1
|
Han Y, Sun Y, Peng S, Tang T, Zhang B, Yu R, Sun X, Guo S, Ma L, Li P, Yang P. PI3K/AKT pathway: A potential therapeutic target in cerebral ischemia-reperfusion injury. Eur J Pharmacol 2025; 998:177505. [PMID: 40118329 DOI: 10.1016/j.ejphar.2025.177505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Cerebral ischemia is a prevalent cerebrovascular disorder, with the restoration of blocked blood vessels serving as the current standard clinical treatment. However, reperfusion can exacerbate neuronal damage and neurological dysfunction, resulting in cerebral ischemia-reperfusion (I/R) injury. Presently, clinical treatment strategies for cerebral I/R injury are limited, creating an urgent need to identify new effective therapeutic targets. The PI3K/AKT signaling pathway, a pro-survival pathway associated with cerebral I/R injury, has garnered significant attention. We conducted a comprehensive review of the literature on the PI3K/AKT pathway in the context of cerebral I/R. Our findings indicate that activation of the PI3K/AKT signaling pathway following cerebral I/R can alleviate oxidative stress, reduce endoplasmic reticulum stress (ERS), inhibit inflammatory responses, decrease neuronal apoptosis, autophagy, and pyroptosis, mitigate blood-brain barrier (BBB) damage, and promote neurological function recovery. Consequently, this pathway ultimately reduces neuronal death, alleviates brain tissue damage, decreases the volume of cerebral infarction, and improves behavioral impairments. These results suggest that the PI3K/AKT signaling pathway is a promising therapeutic target for further research and drug development, holding significant potential for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Yiming Han
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yu Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shiyu Peng
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Tingting Tang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Beibei Zhang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Ruonan Yu
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Xiaoyan Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shanshan Guo
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China; Staff Hospital of Henan Fifth Construction Group Co., Ltd, Zhengzhou, Henan, China
| | - Lijuan Ma
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Pengfei Yang
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| |
Collapse
|
2
|
Mateo Orobia AJ, Benítez Del Castillo JM, Calonge M, Baudouin C, Labetoulle M. A narrative literature review about alpha-lipoic acid role in dry eye and ocular surface disease. Acta Ophthalmol 2025. [PMID: 40207422 DOI: 10.1111/aos.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Ocular surface diseases (OSD) include various conditions that affect the eye's surface, causing discomfort and pain. One such condition, dry eye disease (DED), is a multifactorial disorder that significantly impacts patients' quality of life, with prevalence rates ranging from 5% to 50% and higher incidence in women. DED involves tear film instability, inflammation and neurosensory abnormalities, making its management challenging due to diverse underlying mechanisms. Conventional treatments typically focus on symptom relief, but new approaches targeting the disease's pathogenesis are emerging. Alpha-lipoic acid (ALA) is gaining attention for its potential in treating OSD and DED. ALA acts as a potent antioxidant, neutralizing reactive oxygen species. It protects cell membranes by interacting with vitamin C and glutathione, potentially recycling vitamin E. Its antioxidative properties are particularly relevant in meibomian gland dysfunction, a condition implicated in DED. By scavenging free radicals and modulating redox status in the meibomian glands, ALA can reduce oxidative damage, preserve glandular function and decrease inflammation. In diabetic patients with DED, ALA administration has been found to improve tear film parameters, reduce corneal defects, enhance antioxidant status and potentially prevent diabetic retinopathy and keratopathy. Its therapeutic effects on neurosensory abnormalities, especially in diabetic polyneuropathy and other neuropathies, are primarily due to its antioxidant, anti-inflammatory and metal-chelating properties. In summary, ALA holds promise as a therapeutic agent for DED and OSD and could be a promising treatment option for diabetic retinopathy and keratopathy, although further research is needed to confirm its efficacy.
