in the end-stage renal disease. Unresponsiveness or resistance of IGF-1 and changes in the GH/IGF-1 axis are the main causes of sarcopenia in CKD. Low serum T3 level is frequent in CKD, but the net effect on sarcopenia is not well-studied. CKD patients develop insulin resistance (IR) from the earliest period even before GFR decline begins. IR reduces glucose utilization as an energy source by hepatic gluconeogenesis, decreasing muscle glucose uptake, impairing intracellular glucose metabolism. This cascade results in muscle protein breakdown. IR and sarcopenia might also be a new pathway for targeting. Ghrelin, oestrogen, cortisol, and dehydroepiandrosterone may be other players in the setting of sarcopenia. In this review, we mainly examine the effects of hormonal changes on the occurrence of sarcopenia in patients with CKD via the available data.
Collapse
Affiliation(s)
- Ozkan Gungor
- Division of Nephrology, Department of Internal Medicine, Faculty of MedicineKahramanmaras Sutcu Imam UniversityKahramanmarasTurkey
| | - Sena Ulu
- Department of Internal Medicine and Nephrology, Faculty of MedicineBahcesehir UniversityIstanbulTurkey
| | - Nuri Baris Hasbal
- Clinic of NephrologyBasaksehir Cam and Sakura City HospitalIstanbulTurkey
| | - Stefan D. Anker
- Department of Cardiology (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT)German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin BerlinBerlinGermany
| | - Kamyar Kalantar‐Zadeh
- Division of Nephrology, Hypertension and Kidney TransplantationUniversity of California Irvine School of MedicineOrangeCAUSA
| |
Collapse
|
27
|
Chen YH, Chiu WC, Xiao Q, Chen YL, Shirakawa H, Yang SC. Synbiotics Alleviate Hepatic Damage, Intestinal Injury and Muscular Beclin-1 Elevation in Rats after Chronic Ethanol Administration. Int J Mol Sci 2021; 22:ijms222212547. [PMID: 34830430 PMCID: PMC8622351 DOI: 10.3390/ijms222212547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the beneficial effects of synbiotics on liver damage, intestinal health, and muscle loss, and their relevance in rats with chronic ethanol feeding. Thirty Wistar rats fed with a control liquid diet were divided into control and synbiotics groups, which were respectively provided with water or synbiotics solution (1.5 g/kg body weight/day) for 2 weeks. From the 3rd to 8th week, the control group was divided into a C group (control liquid diet + water) and an E group (ethanol liquid diet + water). The synbiotics group was separated in to three groups, SC, ASE, and PSE. The SC group was given a control liquid diet with synbiotics solution; the ASE group was given ethanol liquid diet with synbiotics solution, and the PSE group was given ethanol liquid diet and water. As the results, the E group exhibited liver damage, including increased AST and ALT activities, hepatic fatty changes, and higher CYP2E1 expression. Intestinal mRNA expressions of occludin and claudin-1 were significantly decreased and the plasma endotoxin level was significantly higher in the E group. In muscles, beclin-1 was significantly increased in the E group. Compared to the E group, the PSE and ASE groups had lower plasma ALT activities, hepatic fatty changes, and CYP2E1 expression. The PSE and ASE groups had significantly higher intestinal occludin and claudin-1 mRNA expressions and lower muscular beclin-1 expression when compared to the E group. In conclusion, synbiotics supplementation might reduce protein expression of muscle protein degradation biomarkers such as beclin-1 in rats with chronic ethanol feeding, which is speculated to be linked to the improvement of intestinal tight junction and the reduction of liver damage.
Collapse
Affiliation(s)
- Yi-Hsiu Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Qian Xiao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8857, Japan;
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6553); Fax: +886-2-27373112
| |
Collapse
|
28
|
Sun Z, Xu D, Zhao L, Li X, Li S, Huang X, Li C, Sun L, Liu B, Jiang Z, Zhang L. A new therapeutic effect of fenofibrate in Duchenne muscular dystrophy: The promotion of myostatin degradation. Br J Pharmacol 2021; 179:1237-1250. [PMID: 34553378 DOI: 10.1111/bph.15678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Duchenne muscular dystrophy (DMD) is a degenerative muscle disease with no effective drug treatment. This study investigated the positive effects of fenofibrate on dystrophic muscles. EXPERIMENTAL APPROACH Myostatin expression in serum and muscle tissue of DMD patients and mdx mice were tested. Primary myoblasts isolated from mdx mice were challenged with an inflammatory stimulus and treated with fenofibrate. In animal experiments, 6-week-old male mdx mice were treated with fenofibrate (100 mg/kg) administered orally once per day for 6 weeks. Tests of muscle function plus histology and biochemical analyses of serum were conducted to evaluate the effects of fenofibrate. The expressions of myostatin, MuRF1, and atrogin-1 in skeletal muscle were evaluated by Western blotting and real-time PCR. Total and oxidative myosin heavy chain (MHC) were assessed via immunofluorescence. KEY RESULTS Increased expression of myostatin protein was found in dystrophic muscle of DMD patients and mdx mice. Fenofibrate enhanced myofibre differentiation by downregulating the expression of myostatin protein but not mRNA in primary myoblasts of mdx mice. Fenofibrate significantly improved muscle function while ameliorating muscle damage in mdx mice. These benefits are accompanied by an anti-inflammatory effect. Fenofibrate treatment returned myofibre function by inhibiting the expressions of myostatin, MuRF1, and atrogin-1 protein in the gastrocnemius muscle and diaphragm, while leaving the mRNA level of myostatin unaffected. CONCLUSIONS AND IMPLICATIONS Fenofibrate substantially slows muscle dystrophy by promoting the degradation of myostatin protein, which may indicate a new therapeutic focus for DMD patients.
