1
|
Chang N, Liu Y, Li W, Ma Y, Zhou X, Zhao X, Yang L, Li L. Neutrophil-secreted S100A8/A9 participates in fatty liver injury and fibrosis by promoting myofibroblast migration. J Mol Med (Berl) 2024; 102:1117-1133. [PMID: 38995368 DOI: 10.1007/s00109-024-02469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Fatty liver, which is induced by abnormal lipid metabolism, is one of the most common causes of chronic liver disease globally and causes liver fibrosis. During this process, bone marrow-derived mesenchymal stromal cells (BMSCs) and hepatic stellate cells (HSCs) migrate toward the injured liver and participate in fibrogenesis by transdifferentiating into myofibroblasts. S100A8/A9 is a powerful inducer of cell migration and is involved in liver injury. But there are few reports about the effects of S100A8/A9 on BMSC/HSC migration. In the current study, we found that S100A8/A9 expression was increased during fatty liver injury/fibrogenesis. Moreover, S100A8/A9 expression had a positive correlation with fibrosis marker gene expressions in the injured liver. S100A8/A9 was mainly produced by neutrophils in the fibrotic liver. In vitro, neutrophil-secreted S100A8/A9 promoted BMSC/HSC migration via remodeling of microfilaments. Using specific siRNA and inhibitor, we proved that S100A8/A9-induced BMSC/HSC migration is dependent on TLR4/Rho GTPases signaling. Moreover, S100A8/A9 knock-down alleviated liver injury and fibrogenesis in vivo, while injection of S100A9 neutralizing antibody performed similar roles. We proved that S100A8/A9 was involved in liver injury and fibrogenesis via inducing BMSC/HSC migration. Our research reveals a new mechanism underlying BMSC/HSC migration in liver fibrosis and suggests S100A8/A9 as a potential therapeutic target of liver fibrosis. KEY MESSAGES: S100A8/A9 is secreted by neutrophils and increased in fatty liver injury. Neutrophil-secreted S100A8/A9 is a mediator of BMSC/HSC migration in vitro. S100A8/A9-induced BMSC/HSC migration is dependent on TLR4/Rho GTPases signaling. S100A8/A9 blockade alleviates liver injury and fibrogenesis in vivo.
Collapse
Affiliation(s)
- Na Chang
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yuran Liu
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Weiyang Li
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yuehan Ma
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Xuan Zhou
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Xinhao Zhao
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Lin Yang
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Liying Li
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
2
|
He J, Zhang X, Chen X, Xu Z, Chen X, Xu J. Shared Genes and Molecular Mechanisms between Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma Established by WGCNA Analysis. Glob Med Genet 2023; 10:144-158. [PMID: 37501756 PMCID: PMC10370469 DOI: 10.1055/s-0043-1768957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of death from cancer worldwide. The histopathological features, risk factors, and prognosis of HCC caused by nonalcoholic fatty liver disease (NAFLD) appear to be significantly different from those of HCC caused by other etiologies of liver disease. Objective This article explores the shared gene and molecular mechanism between NAFLD and HCC through bioinformatics technologies such as weighted gene co-expression network analysis (WGCNA), so as to provide a reference for comprehensive understanding and treatment of HCC caused by NAFLD. Methods NAFLD complementary deoxyribonucleic acid microarrays (GSE185051) from the Gene Expression Omnibus database and HCC ribonucleic acid (RNA)-sequencing data (RNA-seq data) from The Cancer Genome Atlas database were used to analyze the differentially expressed genes (DEGs) between NAFLD and HCC. Then, the clinical traits and DEGs in the two disease data sets were analyzed by WGCNA to obtain W-DEGs, and cross-W-DEGs were obtained by their intersection. We performed subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analyses of the cross-W-DEGs and established protein-protein interaction networks. Then, we identified the hub genes in them by Cytoscape and screened out the final candidate genes. Finally, we validated candidate genes by gene expression, survival, and immunohistochemical analyses. Results The GO analysis of 79 cross-W-DEGs showed they were related mainly to RNA polymerase II (RNAP II) and its upstream transcription factors. KEGG analysis revealed that they were enriched predominantly in inflammation-related pathways (tumor necrosis factor and interleukin-17). Four candidate genes (JUNB, DUSP1, NR4A1, and FOSB) were finally screened out from the cross-W-DEGs. Conclusion JUNB, DUSP1, NR4A1, and FOSB inhibit NAFLD and HCC development and progression. Thus, they can serve as potential useful biomarkers for predicting and treating NAFLD progression to HCC.