Collapse
Affiliation(s)
- Antonio J Mateo Orobia
- Hospital Universitario Miguel Servet Zaragoza, Instituto Oftalmológico Biotech-Visión. Quirónsalud Zaragoza, Zaragoza, Spain
| | | | - Margarita Calonge
- Universidad de Valladolid, Instituto Universitario de Oftalmología Aplicada Valladolid (IOBA), Valladolid, Spain
| | - Christophe Baudouin
- Department of Ophthalmology, Quinze-Vingts National OphthalmologyHospital and Vision Institute, Paris, France
| | - Marc Labetoulle
- Department of Ophthalmology, Quinze-Vingts National OphthalmologyHospital and Vision Institute, Paris, France
- Service d'Ophtalmologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Paris-Saclay University, Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Ibrahim Fouad G, Ahmed KA. Remyelinating activities of Carvedilol or alpha lipoic acid in the Cuprizone-Induced rat model of demyelination. Int Immunopharmacol 2023; 118:110125. [PMID: 37028277 DOI: 10.1016/j.intimp.2023.110125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis (MS) is a complex and multifactorial neurodegenerative disease with unknown etiology, MS is featured by multifocal demyelinated lesions distributed throughout the brain. It is assumed to result from an interaction between genetic and environmental factors, including nutrition. Therefore, different therapeutic approaches are aiming to stimulate remyelination which could be defined as an endogenous regeneration and repair of myelin in the central nervous system. Carvedilol is an adrenergic receptor antagonist. Alpha lipoic acid (ALA) is a well-known antioxidant. Herein, we investigated the remyelination potential of Carvedilol or ALA post-Cuprizone (CPZ) intoxication. Carvedilol or ALA (20 mg/kg/d) was administrated orally for two weeks at the end of the five weeks of CPZ (0.6%) administration. CPZ provoked demyelination, enhanced oxidative stress, and stimulated neuroinflammation. Histological investigation of CPZ-induced brains showed obvious demyelination in the corpus callosum (CC). Both Carvedilol and ALA demonstrated remyelinating activities, with corresponding upregulation of the expression of MBP and PLP, the major myelin proteins, downregulation of the expression of TNF-α and MMP-9, and decrement of serum IFN-γ levels. Moreover, both Carvedilol and ALA alleviated oxidative stress, and ameliorated muscle fatigue. This study highlights the neurotherapeutic potential of Carvedilol or ALA in CPZ-induced demyelination, and offers a better model for the exploring of neuroregenerative strategies. The current study is the first to demonstrate a pro-remyelinating activity for Carvedilol, as compared to ALA, which might represent a potential additive benefit in halting demyelination and alleviating neurotoxicity. However, we could declare that Carvedilol showed a lower neuroprotective potential than ALA.
Collapse
|
4
|
Sadiq IZ. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr Mol Med 2023; 23:13-35. [PMID: 34951363 DOI: 10.2174/1566524022666211222161637] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as "second messengers," influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson's disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer's disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria-Nigeria
- Department of Biochemistry, Faculty of Sciences, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammad VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
5
|
CHEN L, GAO W, SHAO Y, LI C, LU Y. Alpha-lipoic acid prevents atrial electrical and structural remodeling via inhibition of NADPH oxidase in a rabbit rapid atrial pacing model. Turk J Med Sci 2022; 52:1378-1388. [PMID: 36326363 PMCID: PMC10387899 DOI: 10.55730/1300-0144.5445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/10/2022] [Accepted: 03/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alpha-lipoic acid (ALA) is a natural compound, one of the natural antioxidants with high activity. In the NADPH oxidase family, NADPH oxidase 4 (NOX4) is an important subunit participating in the production of ROS. NADPH oxidase 2 (NOX2) can form active NADPH oxidase complexes when binding to several other subunits in the cytoplasm, and NOX2 is its major functional subunit. Rapid atrial pacing (RAP) model was constructed to study the effects of ALA on electrical and structural remodeling in rabbits. METHODS Thirty rabbits were divided into SHAM group, RAP group and ALA+RAP group. Their right atriums were paced at a speed of 600 beats/min for 12 h in the RAP and ALA+RAP groups, and the atrial effective refractory period (AERP) and AERP frequency adaptability were determined during the pace. In ALA+RAP group, ALA (30 mg/kg) was administered intraperitoneally daily to the rabbits for 3 days before RAP. Atrial tissue was collected from each group to detect malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS) to observe the effect of oxidative stress. The pathological structure of the atrial tissue was observed through hematoxylin-eosin (HE) staining. Ultrastructural changes in the atrial myocytes were observed by transmission electron microscopy (TEM), and the expression levels of Nox2 and Nox4 were detected by immunohistochemistry, western blot and ELISA. RESULTS AERP gradually shortened, while ALA injection could remarkably delay this process. HE staining showed that the most of the nuclei appeared normal, the myocardial fibers did not show ruptures, and their arrangement was slightly ordered, and myofilament dissolution and mitochondrial swelling and deformation were rarely observed by TEM in the ALA+RAP group. Compared with the RAP group, the contents of MDA and ROS were reduced, SOD activity was enhanced, and the expression of NOX2 and NOX4 was decreased in the ALA+RAP group. DISCUSSION ALA can inhibit atrial electrical remodeling and structural remodeling, and its mechanism may be related to inhibiting the activity of NADPH oxidase.
