1
|
Toskas A, Milias S, Papamitsou T, Meditskou S, Kamperidis N, Sioga A. The role of IL-19, IL-24, IL-21 and IL-33 in intestinal mucosa of inflammatory bowel disease: A narrative review. Arab J Gastroenterol 2025; 26:9-17. [PMID: 38395629 DOI: 10.1016/j.ajg.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024]
Abstract
Interleukins are potential therapeutic targets that can alter the prognosis and progression of inflammatory bowel disease (IBD). The roles of IL-6, IL-10, IL-17, and IL-23 have been extensively studied, setting the stage for the development of novel treatments for patients with IBD. Other cytokines have been less extensively studied. Members of the IL-20 family, mainly IL-19 and IL-24, are involved in the pathogenesis of IBD, but their exact role remains unclear. Similarly, IL-33, a newly identified cytokine, has been shown to control the Th1 effector response and the action of colonic Tregs in animal models of colitis and patients with IBD. IL-21 is involved in the Th1, Th2, and Th17 responses. Data support a promising future use of these interleukins as biomarkers of severe diseases and as potential therapeutic targets for novel monoclonal antibodies. This review aims to summarize the existing studies involving animal models of colitis and patients with IBD to clarify their role in the intestinal mucosa.
Collapse
Affiliation(s)
- Alexandros Toskas
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; St Marks Hospital, Watford Rd, Harrow, London, United Kingdom.
| | - Stefanos Milias
- Private Histopathology Laboratory, Ploutonos 27, Thessaloniki, Greece.
| | - Theodora Papamitsou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Antonia Sioga
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
2
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
3
|
de Assis Glória R, da Silva TF, Gomes TAM, Vital KD, Fernandes SOA, Cardoso VN, Ferreira Ê, Chatel JM, Langella P, Cherbuy C, Le Loir Y, Jan G, Guédon É, Azevedo VADC. Postbiotic Effect of Escherichia coli CEC15 and Escherichia coli Nissle 1917 on a Murine Model of 5-FU-induced Intestinal Mucositis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10414-0. [PMID: 39589689 DOI: 10.1007/s12602-024-10414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, can bring health benefits to the host. Most of these organisms are found naturally in the human gastrointestinal tract. Escherichia coli strains Nissle 1917 (EcN), and CEC15 have shown beneficial effects in murine models of intestinal inflammation, such as colitis and mucositis. The present study evaluated the effects as postbiotic of heat-inactivated and cell-free supernatant preparations of EcN and CEC15 in attenuating 5-fluorouracil (5-FU)-induced intestinal mucositis in mice and compared them with the probiotic effects of the live preparations. BALB/c mice were fed, by daily gavage, with 1010 CFU of live or inactivated bacteria or with 300 µL of cell-free supernatant for 12 days. On the 10th day, all animals, except for the control group, received an intraperitoneal injection of 5-FU (300 mg/kg). After 72 h of 5-FU administration, animals were euthanized, and the ileum and blood were collected for analysis. Treatments with live and heat-inactivated CEC15 mitigated weight loss, preserved intestinal length, reduced histological damage, maintained goblet cells, decreased neutrophil infiltration, and modulated expression of inflammatory and barrier genes when compared to 5-FU mucositis controls. EcN showed more limited effects. CEC15 upregulated mRNA expression of the mucin MUC2 and tight junction protein TJP1. CEC15 demonstrated protective effects against 5-FU-induced mucositis, whether administered with live, heat-inactivated, or cell-free supernatant. This suggests that CEC15 mediates a protective response via secreted metabolites and does not require viability. The postbiotic forms of CEC15 present advantages for use in immunocompromised patients. This study elucidates the anti-inflammatory and barrier-protective effects of CEC15 against intestinal mucositis.
Collapse
Affiliation(s)
- Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- INRAE, Institut Agro, STLO, 35042, Rennes, France
| | - Tomás Andrade Magalhães Gomes
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ênio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Mark Chatel
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Paris, France
| | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Paris, France
| | - Claire Cherbuy
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Paris, France
| | - Yves Le Loir
- INRAE, Institut Agro, STLO, 35042, Rennes, France
| | - Gwénaël Jan
- INRAE, Institut Agro, STLO, 35042, Rennes, France
| | - Éric Guédon
- INRAE, Institut Agro, STLO, 35042, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Wang Y, He C, Xin S, Liu X, Zhang S, Qiao B, Shang H, Gao L, Xu J. A Deep View of the Biological Property of Interleukin-33 and Its Dysfunction in the Gut. Int J Mol Sci 2023; 24:13504. [PMID: 37686309 PMCID: PMC10487440 DOI: 10.3390/ijms241713504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Intestinal diseases have always posed a serious threat to human health, with inflammatory bowel disease (IBD) being one of them. IBD is an autoimmune disease characterized by chronic inflammation, including ulcerative colitis (UC) and Crohn's disease (CD). The "alarm" cytokine IL-33, which is intimately associated with Th2 immunity, is a highly potent inflammatory factor that is considered to have dual functions-operating as both a pro-inflammatory cytokine and a transcriptional regulator. IL-33 has been shown to play a crucial role in both the onset and development of IBD. Therefore, this review focuses on the pathogenesis of IBD, the major receptor cell types, and the activities of IL-33 in innate and adaptive immunity, as well as its underlying mechanisms and conflicting conclusions in IBD. We have also summarized different medicines targeted to IL-33-associated diseases. Furthermore, we have emphasized the role of IL-33 in gastrointestinal cancer and parasitic infections, giving novel prospective therapeutic utility in the future application of IL-33.