Collapse
Affiliation(s)
- Juan He
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xin Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xi Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Zongyao Xu
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xiaoqi Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Jiangyan Xu
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
3
|
Shaker ME, Gomaa HAM, Abdelgawad MA, El-Mesery M, Shaaban AA, Hazem SH. Emerging roles of tyrosine kinases in hepatic inflammatory diseases and therapeutic opportunities. Int Immunopharmacol 2023; 120:110373. [PMID: 37257270 DOI: 10.1016/j.intimp.2023.110373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Inflammation has been convicted of causing and worsening many liver diseases like acute liver failure, fibrosis, cirrhosis, fatty liver and liver cancer. Pattern recognition receptors (PRRs) like TLRs 4 and 9 localized on resident or recruited immune cells are well known cellular detectors of pathogen and damage-associated molecular patterns (PAMPs/DAMPs). Stimulation of these receptors generates the sterile and non-sterile inflammatory responses in the liver. When these responses are repeated, there will be a sustained liver injury that may progress to fibrosis and its outcomes. Crosstalk between inflammatory/fibrogenic-dependent streams and certain tyrosine kinases (TKs) has recently evolved in the context of hepatic diseases. Because of TKs increasing importance, their role should be elucidated to highlight effective approaches to manage the diverse liver disorders. This review will give a brief overview of types and functions of some TKs like BTK, JAKs, Syk, PI3K, Src and c-Abl, as well as receptors for TAM, PDGF, EGF, VEGF and HGF. It will then move to discuss the roles of these TKs in the regulation of the proinflammatory, fibrogenic and tumorigenic responses in the liver. Lastly, the therapeutic opportunities for targeting TKs in hepatic inflammatory disorders will be addressed. Overall, this review sheds light on the diverse TKs that have substantial roles in hepatic disorders and potential therapeutics modulating their activity.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Ahmed A Shaaban
- Department of Pharmacology & Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Overview of Cellular and Soluble Mediators in Systemic Inflammation Associated with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24032313. [PMID: 36768637 PMCID: PMC9916753 DOI: 10.3390/ijms24032313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent chronic liver disease in Western countries, affecting approximately 25% of the adult population. This condition encompasses a spectrum of liver diseases characterized by abnormal accumulation of fat in liver tissue (non-alcoholic fatty liver, NAFL) that can progress to non-alcoholic steatohepatitis (NASH), characterized by the presence of liver inflammation and damage. The latter form often coexists with liver fibrosis which, in turn, may progress to a state of cirrhosis and, potentially, hepatocarcinoma, both irreversible processes that often lead to the patient's death and/or the need for liver transplantation. Along with the high associated economic burden, the high mortality rate among NAFLD patients raises interest, not only in the search for novel therapeutic approaches, but also in early diagnosis and prevention to reduce the incidence of NAFLD-related complications. In this line, an exhaustive characterization of the immune status of patients with NAFLD is mandatory. Herein, we attempted to gather and compare the current and relevant scientific evidence on this matter, mainly on human reports. We addressed the current knowledge related to circulating cellular and soluble mediators, particularly platelets, different leukocyte subsets and relevant inflammatory soluble mediators.
Collapse
|
5
|
Feysa SV, Pushkarenko OA, Rudakova SO, Varvarynets AV. IS FECAL CALPROTECTIN DETERMINATION USEFUL FOR PATIENTS WITH METABOLIC ASSOCIATED FATTY LIVER DISEASE? POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:330-333. [PMID: 37756451 DOI: 10.36740/merkur202304105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
OBJECTIVE Aim: To investigate the possible relationship between fecal calprotectin (FC) level and ultrasound indicators of steatosis and fibrosis wich defined by attenuation coefficient (AC) and liver stiffness (LS) from two-dimensional (2D) shear-wave elastography (SWE) in patients with metabolically associated fatty liver disease (MAFLD). PATIENTS AND METHODS Materials and Methods: The study included 110 persons with MAFLD; mean age 51.3±4.8 years, 65 (59.1%) men. There were used laboratory, sonography and statistical methods. RESULTS Results: Stage S1 of steatosis was diagnosed in 42 (38.2%), S2 - in 56 (50.9%), S3 - only in 12 (10.9%) MAFLD patients. The carbohydrate metabolism disorders were found in 62 (56.4%); 38 (34.5%) patients among them suffered from type 2 diabetes. The lipid metabolism disorders were diagnosed in the vast majority of patients included in this study. The minimal excess of fecal calprotectin (FC) was detected in 72 MAFLD patients (65.5%), the moderate increase of FC was found in 12 persons, the FC more than 10-fold excess of the norm was observed in only 8 MAFLD patients. FC levels were significantly elevated in MAFLD patients with a S2-S3 compared to those with a S1 (75.8 [42.9-112.1] vs. 46.3 [28.2-65.4], p<0.01). CONCLUSION Conclusions: Fecal calprotectin levels are significantly elevated in patients with MAFLD. Future studies are warranted to establish the definitive role and clinical utility of FC as a potential biomarker of probably liver steatosis as well as other diseases associated with methabolic syndrome and its complications.
