1
|
Fauziah F, Ali H, Ilmiawati C, Ariyanto EF, Bakhtra DDA, Mita DS, Syafni N, Handayani D. Non-monotonic dose-response of di-(2-ethylhexyl) phthalate isolated from Penicillium citrinum XT6 on adipogenesis and expression of PPARγ and GLUT4 in 3T3-L1 adipocytes. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:804-813. [PMID: 37474486 DOI: 10.1515/jcim-2023-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES Adipogenesis is the fat cell formation process regulated by peroxisome proliferator-activated receptors (PPARγ). The insulin-responsive glucose transporter 4 (GLUT4) has a major role in glucose uptake and metabolism in insulin target tissues (i.e., adipose and muscle cells). The interplay between PPARγ and GLUT4 is essential for proper glucose homeostasis. This study aimed to isolate, elucidate, and investigate the effect of an isolated compound from Penicillium citrinum XT6 on adipogenesis, PPARγ, and GLUT4 expression in 3T3-L1 adipocytes. METHODS The isolated compound was determined by analyzing spectroscopic data (LC-MS, FT-IR, Spectrophotometry UV-Vis, and NMR). The adipogenesis activity of the isolated compound in 3T3-L1 cells was determined by the Oil Red O staining method. RT-PCR was used to analyze the gene expression of PPARγ and GLUT4. RESULTS Di-(2-ethylhexyl)-phthalate (DEHP) was the isolated compound from P.citrinum XT6. The results revealed adipogenesis stimulation and inhibition, as well as PPARγ and GLUT4 expressions. CONCLUSIONS DEHP showed a non-monotonic dose-response (NMDR) effect on adipogenesis and PPARγ and GLUT4 expression. It is the first study that reveals DEHP's NMDR effects on lipid and glucose metabolism in adipocytes.
Collapse
Affiliation(s)
- Fitra Fauziah
- Doctoral Program, Graduate School of Biomedical Science, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
- School of Pharmaceutical Science Padang (STIFARM Padang), Padang, Indonesia
| | - Hirowati Ali
- Department of Biochemistry, Undergraduate Program of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
- Biomedical Laboratory, Center for Integrative Biomedical Research, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Cimi Ilmiawati
- Department of Pharmacology, Undergraduate Program of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Eko Fuji Ariyanto
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center for Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | | | - Nova Syafni
- Laboratory of Sumatran Biota/Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
| | - Dian Handayani
- Laboratory of Sumatran Biota/Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
| |
Collapse
|
2
|
John OD, Mushunje AT, Surugau N, Mac Guad R. The metabolic and molecular mechanisms of α‑mangostin in cardiometabolic disorders (Review). Int J Mol Med 2022; 50:120. [PMID: 35904170 PMCID: PMC9354700 DOI: 10.3892/ijmm.2022.5176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
α‑mangostin is a xanthone predominantly encountered in Garcinia mangostana. Extensive research has been carried out concerning the effects of this compound on various diseases, including obesity, cancer and metabolic disorders. The present review suggests that α‑mangostin exerts promising anti‑obesity, hepatoprotective, antidiabetic, cardioprotective, antioxidant and anti‑inflammatory effects on various pathways in cardiometabolic diseases. The anti‑obesity effects of α‑mangostin include the reduction of body weight and adipose tissue size, the increase in fatty acid oxidation, the activation of hepatic AMP‑activated protein kinase and Sirtuin‑1, and the reduction of peroxisome proliferator‑activated receptor γ expression. Hepatoprotective effects have been revealed, due to reduced fibrosis through transforming growth factor‑β 1 pathways, reduced apoptosis and steatosis through reduced sterol regulatory‑element binding proteins expression. The antidiabetic effects include decreased fasting blood glucose levels, improved insulin sensitivity and the increased expression of GLUT transporters in various tissues. Cardioprotection is exhibited through the restoration of cardiac functions and structure, improved mitochondrial functions, the promotion of M2 macrophage populations, reduced endothelial and cardiomyocyte apoptosis and fibrosis, and reduced acid sphingomyelinase activity and ceramide depositions. The antioxidant effects of α‑mangostin are mainly related to the modulation of antioxidant enzymes, the reduction of oxidative stress markers, the reduction of oxidative damage through a reduction in Sirtuin 3 expression mediated by phosphoinositide 3‑kinase/protein kinase B/peroxisome proliferator‑activated receptor‑γ coactivator‑1α signaling pathways, and to the increase in Nuclear factor‑erythroid factor 2‑related factor 2 and heme oxygenase‑1 expression levels. The anti‑inflammatory effects of α‑mangostin include its modulation of nuclear factor‑κB related pathways, the suppression of mitogen‑activated protein kinase activation, increased macrophage polarization to M2, reduced inflammasome occurrence, increased Sirtuin 1 and 3 expression, the reduced expression of inducible nitric oxide synthase, the production of nitric oxide and prostaglandin E2, the reduced expression of Toll‑like receptors and reduced proinflammatory cytokine levels. These effects demonstrate that α‑mangostin may possess the properties required for a suitable candidate compound for the management of cardiometabolic diseases.