Collapse
Affiliation(s)
- Lei CHEN
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
| | - Wen GAO
- Department of Cardiology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou,
China
| | - Yameng SHAO
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
| | - Chenggang LI
- Department of Cardiology, Xuzhou New Health Geriatric Hospital, Xuzhou,
China
| | - Yuan LU
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
| |
Collapse
|
6
|
Alqahtani AA, Aslam H, Shukrullah S, Fatima H, Naz MY, Rahman S, Mahnashi MH, Irfan M. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. Assay Drug Dev Technol 2022; 20:191-210. [DOI: 10.1089/adt.2022.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hira Aslam
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hareem Fatima
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
7
|
Khan H, Singh TG, Dahiya RS, Abdel-Daim MM. α-Lipoic Acid, an Organosulfur Biomolecule a Novel Therapeutic Agent for Neurodegenerative Disorders: An Mechanistic Perspective. Neurochem Res 2022; 47:1853-1864. [PMID: 35445914 DOI: 10.1007/s11064-022-03598-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
Lipoic acid (α-LA) (1,2-dithiolane3-pentanoic acid (C8H14O2S2) is also called thioctic acid with an oxidized (disulfide, LA) and a reduced (di-thiol: dihydro-lipoic acid, DHLA) form of LA. α-LA is a potent anti-oxidative agent that has a significant potential to treat neurodegenerative disorders. α-LA is both hydrophilic and hydrophobic in nature. It is widely distributed in plants and animals in cellular membranes and in the cytosol, which is responsible for LA's action in both the cytosol and plasma membrane. A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the Nature and mechanistic interventions of the α-Lipoic acid for central nervous system diseases. Moreover, α-LA readily crosses the blood-brain barrier, which is a significant factor for CNS activities. The mechanisms of α-LA reduction are highly tissue-specific. α-LA produces its neuroprotective effect by inhibiting reactive oxygen species formation and neuronal damage, modulating protein levels, and promoting neurotransmitters and anti-oxidant levels. Hence, the execution of α-LA as a therapeutic ingredient in the therapy of neurodegenerative disorders is promising. Finally, based on evidence, it can be concluded that α-LA can prevent diseases related to the nervous system.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
8
|
Yoo MC, Ryu IY, Choi JW, Lee JM, Byun JY, Yeo SG. Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 Expression and Effects of Alpha Lipoic Acid on Recovery in a Rat Model of Facial Nerve Injury. Biomedicines 2022; 10:biomedicines10020291. [PMID: 35203501 PMCID: PMC8868592 DOI: 10.3390/biomedicines10020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background: NOX2 (nicotinamide adenine dinucleotide phosphate oxidase 2), which is upregulated by a variety of neurodegenerative factors, is neuroprotective and capable of reducing detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. The purpose of this study was to investigate NOX2 expression and the degree of functional recovery following different types of facial nerve injury and assess the effects of antioxidant intervention on nerve regeneration. Methods: A total of 40 mature (6-week-old) male Sprague-Dawley (SD) rats were used. After inducing facial injury (compression injury or cutting injury), we randomized rats into four groups: A, crushing injury only; B, crushing injury with alpha lipoic acid (ALA); C, axotomy only; and D, axotomy with ALA. Recovery from facial nerve injury was evaluated 4 and 14 days after injury by performing behavioral assessments (observational scale of vibrissae