Collapse
Affiliation(s)
- Zeren Sun
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Sijia Li
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Xiaofei Huang
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Chunjie Li
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Bing Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.,Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
29
|
Schisandrae chinensis Fructus Extract Ameliorates Muscle Atrophy in Streptozotocin-Induced Diabetic Mice by Downregulation of the CREB-KLF15 and Autophagy-Lysosomal Pathways. Cells 2021; 10:cells10092283. [PMID: 34571935 PMCID: PMC8469055 DOI: 10.3390/cells10092283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus is an autoimmune disease caused by the destruction of pancreatic beta cells. Many patients with type 1 diabetes experience skeletal muscle wasting. Although the link between type 1 diabetes and muscle wasting is not clearly known, insulin insufficiency and hyperglycemia may contribute to decreased muscle mass. In this study, we investigated the therapeutic effect of the ethanolic extract of Schisandrae chinensis Fructus (SFe) on muscle wasting in streptozotocin (STZ)-induced diabetic mice. STZ-diabetic C57BL/6 mice (blood glucose level ≥300 mg/dL) were orally administered SFe (250 or 500 mg/kg/day) for 6 weeks. We observed that SFe administration did not change blood glucose levels but increased gastrocnemius muscle weight, cross-sectional area, and grip strength in STZ-induced diabetic mice. Administration of SFe (500 mg/kg) decreased the expression of atrophic factors, such as MuRF1 and atrogin-1, but did not alter the expression of muscle synthetic factors. Further studies showed that SFe administration decreased the expression of KLF15 and p-CREB, which are upstream molecules of atrophic factors. Examination of the expression of molecules involved in autophagy–lysosomal pathways (e.g., p62/SQSTM1, Atg7, Beclin-1, ULK-1, LC3-I, and LC3-II) revealed that SFe administration significantly decreased the expression of p62/SQSTM1, LC3-I, and LC3-II; however, no changes were observed in the expression of Atg7, Beclin-1, or ULK-1. Our results suggest that SFe ameliorated muscle wasting in STZ-induced diabetic mice by decreasing protein degradation via downregulation of the CREB-KLF15-mediated UPS system and the p62/SQSTM1-mediated autophagy–lysosomal pathway.
Collapse
|
30
|
Singh A, Yadav A, Phogat J, Dabur R. Dynamics of autophagy and ubiquitin proteasome system coordination and interplay in skeletal muscle atrophy. Curr Mol Pharmacol 2021; 15:475-486. [PMID: 34365963 DOI: 10.2174/1874467214666210806163851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Skeletal muscles are considered the largest reservoirs of the protein pool in the body and are critical for the maintenances of body homeostasis. Skeletal muscle atrophy is supported by various physiopathological conditions that lead to loss of muscle mass and contractile capacity of the skeletal muscle. Lysosomal mediated autophagy and ubiquitin-proteasomal system (UPS) concede the major intracellular systems of muscle protein degradation that result in the loss of mass and strength. Both systems recognize ubiquitination as a signal of degradation through different mechanisms, a sign of dynamic interplay between systems. Hence, growing shreds of evidence suggest the interdependency of autophagy and UPS in the progression of skeletal muscle atrophy under various pathological conditions. Therefore, understanding the molecular dynamics as well associated factors responsible for their interdependency is a necessity for the new therapeutic insights to counteract the muscle loss. Based on current literature, the present review summarizes the factors interplay in between the autophagy and UPS in favor of enhanced proteolysis of skeletal muscle and how they affect the anabolic signaling pathways under various conditions of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ajay Singh
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Jatin Phogat
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| |
Collapse
|
31
|
Evans W, Shankaran M, Nyangau E, Field T, Mohammed H, Wolfe R, Schutzler S, Hellerstein M. Effects of Fortetropin on the Rate of Muscle Protein Synthesis in Older Men and Women: A Randomized, Double-Blinded, Placebo-Controlled Study. J Gerontol A Biol Sci Med Sci 2021; 76:108-114. [PMID: 32598445 PMCID: PMC7756695 DOI: 10.1093/gerona/glaa162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Fortetropin is a proteo-lipid complex made from fertilized egg yolk and, in young men, has been shown to increase lean body mass. METHODS The purpose of this study was to examine the effects of 21 days of Fortetropin supplementation on the fractional synthetic rate (FSR) of muscle protein in 10 healthy, older men and 10 women (66.4 ± 4.5 y). We used 2H2O labeling to measure FSR of multiple muscle protein ontologies. D3-creatine dilution was used to determine muscle mass at baseline. Subjects ingested 70% 2H2O for 21 day and saliva samples were collected to determine body 2H2O enrichment. A microbiopsy was obtained from the m. vastus lateralis on Day 21. Subjects were randomly assigned to Fortetropin (19.8 g/d) or placebo (cheese powder, 19.8 g/d). RESULTS Restricting kinetic data to proteins with ≥2 peptides measured in at least 4 subjects per group resulted in 117 proteins meeting these criteria. The mean FSR for a majority of proteins in several muscle gene ontologies was higher in the Fortetropin group compared to placebo (32/38 myofibril proteins, 33/44 sarcoplasmic proteins, and 12/17 mitochondrial proteins) and this proportion was significantly different between groups using a binomial test and were independent of sex or baseline muscle mass. CONCLUSIONS The overall magnitude of the difference in muscle protein FSR of Fortetropin from placebo was 18%, with multiple gene ontologies affected. While these results should be confirmed in larger cohorts, they suggest that Fortetropin supplementation is effective for promoting muscle protein synthesis in older people.