Collapse
Affiliation(s)
- Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
- Faculty of Science, Asia-Pacific International University, Muak Lek, Saraburi 18180, Thailand
| | - Annals Tatenda Mushunje
- Faculty of Science, Asia-Pacific International University, Muak Lek, Saraburi 18180, Thailand
| | - Noumie Surugau
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
3
|
Zhang W, Jiang G, Zhou X, Huang L, Meng J, He B, Qi Y. α-Mangostin inhibits LPS-induced bone resorption by restricting osteoclastogenesis via NF-κB and MAPK signaling. Chin Med 2022; 17:34. [PMID: 35248101 PMCID: PMC8898470 DOI: 10.1186/s13020-022-00589-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Excessive osteoclast activation is an important cause of imbalanced bone remodeling that leads to pathological bone destruction. This is a clear feature of many osteolytic diseases such as rheumatoid arthritis, osteoporosis, and osteolysis around prostheses. Because many natural compounds have therapeutic potential for treating these diseases by suppressing osteoclast formation and function, we hypothesized that α-mangostin, a natural compound isolated from mangosteen, might be a promising treatment as it exhibits anti‐inflammatory, anticancer, and cardioprotective effects.
Methods
We evaluated the therapeutic effect of α-mangostin on the processes of osteoclast formation and bone resorption. The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) induces osteoclast formation in vitro, and potential pathways of α-mangostin to inhibit osteoclast differentiation and function were explored. A mouse model of lipopolysaccharide‐induced calvarial osteolysis was established. Subsequently, micro-computed tomography and histological assays were used to evaluate the effect of α-mangostin in preventing inflammatory osteolysis.
Results
We found that α-mangostin could inhibit RANKL-induced osteoclastogenesis and reduced osteoclast‐related gene expression in vitro. F-actin ring immunofluorescence and resorption pit assays indicated that α-mangostin also inhibited osteoclast functions. It achieved these effects by disrupting the activation of NF-κB/mitogen-activated protein kinase signaling pathways. Our in vivo data revealed that α-mangostin could protect mouse calvarial bone from osteolysis.
Conclusions
Our findings demonstrate that α-mangostin can inhibit osteoclastogenesis both in vitro and in vivo and may be a potential option for treating osteoclast-related diseases.
Collapse
|
4
|
Ardakanian A, Ghasemzadeh Rahbardar M, Omidkhoda F, Razavi BM, Hosseinzadeh H. Effect of alpha-mangostin on olanzapine-induced metabolic disorders in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:198-207. [PMID: 35655598 PMCID: PMC9124543 DOI: 10.22038/ijbms.2022.58734.13047] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Objectives As olanzapine has side effects such as weight gain and metabolic disorders, and alpha-mangostin has been shown to control metabolic disorders, the effects of alpha-mangostin on metabolic disorders induced by olanzapine were investigated in this study. Materials and Methods Obesity was induced in female Wistar rats by daily administration of olanzapine (5 mg/kg/day, IP, 14 days). Rats were divided into 6 groups:1) vehicle (control); 2) olanzapine (5 mg/kg/day); 3,4,5) olanzapine+ alpha-mangostin (10, 20, 40 mg/kg/day, IP); 6) alpha-mangostin (40 mg/kg/day). Weight changes were measured every 3 days and food intake was assessed every day. Systolic blood pressure, plasma levels of blood sugar, triglycerides, total cholesterol, HDL, LDL, leptin, oxidative stress markers (MDA, GSH), AMPK, and P-AMPK protein levels in liver tissue were assessed on the last day of the study. Results Administration of olanzapine significantly increased weight gain, food intake, blood pressure, triglycerides, LDL, blood sugar, leptin, and MDA in rat liver tissue and also decreased GSH, AMPK, and P-AMPK in liver tissue compared with the control group. Different doses of alpha-mangostin significantly reduced weight gain, food intake, systolic blood pressure, triglycerides, LDL, blood sugar, leptin, and MDA. Also, they significantly increased GSH, AMPK, and P-AMPK in liver tissue compared with the olanzapine group. Conclusion Olanzapine increases leptin levels, food intake, and weight, induces oxidative stress, decreases the levels of AMPK and P-AMPK proteins in liver tissue, and causes metabolic disorders. But, alpha-mangostin reduces the negative effects of olanzapine by activation of AMPK.
Collapse
Affiliation(s)
- Alireza Ardakanian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farzaneh Omidkhoda
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran, Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding authors: Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel.: +98-51-31801193; Fax: +98-51-38823251; ; Bibi Marjan Razavi. Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-31801194; Fax: +98-51-38823251;
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran, Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding authors: Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel.: +98-51-31801193; Fax: +98-51-38823251; ; Bibi Marjan Razavi. Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-31801194; Fax: +98-51-38823251;
| |
Collapse
|
5
|
Meylina L, Muchtaridi M, Joni IM, Mohammed AFA, Wathoni N. Nanoformulations of α-Mangostin for Cancer Drug Delivery System. Pharmaceutics 2021; 13:1993. [PMID: 34959275 PMCID: PMC8708633 DOI: 10.3390/pharmaceutics13121993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Natural compounds are emerging as effective agents for the treatment of malignant diseases. The active constituent of α-mangostin from the pericarp of Garcinia mangostana L. has earned significant interest as a plant base compound with anticancer properties. Despite α-mangostin's superior properties as an anticancer agent, its applications are limited due to its poor solubility and physicochemical stability, rapid systemic clearance, and low cellular uptake. Our review aimed to summarize and discuss the nanoparticle formulations of α-mangostin for cancer drug delivery systems from published papers recorded in Scopus, PubMed, and Google Scholar. We investigated various types of α-mangostin nanoformulations to improve its anticancer efficacy by improving bioavailability, cellular uptake, and localization to specific areas These nanoformulations include nanofibers, lipid carrier nanostructures, solid lipid nanoparticles, polymeric nanoparticles, nanomicelles, liposomes, and gold nanoparticles. Notably, polymeric nanoparticles and nanomicelles can increase the accumulation of α-mangostin into tumors and inhibit tumor growth in vivo. In addition, polymeric nanoparticles with the addition of target ligands can increase the cellular uptake of α-mangostin. In conclusion, nanoformulations of α-mangostin are a promising tool to enhance the cellular uptake, accumulation in cancer cells, and the efficacy of α-mangostin as a candidate for anticancer drugs.