Collapse
Affiliation(s)
- Snizhana V Feysa
- STATE HIGHER EDUCATIONAL ESTABLISHMENT "UZHHOROD NATIONAL UNIVERSITY", UZHHOROD, UKRAINE
| | - Olga A Pushkarenko
- STATE HIGHER EDUCATIONAL ESTABLISHMENT "UZHHOROD NATIONAL UNIVERSITY", UZHHOROD, UKRAINE
| | - Svitlana O Rudakova
- STATE HIGHER EDUCATIONAL ESTABLISHMENT "UZHHOROD NATIONAL UNIVERSITY", UZHHOROD, UKRAINE
| | - Antonina V Varvarynets
- STATE HIGHER EDUCATIONAL ESTABLISHMENT "UZHHOROD NATIONAL UNIVERSITY", UZHHOROD, UKRAINE
| |
Collapse
|
6
|
Plasma Calprotectin Levels Associate with Suspected Metabolic-Associated Fatty Liver Disease and All-Cause Mortality in the General Population. Int J Mol Sci 2022; 23:ijms232415708. [PMID: 36555350 PMCID: PMC9778771 DOI: 10.3390/ijms232415708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis, metabolic dysregulation, and neutrophilic inflammation. In this study, we hypothesized that systemic levels of plasma calprotectin, as a biomarker of neutrophilic inflammation, may be associated with suspected MAFLD. Plasma calprotectin levels were measured in subjects (n = 5446) participating in the Prevention of Renal and Vascular ENd-stage Disease (PREVEND) cohort study. Suspected MAFLD was defined by the fatty liver index (FLI ≥ 60) and hepatic steatosis index (HSI ≥ 36) as proxies. Plasma calprotectin levels were significantly higher in subjects with FLI ≥ 60 (0.57 [IQR: 0.42−0.79] mg/L, n = 1592) (p < 0.001) compared to subjects with FLI < 60 (0.46 [0.34−0.65] mg/L, n = 3854). Multivariable logistic regression analyses revealed that plasma calprotectin levels were significantly associated with suspected MAFLD (FLI ≥ 60), even after adjustment for potential confounding factors, including current smoking, alcohol consumption, hypertension, diabetes, cardiovascular diseases, insulin resistance (HOMA-IR), hs-CRP, eGFR, and total cholesterol levels (OR 1.19 [95% CI: 1.06−1.33], p = 0.003). Interaction analyses revealed significant effect modifications for the association between plasma calprotectin and suspected MAFLD by BMI (p < 0.001) and hypertension (p = 0.003), with the strongest associations in subjects with normal BMI and without hypertension. Prospectively, plasma calprotectin levels were significantly associated with all-cause mortality after adjustment for potential confounding factors, particularly in subjects without suspected MAFLD (FLI < 60) (hazard ratio (HR) per doubling: 1.34 (1.05−1.72), p < 0.05). In conclusion, higher plasma calprotectin levels are associated with suspected MAFLD and with the risk of all-cause mortality, the latter especially in subjects without suspected MAFLD.