Collapse
Affiliation(s)
- William Evans
- Department of Nutritional Sciences and Toxicology, University of California Berkeley.,Division of Geriatrics, Duke University School of Medicine, Durham, North Carolina
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California Berkeley
| | - Edna Nyangau
- Department of Nutritional Sciences and Toxicology, University of California Berkeley
| | - Tyler Field
- Department of Nutritional Sciences and Toxicology, University of California Berkeley
| | - Hussein Mohammed
- Department of Nutritional Sciences and Toxicology, University of California Berkeley
| | - Robert Wolfe
- Departement of Geriatrics, University of Arkansas for Medical Sciences, Little Rock
| | - Scott Schutzler
- Departement of Geriatrics, University of Arkansas for Medical Sciences, Little Rock
| | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California Berkeley
| |
Collapse
|
32
|
Choi SJ, Lee MS, Kang DH, Ko GJ, Lim HS, Yu BC, Park MY, Kim JK, Kim CH, Hwang SD, Kim JC, Won CW, An WS. Myostatin/Appendicular Skeletal Muscle Mass (ASM) Ratio, Not Myostatin, Is Associated with Low Handgrip Strength in Community-Dwelling Older Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147344. [PMID: 34299795 PMCID: PMC8307565 DOI: 10.3390/ijerph18147344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023]
Abstract
Background/Aims: Elevated levels of serum myostatin have been proposed as a biomarker for sarcopenia. Recent studies have shown that elevated level of serum myostatin was associated with physical fitness and performance. This study aimed to examine the significance of myostatin in the association between muscle mass and physical performance in the elderly. Methods: This cross-sectional study is based on the Korean Frailty and Aging Cohort study involving 1053 people aged 70 years or over. Anthropometric, physical performance, and laboratory data were collected. Results: The mean age of the participants was 75.8 years, and 50.7% of them were female. Serum myostatin levels in men (3.7 ± 1.2 vs. 3.2 ± 1.1 ng/mL, p < 0.001) were higher compared with that in women. Serum myostatin level was associated with appendicular skeletal muscle mass (ASM) index and eGFR by cystatin C. Serum myostatin/ASM ratio was associated with handgrip strength in women. Conclusion: Higher serum myostatin levels were related with higher muscle mass and better physical performances in the elderly. Serum myostatin/ASM ratio may be a predictor for physical performance rather than myostatin.
Collapse
Affiliation(s)
- Soo Jeong Choi
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Min Sung Lee
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (M.S.L.); (D.-H.K.)
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea; (M.S.L.); (D.-H.K.)
| | - Gang Jee Ko
- Division of Nephrology, Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Korea;
| | - Hee-Sook Lim
- Department of Food Sciences and Nutrition, Yeonsung University, Anyang 14011, Korea;
| | - Byung Chul Yu
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Moo Yong Park
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Jin Kuk Kim
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Chul-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14854, Korea;
| | - Seung Duk Hwang
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 14584, Korea; (S.J.C.); (B.C.Y.); (M.Y.P.); (J.K.K.); (S.D.H.)
| | - Jun Chul Kim
- Division of Nephrology, Department of Internal Medicine, CHA University School of Medicine, Gumi 39295, Korea;
| | - Chang Won Won
- Department of Family Medicine, Kyung Hee University School of Medicine, Seoul 02447, Korea
- Correspondence: (C.W.W.); (W.S.A.)
| | - Won Suk An
- Division of Nephrology, Department of Internal Medicine, Dong-A University College of Medicine, Busan 49201, Korea
- Correspondence: (C.W.W.); (W.S.A.)
| |
Collapse
|
33
|
Myostatin Inhibition-Induced Increase in Muscle Mass and Strength Was Amplified by Resistance Exercise Training, and Dietary Essential Amino Acids Improved Muscle Quality in Mice. Nutrients 2021; 13:nu13051508. [PMID: 33947024 PMCID: PMC8146053 DOI: 10.3390/nu13051508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
It has been frequently reported that myostatin inhibition increases muscle mass, but decreases muscle quality (i.e., strength/muscle mass). Resistance exercise training (RT) and essential amino acids (EAAs) are potent anabolic stimuli that synergistically increase muscle mass through changes in muscle protein turnover. In addition, EAAs are known to stimulate mitochondrial biogenesis. We have investigated if RT amplifies the anabolic potential of myostatin inhibition while EAAs enhance muscle quality through stimulations of mitochondrial biogenesis and/or muscle protein turnover. Mice were assigned into ACV (myostatin inhibitor), ACV+EAA, ACV+RT, ACV+EAA +RT, or control (CON) over 4 weeks. RT, but not EAA, increased muscle mass above ACV. Despite differences in muscle mass gain, myofibrillar protein synthesis was stimulated similarly in all vs. CON, suggesting a role for changes in protein breakdown in muscle mass gains. There were increases in MyoD expression but decreases in Atrogin-1/MAFbx expression in ACV+EAA, ACV+RT, and ACV+EAA+RT vs. CON. EAA increased muscle quality (e.g., grip strength and maximal carrying load) without corresponding changes in markers of mitochondrial biogenesis and neuromuscular junction stability. In conclusion, RT amplifies muscle mass and strength through changes in muscle protein turnover in conjunction with changes in implicated signaling, while EAAs enhance muscle quality through unknown mechanisms.
Collapse
|
34
|
Liu L, Hu R, You H, Li J, Liu Y, Li Q, Wu X, Huang J, Cai X, Wang M, Wei L. Formononetin ameliorates muscle atrophy by regulating myostatin-mediated PI3K/Akt/FoxO3a pathway and satellite cell function in chronic kidney disease. J Cell Mol Med 2021; 25:1493-1506. [PMID: 33405354 PMCID: PMC7875933 DOI: 10.1111/jcmm.16238] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle atrophy is a common complication in chronic kidney disease (CKD). Inflammation and myostatin play important roles in CKD muscle atrophy. Formononetin (FMN), which is a major bioactive isoflavone compound in Astragalus membranaceus, exerts anti‐inflammatory effects and the promotion of myogenic differentiation. Our study is based on myostatin to explore the effects and mechanisms of FMN in relation to CKD muscle atrophy. In this study, CKD rats and tumour necrosis factor α (TNF‐α)‐induced C2C12 myotubes were used for in vivo and in vitro models of muscle atrophy. The results showed that FMN significantly improved the renal function, nutritional status and inflammatory markers in CKD rats. Values for bodyweight, weight of tibialis anterior and gastrocnemius muscles, and cross‐sectional area (CSA) of skeletal muscles were significantly larger in the FMN treatment rats. Furthermore, FMN significantly suppressed the expressions of MuRF‐1, MAFbx and myostatin in the muscles of CKD rats and the TNF‐α‐induced C2C12 myotubes. Importantly, FMN significantly increased the phosphorylation of PI3K, Akt, and FoxO3a and the expressions of the myogenic proliferation and differentiation markers, myogenic differentiation factor D (MyoD) and myogenin in muscles of CKD rats and the C2C12 myotubes. Similar results were observed in TNF‐α‐induced C2C12 myotubes transfected with myostatin‐small interfering RNA (si‐myostatin). Notably, myostatin overexpression plasmid (myostatin OE) abolished the effect of FMN on the phosphorylation of the PI3K/Akt/FoxO3a pathway and the expressions of MyoD and myogenin. Our findings suggest that FMN ameliorates muscle atrophy related to myostatin‐mediated PI3K/Akt/FoxO3a pathway and satellite cell function.