Collapse
Affiliation(s)
- Lisna Meylina
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
6
|
Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, Weng CF. Mangosteen xanthone γ-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARγ. Biomed Pharmacother 2021; 144:112333. [PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
Collapse
Affiliation(s)
- Sih-Pei Chen
- Institute of Respiratory Disease, Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Ting-Hsu Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Hui-Suan Ng
- Faculty of Applied Science, UCSI University, UCSI Height, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hip-Seng Yim
- Faculty of Applied Science, UCSI University, UCSI Height, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Max K Leong
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan.
| | - Ching-Feng Weng
- Institute of Respiratory Disease, Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan; Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan.
| |
Collapse
|
7
|
Abstract
α-Mangostin is a xanthone natural product isolated as a secondary metabolite from the mangosteen tree. It has attracted a great deal of attention due to its wide-ranging effects on certain biological activity, such as apoptosis, tumorigenesis, proliferation, metastasis, inflammation, oxidation, bacterial growth and metabolism. This review focuses on the key pathways directly affected by α-mangostin and how this varies between disease states. Insight is also provided, where investigated, into the key structural features of α-mangostin that produce these biological effects. The review then sheds light on the utility of α-mangostin as a investigational tool for certain diseases and demonstrate how future derivatives may increase selectivity and potency for specific disease states.
Collapse
|
8
|
Hu YH, Han J, Wang L, Shi C, Li Y, Olatunji OJ, Wang X, Zuo J. α-Mangostin Alleviated Inflammation in Rats With Adjuvant-Induced Arthritis by Disrupting Adipocytes-Mediated Metabolism-Immune Feedback. Front Pharmacol 2021; 12:692806. [PMID: 34305602 PMCID: PMC8293671 DOI: 10.3389/fphar.2021.692806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
A previously identified anti-rheumatic compound α-mangostin (MAN) possesses notable metabolism regulatory properties. In this study, we investigated the immune implication of MAN-altered fat metabolism on adjuvant-induced arthritis (AIA) in rats. Seven days after AIA induction, the rats received oral treatment of MAN at 50 mg/kg/day for 30 days. Metabolic indicators and basic clinical parameters were evaluated using samples collected on day 20 and 38 since immunization. Expression of nicotinamide phosphoribosyltransferase (NAMPT), sirtuin 1 (SIRT1), peroxisome proliferator activated receptor gamma (PPAR-γ), stearoyl-coa desaturase 1 (SCD-1), toll like receptor 4 (TLR4), prostaglandin-endoperoxide synthase 2 (COX-2), (p)-JNK, (p)-p65 and IL-1β were investigated by either RT-qPCR or immunobloting methods. In in vitro experiments, we treated (pre)-adipocytes with monocytes/macrophages and MAN, and investigated the changes of macrophages brought by pre-adipocytes co-culture. Generally, MAN restored the impaired fat anabolism in AIA rats, indicated by increased fat reservoir, leptin and adiponectin secretion, and PPAR-γ and SCD-1 expression. Meanwhile, it decreased circulating IL-1β and IL-6 levels, restored serological lipid profile changes, and relieved oxidative stresses, demonstrating potent therapeutic effects on AIA. AIA rats-derived monocytes inhibited mRNA PPAR-γ and SCD-1 expression in pre-adipocytes. Contrarily, MAN facilitated adipocyte differentiation in vitro, and increased free fatty acids production. It also significantly increased PPAR-γ and SCD-1 expression, which can be abrogated by PPAR-γ inhibitor T0070907. Similarly, lipopolysaccharide-primed macrophages inhibited PPAR-γ expression in the co-cultured pre-adipocytes, which was reversed by MAN. In the same co-culture system, lipopolysaccharide-induced inflammation was amplified by the co-existence of pre-adipocytes. More secretion of IL-1β and IL-6 and higher levels expression of COX-2, p-JNK, p-p65 and TLR4 were observed in lipopolysaccharide-treated macrophages when co-cultured by pre-adipocytes. The intensified inflammatory situation was eased by MAN. The treatment with pre-adipocytes culture medium achieved similar effects. Medium from lipopolysaccharide-treated adipocytes promoted IL-1β, IL-6 and MCP-1 production in separately cultured macrophages, and COX-2, p-JNK, p-p65 and TLR4 expression were increased at the meantime. MAN treatment on pre-adipocytes impaired these changes. It suggests that fat anabolism in AIA rats was deficient due to increased energy expenditure caused by inflammatory conditions. MAN restored fat metabolism homeostasis by up-regulating PPAR-γ, and reshaped secretion profile of adipocytes.