movement, modified scale of eye closing and blinking reflex) and measuring changes in NOX2 experimental/control ratio in the injured (left, experimental) facial nerve relative to that in the uninjured (right, control) facial nerve. Results: A comparison between groups according to the type of injury showed a higher NOX2 expression ratio in the axotomy group than in the crushing group (p < 0.001). Regardless of injury type, both groups that received an injection of ALA exhibited a trend toward a higher NOX2 expression ratio, although this difference reached statistical significance only in the axotomy group (p < 0.001). In behavioral assessments, overall behavioral test scores were significantly higher in the crushing injury group immediately after the injury compared with that in the axotomy group. Additionally, in behavioral tests conducted 4 days after the crushing injury, the group injected with ALA showed better results than the group without injection of ALA (p = 0.031). Conclusions: Our study showed that NOX2 expression trended higher with facial nerve injury, exhibiting a significant increase with cutting-type injury. Furthermore, intraperitoneally injection with ALA may be an efficient strategy for accelerating peripheral facial nerve recovery after a crushing injury.
Collapse
Affiliation(s)
- Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - In Yong Ryu
- Department of Otorhinolaryngology, Head and Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (I.Y.R.); (J.M.L.); (J.Y.B.)
| | - Jin Woo Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Jae Min Lee
- Department of Otorhinolaryngology, Head and Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (I.Y.R.); (J.M.L.); (J.Y.B.)
| | - Jae Yong Byun
- Department of Otorhinolaryngology, Head and Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (I.Y.R.); (J.M.L.); (J.Y.B.)
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head and Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (I.Y.R.); (J.M.L.); (J.Y.B.)
- Correspondence: ; Tel.: +82-2-958-8980; Fax: +82-2-958-8470
| |
Collapse
|
9
|
Tejchman K, Kotfis K, Sieńko J. Biomarkers and Mechanisms of Oxidative Stress-Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int J Mol Sci 2021; 22:ijms22158010. [PMID: 34360776 PMCID: PMC8347360 DOI: 10.3390/ijms22158010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between pro- and antioxidants that adversely influences the organism in various mechanisms and on many levels. Oxidative damage occurring concomitantly in many cellular structures may cause a deterioration of function, including apoptosis and necrosis. The damage leaves a molecular “footprint”, which can be detected by specific methodology, using certain oxidative stress biomarkers. There is an intimate relationship between oxidative stress, inflammation, and functional impairment, resulting in various diseases affecting the entire human body. In the current narrative review, we strengthen the connection between oxidative stress mechanisms and their active compounds, emphasizing kidney damage and renal transplantation. An analysis of reactive oxygen species (ROS), antioxidants, products of peroxidation, and finally signaling pathways gives a lot of promising data that potentially will modify cell responses on many levels, including gene expression. Oxidative damage, stress, and ROS are still intensively exploited research subjects. We discuss compounds mentioned earlier as biomarkers of oxidative stress and present their role documented during the last 20 years of research. The following keywords and MeSH terms were used in the search: oxidative stress, kidney, transplantation, ischemia-reperfusion injury, IRI, biomarkers, peroxidation, and treatment.