Collapse
Affiliation(s)
- Yi Wang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Boya Qiao
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China;
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| |
Collapse
|
5
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
6
|
Abstract
When discovered in the early 2000s, interleukin-33 (IL-33) was characterized as a potent driver of type 2 immunity and implicated in parasite clearance, as well as asthma, allergy, and lung fibrosis. Yet research in other models has since revealed that IL-33 is a highly pleiotropic molecule with diverse functions. These activities are supported by elusive release mechanisms and diverse expression of the IL-33 receptor, STimulation 2 (ST2), on both immune and stromal cells. Interestingly, IL-33 also supports type 1 immune responses during viral and tumor immunity and after allogeneic hematopoietic stem cell transplantation. Yet the IL-33-ST2 axis is also critical to the establishment of systemic homeostasis and tissue repair and regeneration. Despite these recent findings, the mechanisms by which IL-33 governs the balance between immunity and homeostasis or can support both effective repair and pathogenic fibrosis are poorly understood. As such, ongoing research is trying to understand the potential reparative and regulatory versus pro-inflammatory and pro-fibrotic roles for IL-33 in transplantation. This review provides an overview of the emerging regenerative role of IL-33 in organ homeostasis and tissue repair as it relates to transplantation immunology. It also outlines the known impacts of IL-33 in commonly transplanted solid organs and covers the envisioned roles for IL-33 in ischemia-reperfusion injury, rejection, and tolerance. Finally, we give a comprehensive summary of its effects on different cell populations involved in these processes, including ST2 + regulatory T cells, innate lymphoid cell type 2, as well as significant myeloid cell populations.
Collapse
|
7
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [PMID: 36356927 DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
8
|
Leng S, Zhang X, Wang S, Qin J, Liu Q, Liu A, Sheng Z, Feng Q, Hu X, Peng J. Ion channel Piezo1 activation promotes aerobic glycolysis in macrophages. Front Immunol 2022; 13:976482. [PMID: 36119083 PMCID: PMC9479104 DOI: 10.3389/fimmu.2022.976482] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Altered microenvironmental stiffness is a hallmark of inflammation. It is sensed by the mechanically activated cation channel Piezo1 in macrophages to induce subsequent immune responses. However, the mechanism by which the mechanosensitive signals shape the metabolic status of macrophages and tune immune responses remains unclear. We revealed that Piezo1-deficient macrophages exhibit reduced aerobic glycolysis in resting or liposaccharide (LPS)-stimulated macrophages with impaired LPS-induced secretion of inflammatory cytokines in vitro. Additionally, pretreatment with the Piezo1 agonist, Yoda1, or cyclical hydrostatic pressure (CHP) upregulated glycolytic activity and enhanced LPS-induced secretion of inflammatory cytokines. Piezo1-deficient mice were less susceptible to dextran sulfate sodium (DSS)-induced colitis, whereas Yoda1 treatment aggravated colitis. Mechanistically, we found that Piezo1 activation promotes aerobic glycolysis through the Ca2+-induced CaMKII-HIF1α axis. Therefore, our study revealed that Piezo1-mediated mechanosensitive signals Piezo1 can enhance aerobic glycolysis and promote the LPS-induced immune response in macrophages.
Collapse
Affiliation(s)
- Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Qin
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anli Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Hu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Jun Peng, ; Xiang Hu,
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
- *Correspondence: Jun Peng, ; Xiang Hu,
| |
Collapse
|
9
|
Ngo Thi Phuong N, Palmieri V, Adamczyk A, Klopfleisch R, Langhorst J, Hansen W, Westendorf AM, Pastille E. IL-33 Drives Expansion of Type 2 Innate Lymphoid Cells and Regulatory T Cells and Protects Mice From Severe, Acute Colitis. Front Immunol 2021; 12:669787. [PMID: 34335571 PMCID: PMC8320374 DOI: 10.3389/fimmu.2021.669787] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The hallmarks of inflammatory bowel disease are mucosal damage and ulceration, which are known to be high-risk conditions for the development of colorectal cancer. Recently, interleukin (IL)-33 and its receptor ST2 have emerged as critical modulators in inflammatory disorders. Even though several studies highlight the IL-33/ST2 pathway as a key factor in colitis, a detailed mode of action remains elusive. Therefore, we investigated the role of IL-33 during intestinal inflammation and its potential as a novel therapeutic target in colitis. Interestingly, the expression of IL-33, but not its receptor ST2, was significantly increased in biopsies from the inflamed colon of IBD patients compared to non-inflamed colonic tissue. Accordingly, in a mouse model of Dextran Sulfate Sodium (DSS) induced colitis, the secretion of IL-33 significantly accelerated in the colon. Induction of DSS colitis in ST2-/- mice displayed an aggravated colon pathology, which suggested a favorable role of the IL 33/ST2 pathway during colitis. Indeed, injecting rmIL-33 into mice suffering from acute DSS colitis, strongly abrogated epithelial damage, pro-inflammatory cytokine secretion, and loss of barrier integrity, while it induced a strong increase of Th2 associated cytokines (IL-13/IL-5) in the colon. This effect was accompanied by the accumulation of regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) in the colon. Depletion of Foxp3+ Tregs during IL-33 treatment in DSS colitis ameliorated the positive effect on the intestinal pathology. Finally, IL-33 expanded ILC2s, which were adoptively transferred to DSS treated mice, significantly reduced colonic inflammation compared to DSS control mice. In summary, our results emphasize that the IL-33/ST2 pathway plays a crucial protective role in colitis by modulating ILC2 and Treg numbers.