Collapse
Affiliation(s)
- Ying-Hao Hu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Jun Han
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China.,Drug Research and Development Center, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Lin Wang
- Department of Pharmacy, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Chao Shi
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | | | - Xiu Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
9
|
Noruddin NAA, Hamzah MF, Rosman Z, Salin NH, Shu-Chien AC, Muhammad TST. Natural Compound 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al from Momordica charantia Acts as PPARγ Ligand. Molecules 2021; 26:2682. [PMID: 34063700 PMCID: PMC8124227 DOI: 10.3390/molecules26092682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.
Collapse
Affiliation(s)
- Nur Adelina Ahmad Noruddin
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Mohamad Faiz Hamzah
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Zulfadli Rosman
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Nurul Hanim Salin
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, Bayan Lepas 11900, Malaysia
| | | |
Collapse
|
10
|
John OD, Mouatt P, Panchal SK, Brown L. Rind from Purple Mangosteen ( Garcinia mangostana) Attenuates Diet-Induced Physiological and Metabolic Changes in Obese Rats. Nutrients 2021; 13:319. [PMID: 33499382 PMCID: PMC7912346 DOI: 10.3390/nu13020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
The pulp of the purple mangosteen, Garcinia mangostana, is a popular tropical fruit but the rind containing xanthones such as α-mangostin together with procyanidins and anthocyanidins is usually discarded as waste. However, this rind has been used in South-East Asia for diarrhoea, dysentery, skin infections and wounds. As xanthones have reported anti-inflammatory and antioxidant responses, this study has determined the bioactive compounds and evaluated the effects of G. mangostana rind on physiological, metabolic, liver and cardiovascular parameters in rats with diet-induced metabolic syndrome. Rats fed a diet with increased simple sugars and saturated fats developed obesity, hypertension, increased left ventricular stiffness, dyslipidaemia and fatty liver. Administration of G. mangostana rind as 5% of the food to rats with diet-induced metabolic syndrome gave a dose of 168 mg/kg/day α-mangostin, 355 mg/kg/day procyanidins, 3.9 mg/kg/day anthocyanins and 11.8 mg/kg/day hydroxycitric acid for 8 weeks which reduced body weight and attenuated physiological and metabolic changes in rats including decreased abdominal fat deposition, decreased abdominal circumference and whole-body fat mass, improved liver structure and function and improved cardiovascular parameters such as systolic blood pressure, left ventricular stiffness and endothelial function. These responses were associated with decreased infiltration of inflammatory cells, decreased deposition of collagen in both heart and liver and decreased mean adipocyte size in retroperitoneal adipose tissues. We conclude that, in rats with diet-induced metabolic syndrome, chronic intake of G. mangostana rind decreased infiltration of inflammatory cells which decreased physiological, metabolic, liver and cardiovascular symptoms.
Collapse
Affiliation(s)
- Oliver D. John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (O.D.J.); (S.K.P.)
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (O.D.J.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (O.D.J.); (S.K.P.)
- School of Health and Wellbeing, University of Southern Queensland, Ipswich, QLD 4305, Australia
| |
Collapse
|
11
|
Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 2021; 48:743-761. [PMID: 33275195 DOI: 10.1007/s11033-020-06036-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
12
|
Syukri Y, Taher M, Martien R, Lukitaningsih E, Nugroho AE, Zakaria ZA. Self-nanoemulsifying Delivery of Andrographolide: Ameliorating Islet Beta Cells and Inhibiting Adipocyte Differentiation. Adv Pharm Bull 2020; 11:171-180. [PMID: 33747864 PMCID: PMC7961231 DOI: 10.34172/apb.2021.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/31/2020] [Accepted: 04/19/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose: Insulin resistance is a characteristic of non-insulin-dependent diabetes mellitus associated with obesity and caused by the failure of pancreatic beta cells to secrete sufficient amount of insulin. Andrographolide (AND) improves beta-cell reconstruction and inhibits fat-cell formation. This research aimed to improve the delivery of water-insoluble AND in self-nanoemulsifying (ASNE) formulation, tested in streptozotocin (STZ)-induced diabetic rats and 3T3-L1 preadipocyte cells. Methods: A conventional formulation of AND in suspension was used as a control. The experimental rats were orally administered with self-nanoemulsifying (SNE) and suspension of AND for 8 days. Measurements were performed to evaluate blood glucose levels in preprandial and postprandial conditions. Immunohistochemistry was used to assess the process of islet beta cell reconstruction. In vitro study was performed using cell viability and adipocyte differentiation assay to determine the delivery of AND in the formulation. Results: ASNE lowered blood glucose levels (day 4) faster than AND suspension (day 6). The histological testing showed that ASNE could regenerate pancreatic beta cells. Therefore, ASNE ameliorated pancreatic beta cells. The in vitro evaluation indicated the inhibition of adipocyte differentiation by both AND and ASNE, which occurred in a time-dependent manner. ASNE formulation had better delivery than AND. Conclusion: ASNE could improve the antidiabetic activity by lowering blood glucose levels, enhancing pancreatic beta cells, and inhibiting lipid formation in adipocyte cells.