Collapse
Affiliation(s)
- Lingyu Liu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingjing Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, China
| | - Yangyang Liu
- Huangpu People's Hospital of Zhongshan, Zhongshan, China
| | - Qiang Li
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Wu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiawen Huang
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiangsheng Cai
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lianbo Wei
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
35
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
36
|
Cruz A, Ferian A, Alves PKN, Silva WJ, Bento MR, Gasch A, Labeit S, Moriscot AS. Skeletal Muscle Anti-Atrophic Effects of Leucine Involve Myostatin Inhibition. DNA Cell Biol 2020; 39:2289-2299. [PMID: 33136436 DOI: 10.1089/dna.2020.5423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lack of mechanical load leads to skeletal muscle atrophy, and one major underlying mechanism involves the myostatin pathway that negatively regulates protein synthesis and also activates Atrogin-1/MAFbx and MuRF1 genes. In hindlimb immobilization, leucine was observed to attenuate the upregulation of the referred atrogenes, thereby shortening the impact on fiber cross-sectional area, nonetheless, the possible connection with myostatin is still elusive. This study sought to verify the impact of leucine supplementation on myostatin expression. Male Wistar rats were supplemented with leucine and hindlimb immobilized for 3 and 7 days, after which soleus muscles were removed for morphometric measurements and analyzed for gene and protein expression by real-time PCR and Western blotting, respectively. Muscle wasting was prominent 7 days after immobilization, as expected, leucine feeding mitigated this effect. Atrogin-1/MAFbx gene expression was upregulated only after 3 days of immobilization, and this effect was attenuated by leucine supplementation. Atrogin-1/MAFbx protein levels were elevated after 7 days of immobilization, which leucine supplementation was not able to lessen. On the other hand, myostatin gene expression was upregulated in immobilization for 3 and 7 days, which returned to normal levels after leucine supplementation. Myostatin protein levels followed gene expression at a 3-day time point only. Follistatin gene expression was upregulated during immobilization and accentuated by leucine after 3 days of supplementation. Concerning protein expression, follistatin was not altered neither by immobilization nor in immobilized animals treated with leucine. In conclusion, leucine protects against skeletal muscle mass loss during disuse, and the underlying molecular mechanisms appear to involve myostatin inhibition and Atrogin-1 normalization independently of follistatin signaling.
Collapse
Affiliation(s)
- André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrea Ferian
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula K N Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - William Jose Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mirella Ribeiro Bento
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexander Gasch
- Institute for Integrative Pathophysiology, Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Siegfried Labeit
- Institute for Integrative Pathophysiology, Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Anselmo Sigari Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Zhang H, Liang J, Chen N. Do not neglect the role of circadian rhythm in muscle atrophy. Ageing Res Rev 2020; 63:101155. [PMID: 32882420 DOI: 10.1016/j.arr.2020.101155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
In addition to its role in movement, human skeletal muscle also plays important roles in physiological activities related to metabolism and the endocrine system. Aging and disease onset and progression can induce the reduction of skeletal muscle mass and function, thereby exacerbating skeletal muscle atrophy. Recent studies have confirmed that skeletal muscle atrophy is mainly controlled by the balance between protein synthesis and degradation, the activation of satellite cells, and mitochondrial quality in skeletal muscle. Circadian rhythm is an internal rhythm related to an organism's adaptation to light-dark or day-night cycles of the planet, and consists of a core biological clock and a peripheral biological clock. Skeletal muscle, as the most abundant tissue in the human body, is an essential part of the peripheral biological clock in humans. Increasing evidence has confirmed that maintaining a normal circadian rhythm can be beneficial for increasing protein content, improving mitochondrial quality, and stimulating regeneration and repairing of cells in skeletal muscle to prevent or alleviate skeletal muscle atrophy. In this review, we summarize the roles and underlying mechanisms of circadian rhythm in delaying skeletal muscle atrophy, which will provide a theoretical reference for incorporating aspects of circadian rhythm to the prevention and treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Hu Zhang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
38
|
Rossetti ML, Tomko RJ, Gordon BS. Androgen depletion alters the diurnal patterns to signals that regulate autophagy in the limb skeletal muscle. Mol Cell Biochem 2020; 476:959-969. [PMID: 33128669 DOI: 10.1007/s11010-020-03963-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Hypogonadism contributes to limb skeletal muscle atrophy by increasing rates of muscle protein breakdown. Androgen depletion increases markers of the autophagy protein breakdown pathway in the limb muscle that persist throughout the diurnal cycle. However, the regulatory signals underpinning the increase in autophagy markers remain ill-defined. The purpose of this study was to characterize changes to autophagy regulatory signals in the limb skeletal muscle following androgen depletion. Male mice were subjected to a castration surgery or a sham surgery as a control. Seven weeks post-surgery, a subset of mice from each group was sacrificed every 4 hr over a 24 hr period. Protein and mRNA from the Tibialis Anterior (TA) were subjected to Western blot and RT-PCR. Consistent with an overall increase in autophagy, the phosphorylation pattern of Uncoordinated Like Kinase 1 (ULK1) (Ser555) was elevated throughout the diurnal cycle in the TA of castrated mice. Factors that induce the progression of autophagy were also increased in the TA following androgen depletion including an increase in the phosphorylation of c-Jun N-terminal Kinase (JNK) (Thr183/Tyr185) and an increase in the ratio of BCL-2 Associated X (BAX) to B-cell lymphoma 2 (BCL-2). Moreover, we observed an increase in the protein expression pattern of p53 and the mRNA of the p53 target genes Cyclin-Dependent Kinase Inhibitor 1A (p21) and Growth Arrest and DNA Damage Alpha (Gadd45a), which are known to increase autophagy and induce muscle atrophy. These data characterize novel changes to autophagy regulatory signals in the limb skeletal muscle following androgen deprivation.