Collapse
Affiliation(s)
- Nhi Ngo Thi Phuong
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Vittoria Palmieri
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Berlin, Germany
| | - Jost Langhorst
- Department of Internal and Integrative Medicine, Klinikum Bamberg, Chair for Integrative Medicine, University of Duisburg-Essen, Bamberg, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Rehydration before Application Improves Functional Properties of Lyophilized Lactiplantibacillus plantarum HAC03. Microorganisms 2021; 9:microorganisms9051013. [PMID: 34066743 PMCID: PMC8150888 DOI: 10.3390/microorganisms9051013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Preservation of probiotics by lyophilization is considered a method of choice for developing stable products. However, both direct consumption and reconstitution of dehydrated probiotic preparations before application "compromise" the survival and functional characteristics of the microorganisms under the stress of the upper gastro-intestinal tract. We evaluated the impact of different food additives on the viability, mucin adhesion, and zeta potential of a freeze-dried putative probiotic, Lactiplantibacillus (Lp.) plantarum HAC03. HAC03-compatible ingredients for the formulation of ten rehydration mixtures could be selected. Elevated efficacy was achieved by the B-active formulation, a mixture of non-protein nitrogen compounds, sugars, and salts. The survival of Lp. plantarum HAC03 increased by 36.36% compared rehydration with distilled water (4.92%) after passing simulated gastro-intestinal stress conditions. Cell viability determined by plate counting was confirmed by flow cytometry. B-active formulation also influenced Lp. plantarum HAC03 functionality by increasing its adherence to a Caco-2 cell-line and by changing the bacterial surface charge, measured as zeta potential.Hydrophobicity, mucin adhesion and immunomodulatory properties of Lp. plantarum HAC03 were not affected by the B-active formulation. The rehydration medium also effectively protected Lp. plantarum ATCC14917, Lp. plantarum 299v, Latilactobacillus sakei (Lt.) HAC11, Lacticaseibacillus (Lc.) paracasei 532, Enterococcus faecium 200, and Lc. rhamnosus BFE5263.
Collapse
|
11
|
Fu J, Zang Y, Zhou Y, Chen C, Shao S, Shi G, Wu L, Zhu G, Sun T, Zhang D, Zhang T. Exploring a novel triptolide derivative possess anti-colitis effect via regulating T cell differentiation. Int Immunopharmacol 2021; 94:107472. [PMID: 33611058 DOI: 10.1016/j.intimp.2021.107472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
Inflammatory bowel disease (IBD) is generally characterized by chronic inflammatory disorders of the gastrointestinal tract that are known as ulcerative colitis (UC) or Crohn's disease (CD). Although the underlying mechanism of action of IBD is unclear and because of the lack of satisfactory treatment, increasing evidence has indicated that pro-inflammatory cytokines that activate JAK-STAT signaling pathway regulate the differentiation of naïve T cells towards T helper (Th)1 and Th17 cell subsets and contribute to the development of IBD. ZT01 is a newly obtained triptolide derivative with strong anti-inflammatory effects and low toxicity. In this study, we evaluated the effects of ZT01 on DSS-induced colitis and investigated the underlying mechanism of action involved. Mice with DSS-induced acute or chronic colitis were used to assess the efficacy of ZT01 treatment, and T cells were cultured to analyze the differentiation of Th1 and Th17 cell by flow cytometry. In addition, intestinal epithelial barrier function, macrophage polarization, activation of the JAK-STAT signaling pathway, and the expression of cytokines and transcription factors were measured to assess the possible mechanisms of ZT01. We found that ZT01 had an obviously beneficial effect on DSS-induced colitis by improving the symptoms of bloody diarrhea, weight loss, and a shortened colon, thereby preserving the epithelial barrier function in the mouse colon. Furthermore, ZT01 significantly inhibited T cell differentiation into Th1 and/or Th17 cell subsets and macrophage polarization towards into an inflammatory phenotype via regulating the JAK-STAT signaling pathway. Thus, our findings suggested that ZT01 might be a potential pharmaceutical candidate that deserves to be further investigated as a treatment for IBD patients.