Collapse
Affiliation(s)
- Yandi Syukri
- Department of Pharmacy, Islamic University of Indonesia, Yogyakarta, 55584, Indonesia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ronny Martien
- Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | | | | | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Arundita S, Ismed F, Rita RS, Putra DP. (+)-Catechin & Proanthocyanidin Fraction of Uncaria gambir Roxb. Improve Adipocytes Differentiation & Glucose Uptake of 3T3-L1 Cells Via Sirtuin-1, Peroxisome Proliferator-Activated Receptor γ (PPAR γ), Glucose Transporter Type 4 (GLUT-4) Expressions. Adv Pharm Bull 2020; 10:602-609. [PMID: 33072538 PMCID: PMC7539306 DOI: 10.34172/apb.2020.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose: To improve adipocytes differentiation & glucose uptake activity of 3T3-L1 cells through sirtuin-1, peroxisome proliferator-activated receptor γ (PPAR γ), glucose transporter type 4 (GLUT-4) of (+)-catechin & proanthocyanidin fraction Uncaria gambir Roxb. Methods: Adipocytes differentiation activity of (+)-Catechin of Uncaria gambir Roxb. was determined by oil red O staining method & glucose uptake activity was determined by measuring 2-deoxyglucose uptake on 3T3-L1 cells. The ability of (+) - catechin as an activator of sirtuin-1 was assessed by administration of (+) - catechin with the presence of a specific inhibitor of sirtuin-1, nicotinamide. Metformin 1 mM & 5 mM were used as positive control. Sirtuin-1, PPAR γ & GLUT-4 expressions were determined by RT-PCR. Results: (+)-Catechin & proanthocyanidin fraction of Uncaria gambir Roxb. were found to increase adipocyte differentiation & glucose uptake by increasing activity of sirtuin-1 as well as metformin (P ≤0.05). PPAR γ, GLUT-4 and sirtuin-1 expressions were known to be responsible for this activities. Conclusion: These results indicate that (+)–catechin & proanthocyanidin fraction of Uncaria gambir Roxb. could be utilized as a renewable bioresource to develop potential antidiabetic and antiobesity agents.
Collapse
Affiliation(s)
- Silvy Arundita
- Department of Biochemistry, Faculty of Medicine, Andalas University, Limau Manis, Padang, 25163, West Sumatera, Indonesia
| | - Friardi Ismed
- Faculty of Pharmacy, Andalas University, Limau Manis, Padang, 25163, West Sumatera, Indonesia
| | - Rauza Sukma Rita
- Department of Biochemistry, Faculty of Medicine, Andalas University, Limau Manis, Padang, 25163, West Sumatera, Indonesia
| | - Deddi Prima Putra
- Faculty of Pharmacy, Andalas University, Limau Manis, Padang, 25163, West Sumatera, Indonesia
| |
Collapse
|
14
|
Saadeldeen FS, Niu Y, Wang H, Zhou L, Meng L, Chen S, Sun-Waterhouse D, Waterhouse GIN, Liu Z, Kang W. Natural products: Regulating glucose metabolism and improving insulin resistance. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Tan YQ, Li Q, Wang L, Chiu-Leung LC, Leung LK. The livestock growth-promoter zeranol facilitates GLUT4 translocation in 3T3 L1 adipocytes. CHEMOSPHERE 2020; 253:126772. [PMID: 32464760 DOI: 10.1016/j.chemosphere.2020.126772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Zeranol is an approved but controversial growth-promoting agent for livestock in North America. It is a mycotoxin metabolite secreted by the Fusarium family fungi. The regulatory bodies in this region have established the acceptable daily intake and exposure below the level would not significantly increase the health risk for humans. However, their European counterparts have yet to establish an acceptable level and do not permit the use of this agent in farm animals. Given the growth-promoting ability of zeranol, its effect on energy metabolism was investigated in the current study. Our results indicated that zeranol could induce glucose transporter type 4 (GLUT4) expression in 3T3 L1 cells at 10 μM and initiate the translocation of the glucose transporter to the membrane as assayed by confocal microscopy. The translocation was likely triggered by the increase of GLUT4 and p-Akt. The insulin signal transduction pathway of glucose translocation was analyzed by Western blot analysis. Since no increase in the phosphorylated insulin receptor substrate in zeranol-treated cells was evidenced, the increased p-Akt and GLUT4 amount should be the mechanism dictating the GLUT4 translocation. In summary, this study showed that zeranol could perturb glucose metabolism in differentiated 3T3 L1 adipocytes. Determining the growth-promoting mechanism is crucial to uncover an accepted alternative to the general public.