Collapse
Affiliation(s)
- Michael L Rossetti
- Department of Nutrition, Food and Exercise Science, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, 115 W Call Street, Tallahassee, FL, 32304, USA
| | - Bradley S Gordon
- Department of Nutrition, Food and Exercise Science, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA.
- Institute of Sports Sciences and Medicine, Florida State University, 600 W. Cottage Ave, Tallahassee, FL, 32306, USA.
| |
Collapse
|
39
|
Pesce M, Ballerini P, Paolucci T, Puca I, Farzaei MH, Patruno A. Irisin and Autophagy: First Update. Int J Mol Sci 2020; 21:ijms21207587. [PMID: 33066678 PMCID: PMC7588919 DOI: 10.3390/ijms21207587] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Aging and sedentary life style are considered independent risk factors for many disorders. Under these conditions, accumulation of dysfunctional and damaged cellular proteins and organelles occurs, resulting in a cellular degeneration and cell death. Autophagy is a conserved recycling pathway responsible for the degradation, then turnover of cellular proteins and organelles. This process is a part of the molecular underpinnings by which exercise promotes healthy aging and mitigate age-related pathologies. Irisin is a myokine released during physical activity and acts as a link between muscles and other tissues and organs. Its main beneficial function is the change of subcutaneous and visceral adipose tissue into brown adipose tissue, with a consequential increase in thermogenesis. Irisin modulates metabolic processes, acting on glucose homeostasis, reduces systemic inflammation, maintains the balance between resorption and bone formation, and regulates the functioning of the nervous system. Recently, some of its pleiotropic and favorable properties have been attributed to autophagy induction, posing irisin as an important regulator of autophagy by exercise. This review article proposes to bring together for the first time the "state of the art" knowledge regarding the effects of irisin and autophagy. Furthermore, treatments on relation between exercise/myokines and autophagy have been also achieved.
Collapse
Affiliation(s)
- Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy; (M.P.); (A.P.)
| | - Patrizia Ballerini
- Department of Neurosciences, Imaging and Clinical Sciences, University G. d’Annunzio, 66100 Chieti, Italy
- Correspondence:
| | - Teresa Paolucci
- Department of Oral, Medical and Biotechnological Sciences, University G. d’Annunzio, 66100 Chieti, Italy;
| | - Iris Puca
- Sport Academy SSD, 65010 Pescara, Italy;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, 67146 Kermanshah, Iran;
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy; (M.P.); (A.P.)
| |
Collapse
|
40
|
Esposito P, Verzola D, La Porta E, Milanesi S, Grignano MA, Avella A, Gregorini M, Abelli M, Ticozzelli E, Rampino T, Garibotto G. Myostatin in the Arterial Wall of Patients with End-Stage Renal Disease. J Atheroscler Thromb 2020; 27:1039-1052. [PMID: 32173683 PMCID: PMC7585912 DOI: 10.5551/jat.51144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023] Open
Abstract
AIM Myostatin (Mstn) has been described as a trigger for the progression of atherosclerosis. In this study, we evaluated the role of Mstn in arterial remodeling in patients with end-stage renal disease (ESRD). METHODS Vascular specimens were collected from 16 ESRD patients (56.4±7.9 years) undergoing renal transplant (recipients) and 15 deceased kidney non-uremic donors (55.4±12.1 years). We studied gene and protein expression of Mstn, ubiquitin ligases, Atrogin-1, and muscle ring finger protein-1 (MuRF-1), inflammatory marker CCL2, cytoskeleton components, and Klotho by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Moreover, we assessed vascular calcification and collagen deposition. Finally, we studied the effects of recombinant Mstn on rat vascular smooth muscle cells (VSMCs, A7r5) and evaluated the effects of uremic serum (US) on primary human VSMCs. RESULTS Myostatin mRNA was upregulated in the arterial vascular wall of recipients compared with donors (~15- folds, p<0.05). This response was accompanied by the upregulation of gene expression of Atrogin-1 and MuRF-1 (+2.5- and +10-fold) and CCL2 (+3-fold). Conversely, we found downregulation of protein expression of Smoothelin, α-smooth muscle actin (α-SMA), vimentin, and Klotho (-85%, -50%, -70%, and -80%, respectively; p<0.05) and gene expression of vimentin and Klotho. Exposition of A7r5 to Mstn induced a time-dependent SMAD 2/SMAD 3 phosphorylation and expression of collagen-1 and transforming growth factor β (TGFβ) mRNA, while US induced overexpression of Mstn and Atrogin-1 and downregulation of Smoothelin and Klotho. CONCLUSIONS Our data suggest that uremia might induce vascular Mstn gene expression together with a complex pathway of molecular and structural changes in the vascular wall. Myostatin, in turn, can translate the metabolic alterations of uremia into profibrotic and stiffness inducing signals.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Edoardo La Porta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Samantha Milanesi
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Alessandro Avella
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Marilena Gregorini
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Massimo Abelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Ticozzelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Giacomo Garibotto
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
41
|
Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients 2020; 12:nu12082401. [PMID: 32796600 PMCID: PMC7469036 DOI: 10.3390/nu12082401] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is a geriatric syndrome with a significant impact on older patients’ quality of life, morbidity and mortality. Despite the new available criteria, its early diagnosis remains difficult, highlighting the necessity of looking for a valid muscle wasting biomarker. Myostatin, a muscle mass negative regulator, is one of the potential candidates. The aim of this work is to point out various factors affecting the potential of myostatin as a biomarker of muscle wasting. Based on the literature review, we can say that recent studies produced conflicting results and revealed a number of potential confounding factors influencing their use in sarcopenia diagnosing. These factors include physiological variables (such as age, sex and physical activity) as well as a variety of disorders (including heart failure, metabolic syndrome, kidney failure and inflammatory diseases) and differences in laboratory measurement methodology. Our conclusion is that although myostatin alone might not prove to be a feasible biomarker, it could become an important part of a recently proposed panel of muscle wasting biomarkers. However, a thorough understanding of the interrelationship of these markers, as well as establishing a valid measurement methodology for myostatin and revising current research data in the light of new criteria of sarcopenia, is needed.