Collapse
Affiliation(s)
- Junmin Fu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yingda Zang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuai Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Tao Sun
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Tong X, Zheng Y, Li Y, Xiong Y, Chen D. Soluble ligands as drug targets for treatment of inflammatory bowel disease. Pharmacol Ther 2021; 226:107859. [PMID: 33895184 DOI: 10.1016/j.pharmthera.2021.107859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is characterized by persistent inflammation in a hereditarily susceptible host. In addition to gastrointestinal symptoms, patients with IBD frequently suffer from extra-intestinal complications such as fibrosis, stenosis or cancer. Mounting evidence supports the targeting of cytokines for effective treatment of IBD. Cytokines can be included in a newly proposed classification "soluble ligands" that has become the third major target of human protein therapeutic drugs after enzymes and receptors. Soluble ligands have potential significance for research and development of anti-IBD drugs. Compared with traditional drug targets for IBD treatment, such as receptors, at least three factors contribute to the increasing importance of soluble ligands as drug targets. Firstly, cytokines are the main soluble ligands and targeting of them has demonstrated efficacy in patients with IBD. Secondly, soluble ligands are more accessible than receptors, which are embedded in the cell membrane and have complex tertiary membrane structures. Lastly, certain potential target proteins that are present in membrane-bound forms can become soluble following cleavage, providing further opportunities for intervention in the treatment of IBD. In this review, 49 drugs targeting 25 distinct ligands have been evaluated, including consideration of the characteristics of the ligands and drugs in respect of IBD treatment. In addition to approved drugs targeting soluble ligands, we have also assessed drugs that are in preclinical research and drugs inhibiting ligand-receptor binding. Some new types of targetable soluble ligands/proteins, such as epoxide hydrolase and p-selectin glycoprotein ligand-1, are also introduced. Targeting soluble ligands not only opens a new field of anti-IBD drug development, but the circulating soluble ligands also provide diagnostic insights for early prediction of treatment response. In conclusion, soluble ligands serve as the third-largest protein target class in medicine, with much potential for the drugs targeting them.
Collapse
Affiliation(s)
- Xuhui Tong
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yuanyuan Zheng
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yu Li
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China
| | - Yongjian Xiong
- Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dapeng Chen
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City 116044, Liaoning Province, China.
| |
Collapse
|
13
|
Mahapatro M, Erkert L, Becker C. Cytokine-Mediated Crosstalk between Immune Cells and Epithelial Cells in the Gut. Cells 2021; 10:cells10010111. [PMID: 33435303 PMCID: PMC7827439 DOI: 10.3390/cells10010111] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small proteins that are secreted by a vast majority of cell types in the gut. They not only establish cell-to-cell interactions and facilitate cellular signaling, but also regulate both innate and adaptive immune responses, thereby playing a central role in genetic, inflammatory, and infectious diseases of the gut. Both, immune cells and gut epithelial cells, play important roles in intestinal disease development. The epithelium is located in between the mucosal immune system and the gut microbiome. It not only establishes an efficient barrier against gut microbes, but it also signals information from the gut lumen and its composition to the immune cell compartment. Communication across the epithelial cell layer also occurs in the other direction. Intestinal epithelial cells respond to immune cell cytokines and their response influences and shapes the microbial community within the gut lumen. Thus, the epithelium should be seen as a translator or a moderator between the microbiota and the mucosal immune system. Proper communication across the epithelium seems to be a key to gut homeostasis. Indeed, current genome-wide association studies for intestinal disorders have identified several disease susceptibility loci, which map cytokine signatures and their related signaling genes. A thorough understanding of this tightly regulated cytokine signaling network is crucial. The main objective of this review was to shed light on how cytokines can orchestrate epithelial functions such as proliferation, cell death, permeability, microbe interaction, and barrier maintenance, thereby safeguarding host health. In addition, cytokine-mediated therapy for inflammation and cancer are discussed.
Collapse
|
14
|
ILC2 Proliferated by IL-33 Stimulation Alleviates Acute Colitis in Rag1 -/- Mouse through Promoting M2 Macrophage Polarization. J Immunol Res 2020; 2020:5018975. [PMID: 32676507 PMCID: PMC7334786 DOI: 10.1155/2020/5018975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022] Open
Abstract
This study was to identify functions of ILC2, a newly found innate lymphoid cell which mainly locates in mucosa organs like lungs and intestines, in IBD. We injected rIL-33 protein to C57/BL6 mouse to explore how IL-33 induces ILC2 proliferation. The results showed that ILC2 reached a proliferation peak at day 5 and expressed multiple surface markers like CD127, C-kit, CD69, CD44, ST2, CD27, DR3, MHCII, and CD90.2. ILC2 also expressed high quantity of IL-13 and IL-5 and few IL-17A which indicates a potentially immunological function in IBD development. Afterwards, we transferred sort purified ILC2 to Rag1−/− mouse given DSS to induce acute colitis in order to explore the innate function of ILC2. Data showed that ILC2 alleviates DSS-induced acute innate colitis by repairing epithelial barrier and restore body weight. Furthermore, we found that ILC2 can cause macrophages polarizing to M2 macrophages in the gut. Therefore, we concluded that ILC2 played a therapeutic role in mouse acute colitis.