Collapse
Affiliation(s)
- Yan Qin Tan
- Food and Nutritional Sciences Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Qing Li
- Department of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Lin Wang
- Cell and Molecular Biology Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Leo C Chiu-Leung
- Marine Science, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Lai K Leung
- Food and Nutritional Sciences Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Department of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
16
|
Li Y, Chen S, Sun J, Yu Y, Li M. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes. Cell Biol Int 2020; 44:2357-2362. [PMID: 32716099 DOI: 10.1002/cbin.11428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Interleukin-38 (IL-38) is a novel member of the IL-1 cytokine family with anti-inflammatory activity. However, its effect on adipogenesis and inflammatory cytokines secretion of adipocytes in vitro has not been reported. To address whether IL-38 inhibits adipogenesis and inflammation in vitro, adipose precursor 3T3-L1 cells were cultured with or without IL-38. The morphology and size of lipid droplets in 3T3-L1 cells were measured by Oil red O staining. The mRNA expression levels of GATA-binding protein-3 (GATA-3), glucose transporter type 4 (GLUT4), peroxisome proliferator-associated receptor γ2, IL-1β, IL-6, and monocyte chemoattractant protein-1 (MCP-1) in 3T3-L1 cells were detected by real-time PCR, The contents of IL-6, IL-1β, and MCP-1 in 3T3-L1 cell medium supernatants were determined by enzyme-linked immunosorbent assay. IL-38 significantly decreased the number of lipid droplets in 3T3-L1 cells. IL-38 also increased GATA-3 and GLUT4 mRNA expression and inhibited IL-1β, IL-6, and MCP-1 secretion by 3T3-L1 cells. It is concluded that IL-38 can inhibit the differentiation of human adipocytes and inflammatory cytokine production by 3T3-L1 cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| | - Sisi Chen
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| | - Jun Sun
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| | - Yang Yu
- The Fifth People's Hospital of Jilin City, Jilin, China
| | - Mingcai Li
- Department of Immunology, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
17
|
Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. Int J Mol Sci 2020; 21:ijms21144988. [PMID: 32679731 PMCID: PMC7404124 DOI: 10.3390/ijms21144988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Propolis is a natural resinous material produced by bees and has been used in folk medicines since ancient times. Due to it possessing a broad spectrum of biological activities, it has gained significant scientific and commercial interest over the last two decades. As a result of searching 122 publications reported up to the end of 2019, we assembled a unique compound database consisting of 578 components isolated from both honey bee propolis and stingless bee propolis, and analyzed the chemical space and chemical diversity of these compounds. The results demonstrated that both honey bee propolis and stingless bee propolis are valuable sources for pharmaceutical and nutraceutical development.
Collapse
|
18
|
Arozal W, Louisa M, Soetikno V. Selected Indonesian Medicinal Plants for the Management of Metabolic Syndrome: Molecular Basis and Recent Studies. Front Cardiovasc Med 2020; 7:82. [PMID: 32435657 PMCID: PMC7218133 DOI: 10.3389/fcvm.2020.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Increased prevalence of metabolic syndrome (MetS) in the world influences quality of health in all respective countries, including Indonesia. Data from Indonesian Family Life Survey reported in 2019 showed that the prevalence of MetS in Indonesia currently is 21.66%, estimated with the provincial incidence ranging up to 50%; additionally, the most common components of MetS discovered in Indonesia were poor high-density lipoprotein (HDL) cholesterol and hypertension. Management treatment of MetS involves a combination of lifestyle changes and pharmacological interventions to decrease cerebrovascular disease. Various natural substances have been shown to govern any cardiovascular or metabolic disorders through different mechanisms, such as triggering anti-inflammation, lipid profile correction, sensitization of insulin reception, or blood glucose control. In Indonesia, the utilization of natural compounds is part of the nation's culture. The community widely uses them; even though in general, their effectiveness and safety have not been thoroughly assessed by rigorous clinical trials. Scientific evidence suggested that cinnamon, mangosteen, and curcumin, as well as their derived components possess a broad spectrum of pharmacological activity. In this review, an enormous potential of cinnamon, mangosteen, and curcumin, which originated and are commonly used in Indonesia, could be treated against MetS, such as diabetes, hyperlipidemia, hypertension, and obesity. The findings suggested that cinnamon, mangosteen, curcumin and their derivatives may reflect areas of promise in the management of MetS.
Collapse
Affiliation(s)
- Wawaimuli Arozal
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
19
|
Mosana M, Ayeleso A, Nyakudya T, Erlwanger K, Mukwevho E. Potential Protective Effects of Neonatal Supplementation with Oleanolic Acid on Peroxisome Proliferator-Activated Receptor Gamma (PPARγ)-Ligand Dependent Regulation of Glucose Homeostasis in High Fructose-Fed Rats. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20913747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of neonatal oral supplementation of oleanolic acid (OA) on peroxisome proliferator-activated receptor gamma (PPARγ)-1 on glucose homeostasis in high fructose-fed rats was investigated. Rat pups (7 days old) were randomly assigned to and randomly administered with control (Distilled water, DW), OA (60 mg/kg), metformin (MET, 500 mg/kg), high fructose solution (HFS, 20% w/v), OA + HFS, MET + HFS, and treated till postnatal day (PND) 14. The pups were weaned onto a standard diet on PND 21 up to PND 111 and terminated on PND 112. Glucose derivatives and gene expressions of PPARγ-1 and glucose transporter type 4 (Glut-4) in the skeletal muscles were determined by using reverse transcription-quantitative polymerase chain reaction and gas chromatography-mass spectrometry, respectively. HFS significantly lowered glucose concentration and showed the propensity to suppress the expression of PPARγ-1, but not significantly. OA and MET alone significantly increased PPARγ-1 and Glut-4 expressions. There was no significant difference between the OA and OA + HFS for PPARγ-1 and Glut-4 expressions, although OA expressions were always higher than that of the OA + HFS group. An elevated level of glucose-6-phosphate was observed in OA, MET, and OA + HFS groups. Ribose-5-phosphate was significantly higher in OA and MET groups than the control. Ribose-5-phosphate was also significantly high in OA-treated group compared with OA + HFS. It is concluded that the neonatal supplementation with OA could help to improve the activity of PPARγ in reducing the burden of metabolic diseases.