Collapse
|
7
|
Rodrigues RM, He Y, Hwang S, Bertola A, Mackowiak B, Ahmed YA, Seo W, Ma J, Wang X, Park SH, Guan Y, Fu Y, Vanhaecke T, Feng D, Gao B. E-Selectin-Dependent Inflammation and Lipolysis in Adipose Tissue Exacerbate Steatosis-to-NASH Progression via S100A8/9. Cell Mol Gastroenterol Hepatol 2021; 13:151-171. [PMID: 34390865 PMCID: PMC8593619 DOI: 10.1016/j.jcmgh.2021.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease, characterized by steatosis and hallmark liver neutrophil infiltration. NASH also is associated with adipose tissue inflammation, but the role of adipose tissue inflammation in NASH pathogenesis remains obscure. The aim of this study was to investigate the interplay between neutrophil recruitment in adipose tissue and the progression of NASH. METHODS A mouse model of NASH was obtained by high-fat diet (HFD) feeding plus adenovirus-Cxcl1 overexpression (HFD+AdCxcl1). Genetic deletion of E-selectin (Sele) and treatment with an S100A9 inhibitor (Paquinimod) were investigated using this model. RESULTS By analyzing transcriptomic data sets of adipose tissue from NASH patients, we found that E-selectin, a key adhesion molecule for neutrophils, is the highest up-regulated gene among neutrophil recruitment-related factors in adipose tissue of NASH patients compared with those in patients with simple steatosis. A marked up-regulation of Sele in adipose tissue also was observed in HFD+AdCxcl1 mice. The HFD+AdCxcl1-induced NASH phenotype was ameliorated in Sele knockout mice and was accompanied by reduced lipolysis and inflammation in adipose tissue, which resulted in decreased serum free fatty acids and proinflammatory adipokines. S100A8/A9, a major proinflammatory protein secreted by neutrophils, was highly increased in adipose tissue of HFD+AdCxcl1 mice. This increase was blunted in the Sele knockout mice. Therapeutically, treatment with the S100A9 inhibitor Paquinimod reduced lipolysis, inflammation, and adipokine production, ameliorating the NASH phenotype in mice. CONCLUSIONS E-selectin plays an important role in inducing neutrophil recruitment in adipose tissue, which subsequently promotes inflammation and lipolysis via the production of S100A8/A9, thereby exacerbating the steatosis-to-NASH progression. Targeting adipose tissue inflammation therefore may represent a potential novel therapy for treatment of NASH.
Collapse
Affiliation(s)
- Robim M. Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland,Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Adeline Bertola
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Jing Ma
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Xiaolin Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Seol Hee Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland,Correspondence Address correspondence to: Bin Gao, MD, PhD, Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, Maryland 20892. fax: (301) 480-0257.
| |
Collapse
|
8
|
Hwang S, Yun H, Moon S, Cho YE, Gao B. Role of Neutrophils in the Pathogenesis of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021; 12:751802. [PMID: 34707573 PMCID: PMC8542869 DOI: 10.3389/fendo.2021.751802] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of liver disorders, from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Compared with fatty liver, NASH is characterized by increased liver injury and inflammation, in which liver-infiltrating immune cells, with neutrophil infiltration as a hallmark of NASH, play a critical role in promoting the progression of fatty liver to NASH. Neutrophils are the first responders to injury and infection in various tissues, establishing the first line of defense through multiple mechanisms such as phagocytosis, cytokine secretion, reactive oxygen species production, and neutrophil extracellular trap formation; however, their roles in the pathogenesis of NASH remain obscure. The current review summarizes the roles of neutrophils that facilitate the progression of fatty liver to NASH and their involvement in inflammation resolution during NASH pathogenesis. The notion that neutrophils are potential therapeutic targets for the treatment of NASH is also discussed.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Hwayoung Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Sungwon Moon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Núñez K, Hamed M, Fort D, Bruce D, Thevenot P, Cohen A. Links between donor macrosteatosis, interleukin-33 and complement after liver transplantation. World J Transplant 2020; 10:117-128. [PMID: 32864357 PMCID: PMC7428792 DOI: 10.5500/wjt.v10.i5.