Collapse
|
15
|
Retinoid acid induced 16 deficiency aggravates colitis and colitis-associated tumorigenesis in mice. Cell Death Dis 2019; 10:958. [PMID: 31862898 PMCID: PMC6925230 DOI: 10.1038/s41419-019-2186-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC) is a serious health issue, but etiopathological factors remain unclear. Although some studies reported the roles of Retinoid acid induced 16 (RAI16) in the tumorigenesis of hepatocellular carcinoma and PKA signaling, the roles of RAI16 in IBD and CRC are undressed. RAI16−/− mice were generated and the roles of RAI16 were addressed in dextran sodium sulfate (DSS) or azoxymethane (AOM)-DSS induced IBD or CAC mouse models, respectively. At first, RAI16−/− mice were viable, fertile with no apparent defects. Then, it was found that RAI16−/− mice were more susceptibility to colitis induced by DSS than wild type (WT) littermates, which was evaluated by disease activity index and histological score. Furthermore, the expressions of tissues repair associated molecules Cox2, Ereg and MMP-10 were significantly decreased in RAI16−/− colon under DSS treatment. Gut barrier related genes including antimicrobial peptides Reg3b and Reg3g and intestinal mucus genes Muc4, Muc6 and Muc20 were reduced in RAI16−/− colon. These findings indicated that RAI16 may function to affect genes involved in intestinal barrier function and immunoprotective inflammation. Accordingly, RAI16−/− mice displayed significantly increased tumor burden compared with WT mice assessed in CAC model induced by AOM/DSS. Much more Ki67 + nuclei were observed in RAI16−/− tumors suggesting RAI16 to be critical in colonic cell proliferation during tumorigenesis. Conclusively, we demonstrate the roles of RAI16 in colonic inflammation and inflammation-associated tumorigenesis by using a novel RAI16−/− mouse model for the first time.
Collapse
|
16
|
The role of the IL-33/ST2 axis in autoimmune disorders: Friend or foe? Cytokine Growth Factor Rev 2019; 50:60-74. [DOI: 10.1016/j.cytogfr.2019.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
|
17
|
Anti-IL-13Rα2 therapy promotes recovery in a murine model of inflammatory bowel disease. Mucosal Immunol 2019; 12:1174-1186. [PMID: 31308480 PMCID: PMC6717533 DOI: 10.1038/s41385-019-0189-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/21/2019] [Accepted: 06/23/2019] [Indexed: 02/08/2023]
Abstract
There continues to be a major need for more effective inflammatory bowel disease (IBD) therapies. IL-13Rα2 is a decoy receptor that binds the cytokine IL-13 with high affinity and diminishes its STAT6-mediated effector functions. Previously, we found that IL-13Rα2 was necessary for IBD in mice deficient in the anti-inflammatory cytokine IL-10. Here, we tested for the first time a therapeutic antibody specifically targeting IL-13Rα2. We also used the antibody and Il13ra2-/- mice to dissect the role of IL-13Rα2 in IBD pathogenesis and recovery. Il13ra2-/- mice were modestly protected from induction of dextran sodium sulfate (DSS)-induced colitis. Following a 7-day recovery period, Il13ra2-/- mice or wild-type mice administered the IL-13Rα2-neutralizing antibody had significantly improved colon health compared to control mice. Neutralizing IL-13Rα2 to increase IL-13 bioavailability promoted resolution of IBD even if neutralization occurred only during recovery. To link our observations in mice to a large human cohort, we conducted a phenome-wide association study of a more active variant of IL-13 (R130Q) that has reduced affinity for IL-13Rα2. Human subjects carrying R130Q reported a lower risk for Crohn's disease. Our findings endorse moving anti-IL-13Rα2 into preclinical drug development with the goal of accelerating recovery and maintaining remission in Crohn's disease patients.
Collapse
|
18
|
Li S, Bostick JW, Ye J, Qiu J, Zhang B, Urban JF, Avram D, Zhou L. Aryl Hydrocarbon Receptor Signaling Cell Intrinsically Inhibits Intestinal Group 2 Innate Lymphoid Cell Function. Immunity 2018; 49:915-928.e5. [PMID: 30446384 PMCID: PMC6249058 DOI: 10.1016/j.immuni.2018.09.015] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
Abstract
Innate lymphoid cells (ILCs) are important for mucosal immunity. The intestine harbors all ILC subsets, but how these cells are balanced to achieve immune homeostasis and mount appropriate responses during infection remains elusive. Here, we show that aryl hydrocarbon receptor (Ahr) expression in the gut regulates ILC balance. Among ILCs, Ahr is most highly expressed by gut ILC2s and controls chromatin accessibility at the Ahr locus via positive feedback. Ahr signaling suppresses Gfi1 transcription-factor-mediated expression of the interleukin-33 (IL-33) receptor ST2 in ILC2s and expression of ILC2 effector molecules IL-5, IL-13, and amphiregulin in a cell-intrinsic manner. Ablation of Ahr enhances anti-helminth immunity in the gut, whereas genetic or pharmacological activation of Ahr suppresses ILC2 function but enhances ILC3 maintenance to protect the host from Citrobacter rodentium infection. Thus, the host regulates the gut ILC2-ILC3 balance by engaging the Ahr pathway to mount appropriate immunity against various pathogens.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - John W Bostick
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jian Ye
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhang
- Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph F Urban
- USDA/ARS, Beltsville Human Nutrition Research Center, Diet, Genomics, & Immunology Lab, Beltsville, MD 20705, USA