Collapse
Affiliation(s)
- Mmahiine Mosana
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Ademola Ayeleso
- Department of Biochemistry, Faculty of Science, Adeleke University, Ede 250, Osun State, Nigeria
| | - Trevor Nyakudya
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Kennedy Erlwanger
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Emmanuel Mukwevho
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
20
|
Ibraheem Z, Basir R, Majid R, Alapid A, Sedik H, Sabariah MN, Faruq M, Chin V. In vitro antiplasmodium and chloroquine resistance reversal effects of mangostin. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_510_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Li D, Liu Q, Lu X, Li Z, Wang C, Leung CH, Wang Y, Peng C, Lin L. α-Mangostin remodels visceral adipose tissue inflammation to ameliorate age-related metabolic disorders in mice. Aging (Albany NY) 2019; 11:11084-11110. [PMID: 31806859 PMCID: PMC6932911 DOI: 10.18632/aging.102512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Low-grade chronic adipose tissue inflammation contributes to the onset and development of aging-related insulin resistance and type 2 diabetes. In the current study, α-mangostin, a xanthone isolated from mangosteen (Garcinia mangostana), was identified to ameliorate lipopolysaccharides-induced acute adipose tissue inflammation in mice, by reducing the expression of pro-inflammatory cytokines and chemokines. In a cohort of young (3 months) and old (18-20 months) mice, α-mangostin mitigated aging-associated adiposity, hyperlipidemia, and insulin resistance. Further study showed that α-mangostin alleviated aging-related adipose tissue inflammation by reducing macrophage content and shifting pro-inflammatory macrophage polarization. Moreover, α-mangostin protected the old mice against liver injury through suppressing the secretion of microRNA-155-5p from macrophages. The above results demonstrated that α-mangostin represents a new scaffold to alleviate adipose tissue inflammation, which might be a novel candidate to treat aging-related metabolic disorders.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Qianyu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiuqiang Lu
- Fuqing Branch of Fujian Normal University, Fuzhou, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Protective Effect of Sex Hormone-Binding Globulin against Metabolic Syndrome: In Vitro Evidence Showing Anti-Inflammatory and Lipolytic Effects on Adipocytes and Macrophages. Mediators Inflamm 2018; 2018:3062319. [PMID: 30046278 PMCID: PMC6036814 DOI: 10.1155/2018/3062319] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Sex hormone-binding globulin (SHBG) is a serum protein released mainly by the liver, and a low serum level correlates with a risk for metabolic syndrome including diabetes, obesity, and cardiovascular events. However, the underlying molecular mechanism(s) linking SHBG and metabolic syndrome remains unknown. In this study, using adipocytes and macrophages, we focused on the in vitro effects of SHBG on inflammation as well as lipid metabolism. Incubation with 20 nM SHBG markedly suppressed lipopolysaccharide- (LPS-) induced inflammatory cytokines, such as MCP-1, TNFα, and IL-6 in adipocytes and macrophages, along with phosphorylations of JNK and ERK. Anti-inflammatory effects were also observed in 3T3-L1 adipocytes cocultured with LPS-stimulated macrophages. In addition, SHBG treatment for 18 hrs or longer significantly induced the lipid degradation of differentiated 3T3-L1 cells, with alterations in its corresponding gene and protein levels. Notably, these effects of SHBG were not altered by coaddition of large amounts of testosterone or estradiol. In conclusion, SHBG suppresses inflammation and lipid accumulation in macrophages and adipocytes, which might be among the mechanisms underlying the protective effect of SHBG, that is, its actions which reduce the incidence of metabolic syndrome.
Collapse
|
23
|
Tousian Shandiz H, Razavi BM, Hosseinzadeh H. Review of Garcinia mangostana and its Xanthones in Metabolic Syndrome and Related Complications. Phytother Res 2017; 31:1173-1182. [PMID: 28656594 DOI: 10.1002/ptr.5862] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
Metabolic syndrome is coexistence of abdominal obesity, hyperglycemia, hyperlipidemia and hypertension that causes cardiovascular diseases, diabetes and their complications, low quality and short lifespan. Garcinia mangostana and its xanthones such as α-mangostin have been shown desirable effects such as anti-obesity, anti-hyperglycemic, anti-dyslipidemia, anti-diabetic and antiinflammatory effects in experimental studies. Various databases such as PubMed, Scopus and Web of Science with keywords of 'Garcinia mangostana', 'mangosteen', 'α-mangostin', 'metabolic syndrome', 'hypoglycemic', 'antihyperglicemic', 'antidiabetic', 'hypotensive', 'antihypertensive', 'atherosclerosis', 'arteriosclerosis' and 'hyperlipidemia' have been investigated in this search without publication time limitation. This study reviewed all pharmacological effects and molecular pathways of G. mangostana and its xanthones in the management of metabolic syndrome and its complications in in-vitro and in-vivo studies. Based on these studies, mangosteen and its xanthones have good potential to design human studies for controlling and modification of metabolic syndrome and its related disorders such as obesity, disrupted lipid profile, diabetes and its complications. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
24
|
Abstract
Mangosteen (Garcinia mangostana Linn.) is a well-known tropical tree indigenous to Southeast Asia. Its fruit's pericarp abounds with a class of isoprenylated xanthones which are referred as mangostins. Numerous in vitro and in vivo studies have shown that mangostins and their derivatives possess diverse pharmacological activities, such as antibacterial, antifungal, antimalarial, anticarcinogenic, antiatherogenic activities as well as neuroprotective properties in Alzheimer's disease (AD). This review article provides a comprehensive review of the pharmacological activities of mangostins and their derivatives to reveal their promising utilities in the treatment of certain important diseases, mainly focusing on the discussions of the underlying molecular targets/pathways, modes of action, and relevant structure-activity relationships (SARs). Meanwhile, the pharmacokinetics (PK) profile and recent toxicological studies of mangostins are also described for further druggability exploration in the future.