Collapse
|
42
|
Uremic Sarcopenia: Clinical Evidence and Basic Experimental Approach. Nutrients 2020; 12:nu12061814. [PMID: 32570738 PMCID: PMC7353433 DOI: 10.3390/nu12061814] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Sustained physical activity extends healthy life years while a lower activity due to sarcopenia can reduce them. Sarcopenia is defined as a decrease in skeletal muscle mass and strength due not only to aging, but also from a variety of debilitating chronic illnesses such as cancer and heart failure. Patients with chronic kidney disease (CKD), who tend to be cachexic and in frail health, may develop uremic sarcopenia or uremic myopathy due to an imbalance between muscle protein synthesis and catabolism. Here, we review clinical evidence indicating reduced physical activity as renal function deteriorates and explore evidence-supported therapeutic options focusing on nutrition and physical training. In addition, although sarcopenia is a clinical concept and difficult to recapitulate in basic research, several in vivo approaches have been attempted, such as rodent subtotal nephrectomy representing both renal dysfunction and muscle weakness. This review highlights molecular mechanisms and promising interventions for uremic sarcopenia that were revealed through basic research. Extensive study is still needed to cast light on the many aspects of locomotive organ impairments in CKD and explore the ways that diet and exercise therapies can improve both outcomes and quality of life at every level.
Collapse
|
43
|
Watson EL, Baker LA, Wilkinson TJ, Gould DW, Graham‐Brown MP, Major RW, Ashford RU, Philp A, Smith AC. Reductions in skeletal muscle mitochondrial mass are not restored following exercise training in patients with chronic kidney disease. FASEB J 2019; 34:1755-1767. [DOI: 10.1096/fj.201901936rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Emma L. Watson
- Department of Cardiovascular Sciences University of Leicester Leicester UK
| | - Luke A. Baker
- Department of Health Sciences University of Leicester Leicester UK
| | | | - Douglas W. Gould
- Department of Cardiovascular Sciences University of Leicester Leicester UK
- Intensive Care National Audit and Research Centre London UK
| | - Matthew P.M. Graham‐Brown
- Department of Cardiovascular Sciences University of Leicester Leicester UK
- John Walls Renal Unit University Hospitals of Leicester NHS Trust Leicester UK
- National Centre for Sport and Exercise Medicine School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK
| | - Rupert W. Major
- Department of Health Sciences University of Leicester Leicester UK
- John Walls Renal Unit University Hospitals of Leicester NHS Trust Leicester UK
| | - Robert U. Ashford
- Leicester Orthopaedics University Hospitals of Leicester Leicester UK
- Leicester Cancer Research Centre University of Leicester Leicester UK
| | - Andrew Philp
- Garvan Institute of Medical Research Darlinghurst NSW Australia
- UNSW Medicine UNSW Sydney Sydney NSW Australia
| | - Alice C. Smith
- Department of Health Sciences University of Leicester Leicester UK
- John Walls Renal Unit University Hospitals of Leicester NHS Trust Leicester UK
| |
Collapse
|
44
|
Manfredi LH, Ang J, Peker N, Dagda RK, McFarlane C. G protein-coupled receptor kinase 2 regulates mitochondrial bioenergetics and impairs myostatin-mediated autophagy in muscle cells. Am J Physiol Cell Physiol 2019; 317:C674-C686. [PMID: 31268780 PMCID: PMC6850988 DOI: 10.1152/ajpcell.00516.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is an important protein involved in β-adrenergic receptor desensitization. In addition, studies have shown GRK2 can modulate different metabolic processes in the cell. For instance, GRK2 has been recently shown to promote mitochondrial biogenesis and increase ATP production. However, the role of GRK2 in skeletal muscle and the signaling mechanisms that regulate GRK2 remain poorly understood. Myostatin is a well-known myokine that has been shown to impair mitochondria function. Here, we have assessed the role of myostatin in regulating GRK2 and the subsequent downstream effect of myostatin regulation of GRK2 on mitochondrial respiration in skeletal muscle. Myostatin treatment promoted the loss of GRK2 protein in myoblasts and myotubes in a time- and dose-dependent manner, which we suggest was through enhanced ubiquitin-mediated protein loss, as treatment with proteasome inhibitors partially rescued myostatin-mediated loss of GRK2 protein. To evaluate the effects of GRK2 on mitochondrial respiration, we generated stable myoblast lines that overexpress GRK2. Stable overexpression of GRK2 resulted in increased mitochondrial content and enhanced mitochondrial/oxidative respiration. Interestingly, although overexpression of GRK2 was unable to prevent myostatin-mediated impairment of mitochondrial respiratory function, elevated levels of GRK2 blocked the increased autophagic flux observed following treatment with myostatin. Overall, our data suggest a novel role for GRK2 in regulating mitochondria mass and mitochondrial respiration in skeletal muscle.