| | - Dorina Avram
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
19
|
Pavlovic S, Petrovic I, Jovicic N, Ljujic B, Miletic Kovacevic M, Arsenijevic N, Lukic ML. IL-33 Prevents MLD-STZ Induction of Diabetes and Attenuate Insulitis in Prediabetic NOD Mice. Front Immunol 2018; 9:2646. [PMID: 30498495 PMCID: PMC6249384 DOI: 10.3389/fimmu.2018.02646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Prevention of type 1 diabetes requires early intervention in the autoimmune process against beta-cells of the pancreatic islets of Langerhans, which is believed to result from disordered immunoregulation. CD4+Foxp3+ regulatory T cells (Tregs) participate as one of the most important cell types in limiting the autoimmune process. The aim of this study was to investigate the effect of exogenous IL-33 in multiple low dose streptozotocin (MLD-STZ) induced diabetes and to delineate its role in the induction of protective Tregs in an autoimmune attack. C57BL/6 mice were treated i. p. with five doses of 40 mg/kg STZ and 0.4 μg rIL-33 four times, starting from day 0, 6, or 12 every second day from the day of disease induction. 16 weeks old NOD mice were treated with 6 injections of 0.4 μg/mouse IL-33 (every second day). Glycemia and glycosuria were measured and histological parameters in pancreatic islets were evaluated at the end of experiments. Cellular make up of the pancreatic lymph nodes and islets were evaluated by flow cytometry. IL-33 given simultaneously with the application of STZ completely prevented the development of hyperglycemia, glycosuria and profoundly attenuated mononuclear cell infiltration. IL-33 treatment was accompanied by higher number of IL-13 and IL-5 producing CD4+ T cells and increased presence of ST2+Foxp3+ regulatory T cells in pancreatic lymph nodes and islets. Elimination of Tregs abrogated protective effect of IL-33. We provide evidence that exogenous IL-33 completely prevents the development of T cell mediated inflammation in pancreatic islets and consecutive development of diabetes in C57BL/6 mice by facilitating the induction Treg cells. To extend this finding for possible relevance in spontaneous diabetes, we showed that IL-33 attenuate insulitis in prediabetic NOD mice.
Collapse
Affiliation(s)
- Sladjana Pavlovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Ivica Petrovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
20
|
Suppression of Th17 Cell Response in the Alleviation of Dextran Sulfate Sodium-Induced Colitis by Ganoderma lucidum Polysaccharides. J Immunol Res 2018; 2018:2906494. [PMID: 29888292 PMCID: PMC5985119 DOI: 10.1155/2018/2906494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/19/2018] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
Background Ganoderma lucidum polysaccharides (GLP) has anti-inflammatory and immunomodulatory effects. Dysregulated immune responses are involved in the pathogenesis of dextran sulfate sodium (DSS)-induced colitis. The aim of this study was to assess the therapeutic potential of GLP to alleviate DSS-induced colitis. Methods The mice were administered with GLP by intragastric gavage daily for two weeks prior to the DSS treatment. Mice were orally administered with 2.5% DSS dissolved in drinking water with GLP or water treatment for 6 days. The mice were killed on day 7 after induction of colitis. Survival rates, body weight loss, colon lengths, histological changes, and disease activity index scores (DAI) were evaluated. Results GLP significantly improved survival rates, colon length shortening, body weight loss, histopathological score, and DAI scores in mice with DSS-induced colitis. GLP markedly suppressed the secretions of TNF-α, IL-1β, IL-6, IL-17A, and IL-4 and significantly affected populations of Th17 cells, B cells, NK cells, and NKT cells in the lamina propria lymphocytes. Conclusions GLP prevented inflammation, maintained intestinal homeostasis, and regulated the intestinal immunological barrier functions in mice with DSS-induced colitis.
Collapse
|
21
|
Tu L, Chen J, Xu D, Xie Z, Yu B, Tao Y, Shi G, Duan L. IL-33-induced alternatively activated macrophage attenuates the development of TNBS-induced colitis. Oncotarget 2018; 8:27704-27714. [PMID: 28423665 PMCID: PMC5438602 DOI: 10.18632/oncotarget.15984] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Accumulated data have shown that alternatively activated macrophage exerts a modulatory role in many diseases, including colitis. Interleukin-33 (IL-33), a critical modulator in adaptive and innate immune, has been implicated in autoimmunity and inflammation. Previously, we have reported that IL-33 functions as a protective modulator in TNBS-induced colitis, which is closely related to a Th1-to-Th2/Treg switch. Here, we present novel evidence suggesting that IL-33 primes macrophage into alternatively activated macrophages (AAM) in TNBS-induced colitis. The strong polarized effect of IL-33 was tightly associated with the markedly increased induction of Th2-type cytokines. To confirm the beneficial effects of AAM induced by IL-33, peritoneal AAMs isolated from IL-33-treated mice were transferred to recipient mice with TNBS colitis. The adoptive transfer resulted in prominent inhibition of disease activity and inflammatory cytokines in the TNBS-treated mice. In conclusion, our data provide clear evidence that IL-33 plays a protective role in TNBS-induced colitis, which is closely related to AAM polarization.