Collapse
Affiliation(s)
- Karol Tejchman
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48914661144
| | - Jerzy Sieńko
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| |
Collapse
|
10
|
Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG. Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res 2021; 1761:147399. [PMID: 33662337 DOI: 10.1016/j.brainres.2021.147399] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The cerebral ischemic reperfusion injury may leads to morbidity and mortality in patients. phosphatidylinositol 3-kinase (PI3K) signaling pathway has been believed to work in association with its downstream targets, other receptors, and pathways that may offer antioxidant, anti-inflammatory, anti-apoptotic effects, neuroprotective role in neuronal excitotoxicity. This review elaborates the mechanistic interventions of the PI3K pathway in cerebral ischemic injury in context to nuclear factor erythroid 2-related factor 2 (Nrf2) regulation, Hypoxia-inducible factor 1 signaling (HIF-1), growth factors, Endothelial NOS (eNOS) proinflammatory cytokines, Erythropoietin (EPO), Phosphatase and tensin homologous protein of chromosome 10 gene (PTEN) signaling, NF-κB/Notch signaling, c-Jun N-terminal kinase (JNK) and Glycogen synthase kinase-3β (GSK-3β) signaling pathway. Evidences showing the activation of PI3K inhibits apoptotic pathway, which results in its neuroprotective effect in ischemic injury. Despite discussing the therapeutic role of the PI3K pathway in treating cerebral ischemic injury, the review also enlighten the selective modulation of PI3K pathway with activators and inhibitors which may provide promising results in clinical and preclinical settings.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anjali Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
11
|
Yang X, Zhao K, Deng W, Zhao L, Jin H, Mei F, Zhou Y, Li M, Wang W. Apocynin Attenuates Acute Kidney Injury and Inflammation in Rats with Acute Hypertriglyceridemic Pancreatitis. Dig Dis Sci 2020; 65:1735-1747. [PMID: 31617131 DOI: 10.1007/s10620-019-05892-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Acute hypertriglyceridemic pancreatitis (HTGP) is more likely to be severe and complicated with extrapancreatic organ injury. NOX may be involved in the occurrence and development of high fat acute pancreatitis, but the specific mechanism is not clear. AIMS To investigate the protective effects of apocynin, an inhibitor of NOX, on kidney injury associated with the HTGP and its potential mechanisms in a rat model. METHODS In this study, HTGP rat model was induced by intraperitoneal injection of P-407 and L-Arg in combination. Apocynin was given by subcutaneously injection 30 min before the model was induced. The pancreatic and renal histopathology changes were analyzed. Serum AMY, BUN, Cr levels were measured by the Automatic Biochemistry Analyzer. The expression levels of protein associated with NOX/Akt pathway in the kidney were detected. ROS level in kidney and serum was measured by DHE staining and MDA, SOD kits, respectively. Serum TNF-α and IL-6 were detected by ELISA kits. RESULTS In HTGP group, the levels of serum AMY, BUN, Cr, TNF- α, and IL-6 were significantly increased, and the injury of pancreas and kidney was aggravated. The levels of NOX4, NOX2, ROS, p-Akt, GSK-3β, NF-κB, and TNF-α in the kidney were detected, suggesting that NOX may regulate the activity of downstream p-Akt and GSK-3β by regulating ROS levels, thereby affecting the release of inflammatory mediators and regulating HTGP-related kidney injury. After application of apocynin, the expression of NOX4 and NOX2 and the level of ROS in the kidney were reduced, the release of inflammatory mediators decreased, and the histopathology injury of pancreas and kidney was improved obviously. CONCLUSION NOX may play an important role in HTGP-associated kidney injury through Akt/GSK-3β pathway. Apocynin can significantly downregulate the level of NOX and play a protective role in HTGP-related kidney injury through Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Xiaojia Yang
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Kailiang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Liang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Hongzhong Jin
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Fangchao Mei
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yu Zhou
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
12
|