Collapse
|
25
|
Tsai SY, Chung PC, Owaga EE, Tsai IJ, Wang PY, Tsai JI, Yeh TS, Hsieh RH. Alpha-mangostin from mangosteen ( Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis. Nutr Metab (Lond) 2016; 13:88. [PMID: 27980597 PMCID: PMC5134003 DOI: 10.1186/s12986-016-0148-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is caused by multiple factors including hepatic oxidative stress, lipotoxicity, and mitochondrial dysfunction. Obesity is among the risk factors for NAFLD alongside type 2 diabetes mellitus and hyperlipidemia. α- mangostin (α-MG) extracts from the pericarps of mangosteen (Garcinia mangostana Linn.) may regulate high fat diet-induced hepatic steatosis; however the underlying mechanisms remain unknown. The aim of this study was to investigate the regulatory effect of α-MG on high fat diet-induced hepatic steatosis and the underlying mechanisms related to mitochondrial functionality and apoptosis in vivo and in vitro. Methods Sprague Dawley (SD) rats were fed on either AIM 93-M control diet, a high-fat diet (HFD), or high-fat diet supplemented with 25 mg/day mangosteen pericarp extract (MGE) for 11 weeks. Thereafter, the following were determined: body weight change, plasma free fatty acids, liver triglyceride content, antioxidant enzymes (superoxide dismutase, SOD; glutathione, GSH; glutathione peroxidase, GPx; glutathione reductase GRd; catalase, CAT) and mitochondrial complex enzyme activities. In the in vitro study, primary liver cells were treated with 1 mM free fatty acid (FFA) (palmitate: oleate acid = 2:0.25) to induce steatosis. Thereafter, the effects of α-MG (10 μM, 20 μM, 30 μM) on total and mitochondria ROS (tROS, mitoROS), mitochondria bioenergetic functions, and mitochondrial pathway of apoptosis were examined in the FFA-treated primary liver cells. Results The MGE group showed significantly decreased plasma free fatty acids and hepatic triglycerides (TG) and thiorbarbituric acid reactive substances (TBARS) levels; increased activities of antioxidant enzymes (SOD, GSH, GPx, GRd, CAT); and enhanced NADH-cytochrome c reductase (NCCR) and succinate-cytochrome c reductase (SCCR) activities in the liver tissue compared with HFD group. In the in vitro study, α-MG significantly increased mitochondrial membrane potential, enhanced cellular oxygen consumption rate (OCR), decreased tROS (total ROS) and mitoROS (mitochondrial ROS) levels ; reduced Ca2+ and cytochrome c (cyt c) release from mitochondria, and reduced caspases 9 and 3 activities compared with control group. Conclusion These findings demonstrate α-MG attenuated hepatic steatosis in high fat-diet fed rats potentially through enhanced cellular antioxidant capacity and improved mitochondrial functions as well as suppressed apoptosis of hepatocytes. The findings of study represent a novel nutritional approach on the use of α-MG in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Shin-Yu Tsai
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| | - Pei-Chin Chung
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| | - Eddy E Owaga
- Institute of Food Bioresources and Technology, Dedan Kimathi University of Technology, P.O. Box 657-10100 Nyeri, Kenya
| | - I-Jong Tsai
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| | - Pei-Yuan Wang
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| | - Jeng-I Tsai
- Yuan Lyu Technology Corporation, 10F-3, 120 Chung Cheng 1st Road, Kaohsiung, 802 Taiwan
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, 112 Taiwan
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110 Taiwan
| |
Collapse
|
26
|
Lee D, Choi YO, Kim KH, Chin YW, Namgung H, Yamabe N, Jung K. Protective effect of α-mangostin against iodixanol-induced apoptotic damage in LLC-PK1 cells. Bioorg Med Chem Lett 2016; 26:3806-9. [DOI: 10.1016/j.bmcl.2016.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
|
27
|
Gao Y, Yao Y, Zhu Y, Ren G. Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9696-9703. [PMID: 26494490 DOI: 10.1021/acs.jafc.5b03957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by hyperglycemia arising from defects in insulin secretion. This study investigated the effects of isoflavones in chickpea sprouts germinated in light (IGL) and isoflavones in chickpea seeds (ICS) on insulin resistance through their role in suppression of 3T3-L1 adipocyte differentiation. Results showed that IGL and ICS inhibit the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, and the suppressive effect of IGL was stronger (p < 0.05) than that of ICS, evidenced by a decrease of Oil Red O staining and intracellular triacylglycerol content in the mature adipocytes. IGL and ICS also stimulated glucose uptake significantly (p < 0.05). Besides, IGL and ICS treatment caused a significant decrease in mRNA and protein expression levels of adipogenesis-related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα). Furthermore, the mRNA and protein expression levels of adipocyte fatty acid-binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose transporter 4 (Glut4) in 3T3-L1 cells were also markedly down-regulated (p < 0.05).
Collapse
Affiliation(s)
- Yue Gao
- Qilu University of Technology , 3501 Daxue Road, Western University Science Park, Jinan, Shandong 250353, People's Republic of China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) , 80 South Xueyuan Road, Haidian, Beijing 100081, People's Republic of China
| | - Yinging Zhu
- Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège , Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Guixing Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) , 80 South Xueyuan Road, Haidian, Beijing 100081, People's Republic of China
| |
Collapse
|