Collapse
Affiliation(s)
- Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jie Chen
- College of Medicine, Xiamen University, Fujian, China
| | - Dandan Xu
- College of Medicine, Xiamen University, Fujian, China
| | - Zhongming Xie
- College of Medicine, Xiamen University, Fujian, China
| | - Bing Yu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ying Tao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
22
|
Togre N, Bhoj P, Goswami K, Tarnekar A, Patil M, Shende M. Human filarial proteins attenuate chronic colitis in an experimental mouse model. Parasite Immunol 2018; 40. [DOI: 10.1111/pim.12511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- N. Togre
- Department of Biochemistry & JB Tropical Disease Research Center; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - P. Bhoj
- Department of Biochemistry & JB Tropical Disease Research Center; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - K. Goswami
- Department of Biochemistry & JB Tropical Disease Research Center; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - A. Tarnekar
- Department of Anatomy; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| | - M. Patil
- University Department of Biochemistry; RTM Nagpur University; Nagpur Maharashtra India
| | - M. Shende
- Department of Anatomy; Mahatma Gandhi Institute of Medical Sciences; Sevagram Maharashtra India
| |
Collapse
|
23
|
Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: The good, the bad, and the inflammatory. Cytokine 2017; 100:1-10. [PMID: 28687373 DOI: 10.1016/j.cyto.2017.06.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family that has been widely studied since its discovery in 2005 for its dichotomous functions in homeostasis and inflammation. IL-33, along with its receptor suppression of tumorigenicity 2 (ST2), has been shown to modulate both the innate and adaptive immune system. Originally, the IL-33/ST2 signaling axis was studied in the context of inducing type 2 immune responses with the expression of ST2 by T helper 2 (TH2) cells. However, the role of IL-33 is not limited to TH2 responses. Rather, IL-33 is a potent activator of TH1 cells, group 2 innate lymphoid cells (ILC2s), regulatory T (Treg) cells, and CD8+ T cells. The intestine is uniquely important in this discussion, as the intestinal epithelium is distinctively positioned to interact with both pathogens and the immune cells housed in the mucosa. In the intestine, IL-33 is expressed by the pericryptal fibroblasts and its expression is increased particularly in disease states. Moreover, IL-33/ST2 signaling aberrancy is implicated in the pathogenesis of inflammatory bowel disease (IBD). Accordingly, for this review, we will focus on the role of IL-33 in the regulation of intestinal immunity, involvement in intestinal disease, and implication in potential therapeutics.
Collapse
Affiliation(s)
- Zerina Hodzic
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ellen Merrick Schill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexa M Bolock
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
24
|
Shajib MS, Baranov A, Khan WI. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation. ACS Chem Neurosci 2017; 8:920-931. [PMID: 28288510 DOI: 10.1021/acschemneuro.6b00414] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut is the largest producer of serotonin or 5-hydroxytryptamine (5-HT) in the human body, and 5-HT has been recognized as an important signaling molecule in the gut for decades. There are two distinct sources of enteric 5-HT. Mucosal 5-HT is predominantly produced by enterochromaffin (EC) cells of the gastrointestinal (GI) tract, and neuronal 5-HT in the gut is produced by serotonergic neurons of the enteric nervous system (ENS). The quantity of mucosal 5-HT produced vastly eclipses the amount of neuronal 5-HT in the gut. Though it is difficult to separate the functions of neuronal and mucosal 5-HT, in the normal gut both types of enteric 5-HT work synergistically playing a prominent role in the maintenance of GI functions. In inflammatory conditions of the gut, like inflammatory bowel disease (IBD) recent studies have revealed new diverse functions of enteric 5-HT. Mucosal 5-HT plays an important role in the production of pro-inflammatory mediators from immune cells, and neuronal 5-HT provides neuroprotection in the ENS. Based on searches for terms such as "5-HT", "EC cell", "ENS", and "inflammation" in pubmed.gov as well as by utilizing pertinent reviews, the current review aims to provide an update on the role of enteric 5-HT and its immune mediators in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Md. Sharif Shajib
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Adriana Baranov
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario L8S
4K1, Canada
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Hamilton
Regional Laboratory Medicine Program, Hamilton Health Sciences, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
25
|
Th1/Th2 Balance and Th17/Treg-Mediated Immunity in relation to Murine Resistance to Dextran Sulfate-Induced Colitis. J Immunol Res 2017; 2017:7047201. [PMID: 28584821 PMCID: PMC5444015 DOI: 10.1155/2017/7047201] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Background The role of the Th17/Treg balance in the development of experimental colitis remains poorly understood. Methods We exploited the differential response of BALB/c mice and C57BL/6 mice towards drinking water mediated by dextran sulfate sodium (DSS) challenge. Results DSS-resistant BALB/c mice were characterized by low levels of IFN-γ and TNF-α but high levels of IL-4, IL-6, IL-10, IL-17A, IL-17F, and colon lamina propria and mesenteric lymph node (MLN) CD4+CD25+FoxP3+ T cells when compared to C57BL/6 mice. Collectively, these data indicate the propensity of BALB/c mice towards a Th2/Th17/Treg-polarized immunity protecting these animals against DSS challenge, whereas Th1-polarization of C57BL/6 mice confers sensitivity to DSS-induced colitis. Conclusions The intrinsic congenital capacity of mouse strains with respect to T cell proliferation determines sensitivity to experimental colitis.