Collapse
MESH Headings
- Animals
- Autophagy/drug effects
- G-Protein-Coupled Receptor Kinase 2/drug effects
- G-Protein-Coupled Receptor Kinase 2/metabolism
- Mice
- Mitochondria/drug effects
- Mitochondria/metabolism
- Muscle Cells/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Myoblasts/drug effects
- Myoblasts/metabolism
- Myostatin/metabolism
- Myostatin/pharmacology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Leandro Henrique Manfredi
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Federal University of Fronteira Sul, Medical School, Chapecó, Santa Catarina, Brazil
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore
| | - Joshur Ang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore
| | - Nesibe Peker
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ruben K Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada
| | - Craig McFarlane
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore
- Department of Molecular and Cell Biology, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
45
|
Pan YJ, Zhou SJ, Feng J, Bai Q, A LT, Zhang AH. Urotensin II Induces Mice Skeletal Muscle Atrophy Associated with Enhanced Autophagy and Inhibited Irisin Precursor (Fibronectin Type III Domain Containing 5) Expression in Chronic Renal Failure. Kidney Blood Press Res 2019; 44:479-495. [PMID: 31238319 DOI: 10.1159/000499880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Skeletal muscle atrophy is one of the main manifestations of protein energy wasting. We hypothesized that urotensin II (UII) can lead to skeletal muscle atrophy through upregulating autophagy and affecting Irisin precursor fibronectin type III domain containing 5 (FNDC5) expressions. METHODS Three animal models (the sham operation, wild-type C57BL/6 mice with 5/6 nephrectomy, UII receptor (UT) gene knockout (UTKO) mice with 5/6 nephrectomy) were designed. Skeletal muscle weight, cross-sectional area (CSA) along with UII, FNDC5, LC3, and p62 expression were investigated. C2C12 cells were differentiated for up to 4 days into myotubes. These cells were then exposed to different UII concentrations (10-5 to 10-7 M) for 6-12 h and analyzed for the expressions of autophagic markers. These cells were also exposed to the same predetermined UII concentrations for 48-72 h and analyzed for the FNDC5 expression. Myotube diameter was measured. RESULTS Upregulation of UII expression in skeletal muscle tissue was accompanied by reduced muscle weight and skeletal muscle CSA in the 2 posterior limbs, upregulated autophagy markers expression, and downregulated FNDC5 expression in 5/6 nephrectomy mice. The decrease of skeletal muscle weight, skeletal muscle CSA, downregulation of FNDC5 expression, and the upregulation of autophagy markers were inhibited in UTKO with 5/6 nephrectomy mice. Our in vitrostudy showed that UII could directly decrease myotube diameter, induce autophagy markers upregulation, and inhibit expression of FNDC5. When UII receptor gene was interfered by UT-specific siRNA, UII induced autophagy markers upregulation and FNDC5 downregulation were inhibited. CONCLUSION We are the first to verify UII induces mice skeletal muscle atrophy associated with enhanced skeletal muscle autophagy and inhibited FNDC5 expression in chronic renal failure.
Collapse
Affiliation(s)
- Ya-Jing Pan
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Si-Jia Zhou
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Jin Feng
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Qiong Bai
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - La-Ta A
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Ai-Hua Zhang
- Department of Nephrology, Peking University Third Hospital, Beijing, China,
| |
Collapse
|
46
|
Liu H, Jiang W, Chen X, Chang G, Zhao L, Li X, Zhang H. Skeletal muscle-specific Sidt2 knockout in mice induced muscular dystrophy-like phenotype. Metabolism 2018; 85:259-270. [PMID: 29752955 DOI: 10.1016/j.metabol.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/21/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sidt2 is an integral lysosomal membrane protein. Previously, we generated a Sidt2 global knockout mouse and found impaired insulin secretion, along with skeletal muscle pathology. METHODS A mouse model with a muscle-specific knockout of the Sidt2 gene (Sidt2f/fCre) had been generated, to which extensive morphologic study as well as functional study was applied to investigate the direct role of Sidt2 on skeletal muscle tissue in vivo. Secondly, the autophagy-lysosomal pathway was examined by Western blot and immunostaining. Additionally, RNA expression changes in Sidt2f/fCre mice were analyzed by genechip. RESULTS Sidt2 deficiency in skeletal muscle results in pathognomonic hallmarks of muscular dystrophy, including muscle mass decrease, muscle weakness, fibrosis, central nucleation, fiber regeneration, mildly elevated serum creatine kinase, and dramatically elevated sarcolipin mRNA. Along with accumulation of autophagolysomes, LC3-II, adaptor protein p62, ubiquitinated aggregates, and Lamp2-positive vacuoles were increased significantly in Sidt2f/fCre skeletal muscle fibers. However, only lysosomal-related genes were upregulated, while the genes upstream of the autophagy pathway were unchanged. Simultaneously, the proteasome chymotryptic activity and the lysosomal soluble enzyme activity were unimpaired, which largely excluded the possibility of proteasome chymotryptic activity defect and the lysosomal soluble enzyme defect leading to ubiquitinated aggregates accumulation. CONCLUSION We concluded that Sidt2 deficiency leads to muscular dystrophy-like phenotype in mice and Sidt2 plays a critical role in the late stage of autophagy.
Collapse
Affiliation(s)
- Huan Liu
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Jiang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueru Chen
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoying Chang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China.
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Chen X, Li LY, Jiang JL, Li K, Su ZB, Zhang FQ, Zhang WJ, Zhao GQ. Propofol elicits autophagy via endoplasmic reticulum stress and calcium exchange in C2C12 myoblast cell line. PLoS One 2018; 13:e0197934. [PMID: 29795639 PMCID: PMC5967754 DOI: 10.1371/journal.pone.0197934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, we investigated the relationship between propofol and autophagy and examined whether this relationship depends on ER stress, production of ROS (reactive oxygen species), and disruption of calcium (Ca2+) homeostasis. To this end, we measured C2C12 cell apoptosis in vitro, along with Ca2+ levels; ROS production; and expression of proteins and genes associated with autophagy, Ca2+ homeostasis, and ER stress, including LC3 (microtubule-associate protein 1 light chain 3), p62, AMPK (adenosine 5'-monophosphate (AMP)-activated protein kinase), phosphorylated AMPK, mTOR (the mammalian target of rapamycin), phosphorylated mTOR, CHOP (C/BEP homologous protein), and Grp78/Bip (78 kDa glucose-regulated protein). We found that propofol treatment induced autophagy, ER stress, and Ca2+ release. The ratio of phosphorylated AMPK to AMPK increased, whereas the ratio of phosphorylated mTOR to mTOR decreased. Collectively, the data suggested that propofol induced autophagy in vitro through ER stress, resulting in elevated ROS and Ca2+. Additionally, co-administration of an ER stress inhibitor blunted the effect of propofol.