Ziyatdinova G, Antonova T, Vorobev V, Osin Y, Budnikov H. Selective voltammetric determination of α-lipoic acid on the electrode modified with SnO2 nanoparticles and cetyltriphenylphosphonium bromide. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2341-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Liang X, Liu Y, Jia S, Xu X, Dong M, Wei Y. SIRT1: The Value of Functional Outcome, Stroke-Related Dementia, Anxiety, and Depression in Patients with Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 28:205-212. [PMID: 30361109 DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/15/2018] [Accepted: 09/23/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The outcome of ischemic stroke depends on multiple factors and their function of each other. Studies have shown that Sirtuin1 (SIRT1) plays a chief role in the key procedure during ischemia/hypoxia by protecting against cellular stress and controlling the metabolic pathways. AIMS To explore the alterations in serum SIRT1 concentrations in acute ischemic stroke (AIS) patients and the relationship between SIRT1 and poststroke dementia, anxiety, and depression. METHODS One hundred and twenty four consecutive patients with clinically diagnosed AIS were recruited to participate in the study. Serum SIRT1 levels were measured using a commercially available ELISA equipment for SIRT1 (Cusabio, Wuhan, China). In 1 year after admission, the severity of stroke was assessed with the National Institutes of Health Stroke Scale score, and the functional outcome was measured by a modified Rankin scale, the Hamilton Anxiety Scale scores were evaluated to define patients with or without anxiety, and the Hamilton Depression Scale scores for depression. RESULTS We found the levels of serum SIRT1 was significantly higher (P = .036) in AIS patients (.62 ± .77 ng/mL) compared with healthy control subjects (.45 ± .69 ng/mL), but not significantly higher SIRT1 concentration (.58 ± .69 versus .64 ± .81 ng/mL, P = .298) than patients in the unfavorable functional outcome group. CONCLUSIONS There is no potential diagnostic and prognostic role of SIRT1 in AIS-related dementia, anxiety, and depression. The role of SIRT1 in AIS among human race needs to be further investigated.
Collapse
Affiliation(s)
- Xue Liang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Shiyu Jia
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Xiaomin Xu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Meixue Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| | - Youdong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| |
Collapse
|
14
|
Ames PRJ, Bucci T, Merashli M, Amaral M, Arcaro A, Gentile F, Nourooz-Zadeh J, DelgadoAlves J. Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial? Free Radic Res 2018; 52:1063-1082. [PMID: 30226391 DOI: 10.1080/10715762.2018.1525712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.
Collapse
Affiliation(s)
- Paul R J Ames
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,b Department of Haematology , Dumfries Royal Infirmary , Dumfries , UK
| | - Tommaso Bucci
- c Division of Allergy and Clinical Immunology, Department of Internal Medicine , University of Salerno , Baronissi , Italy
| | - Mira Merashli
- d Department of Rheumatology , American University of Beirut , Beirut , Lebanon
| | - Marta Amaral
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal
| | - Alessia Arcaro
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Fabrizio Gentile
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Jaffar Nourooz-Zadeh
- f Nephrology & Kidney Transplantation Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Jose DelgadoAlves
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,g Immunomediated Systemic Diseases Unit, Medicine 4 , Hospital Fernando Fonseca , Amadora , Portugal
| |
Collapse
|
15
|
Gao X, Chen W, Li J, Shen C, Zhou P, Che X, Li X, Xie R. The protective effect of alpha-lipoic acid against brain ischemia and reperfusion injury via mTOR signaling pathway in rats. Neurosci Lett 2018; 671:108-113. [PMID: 29432779 DOI: 10.1016/j.neulet.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
Alpha-lipoic Acid(ALA), an endogenous short-chain fatty acid, has been found inducing a protective effect against ischemia and reperfusion(I/R) injury. Recently, mTOR signaling pathway has been proved to involve in the mechanism of I/R injury. In our previous study, we determined that ALA could protect cerebral endothelial cells against I/R injury via mTOR signaling pathway. However, whether ALA can protect against brain I/R injury in vivo and its mechanisms is uncertain. In this study, we try to explore if the ALA treatment can protect against brain I/R injury and confirm the relationship between ALA and mTOR signaling pathway. ALA was administrated to the animals after dMCAo and reperfusion model established with or without rapamycin pre-treatment. The results showed the infarct size was obviously reduced after ALA treatment in acute stage, neurological functions were also improved distinctly. The mTOR signaling pathway was remarkably blocked after brain I/R injury while it could be activated through ALA treatment. However, rapamycin, can abolish the protective effects induced by ALA treatment in both acute and long-term phase. In conclusion, we demonstrate the protective effects induced by ALA treatment against the brain I/R injury in rats and mTOR signaling pathway is required for the protective effects of ALA against brain I/R injury. The results might contribute to the potential clinical application of ALA and provide a potential therapeutic target on ischemic stroke.