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/07/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As prevalence of nonalcoholic fatty liver disease increases in the population, livers with steatosis will continue to infiltrate the donor pool. Safe utilization of these extended criteria grafts is paramount given the increased risk associated with their use in transplantation. Prognostic factors that can predict liver dysfunction immediately after transplantation with macrosteatotic grafts are lacking. AIM To understand the relationship between interleukin-33 (IL-33) and complement in recipients immediately following liver reperfusion as a marker of liver dysfunction. METHODS Cohort consisted of patients who received a liver transplant from September 2016-September 2019 at our institution. Clinical variables were retrospectively extracted from the electronic medical record. Back-table donor biopsies were obtained with donor steatosis percentage retrospectively determined by a board-certified pathologist. Blood samples were available immediately following liver transplantation. Quantification of plasma IL-33 and complement proteins, C3a and C5a, were determined by enzyme-linked immunosorbent assay. For mRNA expression, RNA was extracted from donor biopsies and used against a 780 gene panel. RESULTS Cohort consisted of 99 donor and recipients. Donor median age was 45 years and 55% male. Recipients had a median age of 59 years with 62% male. The main etiologies were alcoholic hepatitis, nonalcoholic steatohepatitis, and hepatocellular carcinoma. Median MELD-Na at transplant was 21. Donors were grouped based on moderate macrosteatosis (≥ 30%). Recipients implanted with moderate macrosteatotic grafts had significantly higher peak alanine aminotransferase/aspartate aminotransferase (P < 0.001 and P < 0.004), and increased incidence of early allograft dysfunction (60% compared to 18%). Circulating IL-33 levels were significantly elevated in recipients of ≥ 30% macrosteatotic grafts (P < 0.05). Recipients with detectable levels of circulating IL-33 immediately following reperfusion had significantly higher alanine aminotransferase/aspartate aminotransferase (P < 0.05 and P < 0.01). Activated complement (C3a and C5a) were elevated in recipients implanted with moderate macrosteatotic grafts. RNA expression analysis of donor biopsies revealed moderate steatotic grafts upregulated genes inflammatory processes while downregulated hepatocyte-produced complement factors. CONCLUSION Circulating IL-33 and activated complement levels immediately following liver reperfusion in recipients of moderate macrosteatotic grafts may identify which patients are at risk of early allograft dysfunction.
Collapse
Affiliation(s)
- Kelley Núñez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - Mohammad Hamed
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - Daniel Fort
- Center for Outcomes and Health Services Research, Research Administration, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - David Bruce
- Multi-Organ Transplant Program, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - Paul Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| | - Ari Cohen
- Multi-Organ Transplant Program, Ochsner Clinic Foundation, New Orleans, LA 70121, United States
| |
Collapse
|
10
|
Chen F, Zhou Y, Wu Z, Li Y, Zhou W, Wang Y. Integrated Analysis of Key Genes and Pathways Involved in Nonalcoholic Steatohepatitis Improvement After Roux-en-Y Gastric Bypass Surgery. Front Endocrinol (Lausanne) 2020; 11:611213. [PMID: 33603714 PMCID: PMC7884850 DOI: 10.3389/fendo.2020.611213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND As the incidence of nonalcoholic fatty liver disease (NAFLD) increases globally, nonalcoholic steatohepatitis (NASH) has become the second common cause of liver transplantation for liver diseases. Recent evidence shows that Roux-en-Y gastric bypass (RYGB) surgery obviously alleviates NASH. However, the mechanism underlying RYGB induced NASH improvement is still elusive. METHODS We obtained datasets, including hepatic gene expression data and histologic NASH status, at baseline and 1 year after RYGB surgery. Differentially expressed genes (DEGs) were identified comparing gene expression before and after RYGB surgery in each dataset. Common DEGs were obtained between both datasets and further subjected to functional and pathway enrichment analysis. Protein-protein interaction (PPI) network was constructed, and key modules and hub genes were also identified. RESULTS In the present study, GSE106737 and GSE83452 datasets were included. One hundred thirty common DEGs (29 up-regulated and 101 down-regulated) were identified between GSE106737 and GSE83452 datasets. KEGG analysis showed that mineral absorption, IL-17 signaling pathway, osteoclast differentiation, and TNF signaling pathway were significantly enriched. Based on the PPI network, IGF1, JUN, FOS, LDLR, TYROBP, DUSP1, CXCR4, ATF3, CXCL2, EGR1, SAA1, CTSS, and PPARA were identified as hub genes, and three functional modules were also extracted. CONCLUSION This study identifies the global gene expression change in the liver of NASH patients before and after RYGB surgery in a bioinformatic method. Our findings will contribute to the understanding of molecular biological changes underlying NASH improvement after RYGB surgery.