Collapse
Affiliation(s)
- Xi Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Long-Yun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jin-Lan Jiang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kai Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhen-Bo Su
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fu-Qiang Zhang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wen-Jing Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
48
|
Wang D, Sun H, Song G, Yang Y, Zou X, Han P, Li S. Resveratrol Improves Muscle Atrophy by Modulating Mitochondrial Quality Control in STZ-Induced Diabetic Mice. Mol Nutr Food Res 2018; 62:e1700941. [PMID: 29578301 PMCID: PMC6001753 DOI: 10.1002/mnfr.201700941] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/10/2018] [Indexed: 12/14/2022]
Abstract
SCOPE In this study, we aim to determine the effects of resveratrol (RSV) on muscle atrophy in streptozocin-induced diabetic mice and to explore mitochondrial quality control (MQC) as a possible mechanism. METHODS AND RESULTS The experimental mice were fed either a control diet or an identical diet containing 0.04% RSV for 8 weeks. Examinations were subsequently carried out, including the effects of RSV on muscle atrophy and muscle function, as well as on the signaling pathways related to protein degradation and MQC processes. The results show that RSV supplementation improves muscle atrophy and muscle function, attenuates the increase in ubiquitin and muscle RING-finger protein-1 (MuRF-1), and simultaneously attenuates LC3-II and cleaved caspase-3 in the skeletal muscle of diabetic mice. Moreover, RSV treatment of diabetic mice results in an increase in mitochondrial biogenesis and inhibition of the activation of mitophagy in skeletal muscle. RSV also protects skeletal muscle against excess mitochondrial fusion and fission in the diabetic mice. CONCLUSION The results suggest that RSV ameliorates diabetes-induced skeletal muscle atrophy by modulating MQC.
Collapse
MESH Headings
- Animals
- Antioxidants/therapeutic use
- Apoptosis
- Autophagy
- Biomarkers/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Dietary Supplements
- Gene Expression Regulation
- Male
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitochondria, Muscle/ultrastructure
- Mitochondrial Dynamics
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Strength
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/ultrastructure
- Muscular Atrophy/complications
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Muscular Disorders, Atrophic/complications
- Muscular Disorders, Atrophic/metabolism
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/prevention & control
- Resveratrol/therapeutic use
- Signal Transduction
- Streptozocin
- Tripartite Motif Proteins/antagonists & inhibitors
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Ubiquitin/antagonists & inhibitors
- Ubiquitin/genetics
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Dongtao Wang
- Department of Traditional Chinese MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdong518000China
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
- Department of NephrologyRuikang Affiliated HospitalGuangxi University of Chinese MedicineNanning530011China
| | - Huili Sun
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| | - Gaofeng Song
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| | - Yajun Yang
- Department of PharmacologyGuangdong Key Laboratory for R&D of Natural DrugGuangdong Medical CollegeZhanjiang524023China
| | - Xiaohu Zou
- Department of Traditional Chinese MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdong518000China
| | - Pengxun Han
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| | - Shunmin Li
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| |
Collapse
|
49
|
Kawanishi N, Funakoshi T, Machida S. Time-course study of macrophage infiltration and inflammation in cast immobilization-induced atrophied muscle of mice. Muscle Nerve 2018; 57:1006-1013. [DOI: 10.1002/mus.26061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Noriaki Kawanishi
- Graduate School of Health and Sports Science; Juntendo University; 1-1 Hirakagakuendai, Inzai 270-1695 Japan
- Japan Society for the Promotion of Sciences; Tokyo Japan
- Institute of Health & Sports Science and Medicine; Juntendo University; Inzai Japan
- Faculty of Advanced Engineering, Chiba Institute of Technology; Narashino Japan
| | - Tomoko Funakoshi
- Graduate School of Health and Sports Science; Juntendo University; 1-1 Hirakagakuendai, Inzai 270-1695 Japan
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology; Tokyo Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science; Juntendo University; 1-1 Hirakagakuendai, Inzai 270-1695 Japan
- Institute of Health & Sports Science and Medicine; Juntendo University; Inzai Japan
| |
Collapse
|
50
|
Schardong J, Marcolino MAZ, Plentz RDM. Muscle Atrophy in Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:393-412. [PMID: 30390262 DOI: 10.1007/978-981-13-1435-3_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The renal damage and loss of kidney function that characterize chronic kidney disease (CKD) cause several complex systemic alterations that affect muscular homeostasis, leading to loss of muscle mass and, ultimately, to muscle atrophy. CKD-induced muscle atrophy is highly prevalent and, in association with common CKD comorbidities, is responsible for the reduction of physical capacity, functional independence, and an increase in the number of hospitalizations and mortality rates. Thus, this chapter summarizes current knowledge about the complex interactions between CKD factors and the pathophysiological mechanisms that induce muscle atrophy that, despite growing interest, are not yet fully understood. The current treatments of CKD-induced muscle atrophy are multidisciplinary, including correction of metabolic acidosis, nutritional supplementation, reducing insulin resistance, administration of androgenic steroids, resisted and aerobic exercise, neuromuscular electrical stimulation, and inspiratory muscle training. However, further studies are still needed to strengthen the comprehension of CKD-induced muscle atrophy and the better treatment strategies.
Collapse
Affiliation(s)
- Jociane Schardong
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Miriam Allein Zago Marcolino
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rodrigo Della Méa Plentz
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil. .,Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil. .,Department of Physical Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|