Collapse
Affiliation(s)
- Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Chen
- Department of Neurosurgery, Jingan District Center Hospital, Shanghai 200040, China
| | - Jinquan Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chao Shen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ping Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoming Che
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaomu Li
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
16
|
Sanadgol N, Golab F, Askari H, Moradi F, Ajdary M, Mehdizadeh M. Alpha-lipoic acid mitigates toxic-induced demyelination in the corpus callosum by lessening of oxidative stress and stimulation of polydendrocytes proliferation. Metab Brain Dis 2018; 33:27-37. [PMID: 29022246 DOI: 10.1007/s11011-017-0099-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
Multiple Sclerosis (MS), is a disease that degenerates myelin in central nervous system (CNS). Reactive oxygen species (ROSs) are toxic metabolites, and accumulating data indicate that ROSs-mediated apoptosis of oligodendrocytes (OLGs) plays a major role in the pathogenesis of MS under oxidative stress conditions. In this study, we investigated the role of endogenous antioxidant alpha-lipoic acid (ALA) as ROSs scavenger in the OLGs loss and myelin degeneration during cuprizone (cup)-induced demyelination in the experimental model of MS. Our results have shown that ALA treatment significantly increased population of mature OLGs (MOG+ cells), as well as decreased oxidative stress (ROSs, COX-2 and PGE2) and apoptosis mediators (caspase-3 and Bax/Bcl2 ratio) in corpus callosum (CC). Surprisingly, ALA significantly stimulates population of NG2 chondroitin sulfate proteoglycan positive glia (NG2+ cells or polydendrocytes), from week 4 afterward. Accordingly ALA could prevents apoptosis, delays demyelination and recruits OLGs survival and regeneration mechanisms in CC. We conclude that ALA has protective effects against toxic demyelination via reduction of redox signaling, and alleviation of polydendrocytes vulnerability to excitotoxic challenge.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14665-354, Tehran, Iran
| | - Hassan Askari
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14665-354, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Ahmadi-Eslamloo H, Dehghani GA, Moosavi SMS. Long-term treatment of diabetic rats with vanadyl sulfate or insulin attenuate acute focal cerebral ischemia/reperfusion injury via their antiglycemic effect. Metab Brain Dis 2018; 33:225-235. [PMID: 29151151 DOI: 10.1007/s11011-017-0153-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
Abstract
It is well-known that patients with diabetes mellitus have worse clinical outcomes following acute ischemic stroke. The intensifying effects of diabetes on ischemic brain injury have been shown to be mostly due to hyperglycemia, rather than the lack of insulin direct effects on brain. It is also well-approved that vanadium compounds have insulin-like and anti-diabetic effects, and the present study was designed to compare the protective effects of diabetes treatment with vanadium or insulin on ischemic/reperfused brain injury. Male Sprague-Dawley rats were divided into 4 groups (n = 21). Two groups of streptozotocin-induced diabetic rats were treated with either vanadyl sulfate or insulin at proper doses to similarly attenuate hyperglycemia during 45 days, while there was no treatment in the control diabetic and non-diabetic sham groups. Thereafter, all treated and non-treated diabetic rats were subjected to 60-min of the right middle cerebral artery occlusion followed by 12-h reperfusion, and then their brains were removed for evaluating blood-brain barrier leakage, tissue swelling, infarct size and oxidant status in both hemispheres. Vanadium and insulin that equally reduced blood glucose and water intake had some differences in their antidiabetic effects of ameliorating weight loss and hypertension during 45-days treatment period. However, they caused similar decrements in levels of Evans blue dye extravastion, edema, infarct volume and malondialdehyde in ischemic/reperfused cerebral hemisphere. Therefore, it can be suggested that insulin and vanadium via their antiglycemic effect cause reduction in cerebral production of oxidants following acute focal ischemia/reperfusion, which attenuate BBB disruption and brain tissue injury.