Collapse
Affiliation(s)
- Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyuan Wu
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunze Li
- Department of Colorectal and Hernia Minimally Invasive Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenlong Zhou
- Department of General Surgery, The Third Hospital of Shenyang Medical College, Shenyang, China
| | - Yong Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yong Wang,
| |
Collapse
|
11
|
Pastore M, Gentilini A, Marra F. Mechanisms of Fibrogenesis in NASH. NON-ALCOHOLIC FATTY LIVER DISEASE 2020:97-127. [DOI: 10.1007/978-3-319-95828-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Hepatic gene expression explains primary drug toxicity in bipolar disorder. Transl Psychiatry 2019; 9:331. [PMID: 31819046 PMCID: PMC6901567 DOI: 10.1038/s41398-019-0666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
In bipolar disorder (BPD), long-term psychotropic drug treatment is often necessary to prevent relapse or recurrence. Nevertheless, adverse drug effects including disturbances in hepatic metabolism are observed and still poorly understood. Here, the association between hepatic gene expression and histopathological changes of the liver was investigated. By the use of microarrays (Affymetrix U133 plus2.0), a genome-wide expression study was performed on BPD patients with psychotropic drug treatment (n = 29) compared to unaffected controls (n = 20) and validated by quantitative real-time PCR. WebGestalt was used to identify over-represented functional pathways of the Reactome database. Association analyses between histopathological changes and differentially expressed genes comprised in the over-represented functional pathways were performed using regression analyses, from which feature-expression heatmaps were drawn. The majority of identified genes were underexpressed and involved in energy supply, metabolism of lipids and proteins, and the innate immune system. Positive associations were found for genes involved in all pathways and degenerative changes. The strongest negative association was observed between genes involved in energy supply and hepatic activity, as well as inflammation. In summary, we found a possible association between gene expression involved in various biological pathways and histopathological changes of the liver in BPD. Further, we found support for the probable primary toxic effect of psychotropic drugs on hepatic injury in BPD. Even if the safety of psychotropic drugs improves, adverse effects especially on hepatic function should not be underestimated.
Collapse
|
13
|
Hanson A, Piras IS, Wilhelmsen D, Still CD, Chu X, Petrick A, Gerhard GS, DiStefano JK. Chemokine ligand 20 (CCL20) expression increases with NAFLD stage and hepatic stellate cell activation and is regulated by miR-590-5p. Cytokine 2019; 123:154789. [PMID: 31352173 DOI: 10.1016/j.cyto.2019.154789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
CCL20 (CC chemokine ligand 20) is emerging as an important regulatory molecule in a pathway common to virus infection, alcoholic hepatitis, and non-alcoholic fatty liver disease (NAFLD) leading to the development of hepatic fibrosis. We previously observed upregulation of CCL20 in patients with NAFLD fibrosis and human hepatic stellate cells (LX-2 cells) in response to lipid loading. To date, the mechanisms mediating the relationship between CCL20 and hepatic fibrogenesis remain unknown. In this study, we sought to characterize the molecular mechanisms by which CCL20 may contribute to fibrogenesis in NAFLD. We observed that CCL20 levels increased with worsening severity of liver histology in NAFLD patients (normal < steatosis < inflammation < fibrosis) and during LX-2 cell activation in a time-dependent manner. We found that treatment of LX-2 cells with CCL20 corresponded with increased levels of CCL20 and ACTA2, and decreased levels of PLAU and SERPINE1, effects mitigated by CCL20 knockdown. We identified a putative binding site for miR-590-5p, which we previously reported to be downregulated in NAFLD fibrosis, in the CCL20 3' untranslated region (3'UTR), and found that exogenous miR-590-5p functionally interacted with the CCL20 3'UTR to downregulate its expression. Transfection of LX-2 hepatic stellate cells with miR-590-5p mimic or silencing RNA resulted in decreased or increased CCL20 levels, respectively. Our results indicate an association between CCL20 and hepatic stellate cell activation that includes modulation of key ECM components and functional interactions with a miRNA previously implicated in NAFLD fibrosis. Together, these findings support a novel mechanism by which CCL20 may promote fibrogenesis in NAFLD.
Collapse
Affiliation(s)
- Amanda Hanson
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ 85004, United States
| | - Ignazio S Piras
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ 85004, United States
| | - Danielle Wilhelmsen
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ 85004, United States
| | | | - Xin Chu
- Geisinger Obesity Institute, Danville, PA 17822, United States
| | - Anthony Petrick
- Geisinger Obesity Institute, Danville, PA 17822, United States
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ 85004, United States.
| |
Collapse
|