Collapse
Affiliation(s)
- Hossein Ahmadi-Eslamloo
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran
| | - Gholam Abbas Dehghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran
| | - Seyed Mostafa Shid Moosavi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, 71365-1689, Iran.
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Molz P, Schröder N. Potential Therapeutic Effects of Lipoic Acid on Memory Deficits Related to Aging and Neurodegeneration. Front Pharmacol 2017; 8:849. [PMID: 29311912 PMCID: PMC5732919 DOI: 10.3389/fphar.2017.00849] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA.
Collapse
Affiliation(s)
- Patrícia Molz
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| | - Nadja Schröder
- Graduate Program in Medicine and Health Sciences, Faculty of Medicine, Pontifical Catholic University, Porto Alegre, Brazil
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Porto Alegre, Brazil
| |
Collapse
|
19
|
Zhang Y, Yan Y, Cao Y, Yang Y, Zhao Q, Jing R, Hu J, Bao J. Potential therapeutic and protective effect of curcumin against stroke in the male albino stroke-induced model rats. Life Sci 2017; 183:45-49. [PMID: 28663065 DOI: 10.1016/j.lfs.2017.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 01/01/2023]
Abstract
AIMS The present study was carried out to understand the therapeutic effect of curcumin (CUR) against stroke in the experimental animal model. The study investigates the healing effect of CUR on mitochondrial dysfunction and inflammation. MATERIALS AND METHODS Male albino, Wistar strain rats were used for the induction of middle cerebral artery occlusion (MCAO), and reperfusion. Enzyme-linked immunosorbent assay (ELISA) was used for the determination of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the brain region. Western blot analysis was used to determine the protein expression levels of Bax, Bcl-2, p53, and Sirt1. KEY FINDINGS The water level was determined in brain region by using standard method. Experimental results indicated that the use of CUR significantly reduced brain edema and water content. IL-6 and TNF-α were significantly reduced in the brain region following use of CUR. Mitochondrial membrane potential (MMP) also reduced significantly after CUR treatment. Protein expression of p53 and Bax were significantly reduced, whereas Bcl-2 and Sirt1 were increased following CUR treatment. SIGNIFICANCE Taking all these data together, it is suggested that the use of CUR may be a potential therapeutic agent for the treatment of stroke.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Yi Yan
- Department of Anesthesiology, Kunming General Hospital of Chengdu Military Command, Kunming 650032, China
| | - Yi Cao
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Yongtao Yang
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Qing Zhao
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Rui Jing
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Jiayi Hu
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Juan Bao
- Department of Cerebrovascular Disease, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China.
| |
Collapse
|
20
|
Monastra G, De Grazia S, Cilaker Micili S, Goker A, Unfer V. Immunomodulatory activities of alpha lipoic acid with a special focus on its efficacy in preventing miscarriage. Expert Opin Drug Deliv 2016; 13:1695-1708. [DOI: 10.1080/17425247.2016.1200556] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giovanni Monastra
- Department of Experimental Medicine, University la Sapienza, Rome, Italy
| | - Sara De Grazia
- Department of Research and Development, LO.LI. Pharma, Rome, Italy
| | | | - Asli Goker
- Department of Obstetrics and Gynecology, Celal Bayar University, Manisa, Turkey
| | - Vittorio Unfer
- Department of Medical Sciences, UNIIPUS – Private Swiss University Institute, Chiasso, Switzerland
| |
Collapse
|
21
|
Aljuffali IA, Lin CF, Chen CH, Fang JY. The codrug approach for facilitating drug delivery and bioactivity. Expert Opin Drug Deliv 2016; 13:1311-25. [DOI: 10.1080/17425247.2016.1187598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ibrahim A. Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
22
|
Miao Y, Zhao S, Gao Y, Wang R, Wu Q, Wu H, Luo T. Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: The possible role of Sirt1 signaling. Brain Res Bull 2016; 121:9-15. [DOI: 10.1016/j.brainresbull.2015.11.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
|