Collapse
|
26
|
Recent Advances: The Imbalance of Cytokines in the Pathogenesis of Inflammatory Bowel Disease. Mediators Inflamm 2017; 2017:4810258. [PMID: 28420941 PMCID: PMC5379128 DOI: 10.1155/2017/4810258] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/22/2017] [Indexed: 12/17/2022] Open
Abstract
Cytokines play an important role in the immunopathogenesis of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, where they drive and regulate multiple aspects of intestinal inflammation. The imbalance between proinflammatory and anti-inflammatory cytokines that occurs in IBD results in disease progression and tissue damage and limits the resolution of inflammation. Targeting cytokines have been novel strategies in the treatment of IBD. Recent studies show the beneficial effects of anticytokine treatments to IBD patients, and multiple novel cytokines are found to be involved in the pathogenesis of IBD. In this review, we will discuss the recent advances of novel biologics in clinics and clinical trials, and novel proinflammatory and anti-inflammatory cytokines found in IBD with focusing on IL-12 family and IL-1 family members as well as their relevance to the potential therapy of IBD.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Cytokines of the intestinal microenvironment largely dictate immunological responses after mucosal insults and the dominance of homeostatic or proinflammatory pathways. This review presents important recent studies on the role of specific cytokines in the pathogenesis of intestinal inflammation. RECENT FINDINGS The particular mucosal effects of cytokines depend on their inherent properties but also the cellular origin, type of stimulatory antigens, intermolecular interactions, and the particular immunological milieu. Novel cytokines of the interleukin-1 (IL-1) family, including IL-33 and IL-36, have dominant roles in mucosal immunity, whereas more established ones such as IL-18 are constantly enriched with unique properties. Th17 cells are important mucosal constituents, although their profound plasticity, makes the specific set of cytokines they secrete more important than their mere numbers. Finally, various cytokines, such as tumor necrosis factor-α, IL-6, tumor necrosis factor-like cytokine 1A, and death receptor, 3 demonstrate dichotomous roles with mucosa-protective function in acute injury but proinflammatory effects during chronic inflammation. SUMMARY The role of cytokines in mucosal health and disease is increasingly revealed. Such information not only will advance our understanding of the pathogenesis of gut inflammation, but also set the background for development of reliable diagnostic and prognostic biomarkers and cytokine-specific therapies.
Collapse
Affiliation(s)
- Giorgos Bamias
- aAcademic Department of Gastroenterology, Kapodistrian University of Athens, Laikon Hospital, Athens, Greece bDivision of Gastrointestinal and Liver Disease, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | | |
Collapse
|
28
|
Loss of interleukin 33 expression in colonic crypts - a potential marker for disease remission in ulcerative colitis. Sci Rep 2016; 6:35403. [PMID: 27748438 PMCID: PMC5066310 DOI: 10.1038/srep35403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
Abstract
Interleukin 33 (IL-33) is a cytokine preferentially elevated in acute ulcerative colitis (UC), inferring a role in its pathogenesis. The role of IL-33 in intestinal inflammation is incompletely understood, with both pro-inflammatory and regulatory properties described. There are also conflicting reports on cellular sources and subcellular location of IL-33 in the colonic mucosa, justifying a closer look at IL-33 expression in well-defined clinical stages of UC. A total of 50 study participants (29 UC patients and 21 healthy controls) were included from a prospective cohort of inflammatory bowel disease patients treated to disease remission with infliximab, a tumour necrosis factor alpha (TNF) inhibitor. To our knowledge this is the first study examining mucosal IL-33 expression before and after anti-TNF therapy. In colonic mucosal biopsies we found a 3-fold increase in IL-33 gene expression comparing acute UC to healthy controls (p < 0.01). A significant reduction of IL33 between acute UC and disease remission was observed when TNF normalised in the mucosa (p = 0.02). Immunostaining revealed IL-33 in the nuclei of epithelial cells of scattered colonic crypts in acute disease, while at disease remission, IL-33 was undetectable, a novel finding suggesting that enterocyte-derived IL-33 is induced and maintained by inflammatory mediators.
Collapse
|
29
|
IL-33 Effect on Quantitative Changes of CD4 +CD25 highFOXP3 + Regulatory T Cells in Children with Type 1 Diabetes. Mediators Inflamm 2016; 2016:9429760. [PMID: 27761063 PMCID: PMC5059546 DOI: 10.1155/2016/9429760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022] Open
Abstract
IL-33 is an IL-1 cytokine family member, with ability to induce both Th1 and Th2 immune responses. It binds to ST2 receptor, whose deficiency is associated with enhanced inflammatory response. The most recent studies have shown the immunoregulatory effect of IL-33 on Tregs in animal models. As type 1 diabetes is an autoimmune, inflammatory disease, where Treg defects have been described, we aimed to analyze the in vitro influence of recombinant IL-33 on quantitative properties of regulatory CD4+CD25highFOXP3+ T cells. CD4+CD25highFOXP3+ as well as CD4+CD25highFOXP3+ST2+ Tregs were analyzed by flow cytometry. In a group of patients with type 1 diabetes in vitro IL-33 treatment induced regulatory CD4+CD25highFOXP3+ cell frequencies as well as upregulating the surface expression of ST2 molecule. In addition, the number of CD4+CD25highFOXP3+ cells carrying ST2 receptor increased significantly. Similar effect was observed in case of the FOXP3 expression. We did not observe any significant changes in IL-33 treated cells of healthy controls. The level of ST2 was higher in serum of patients with type 1 diabetes in comparison to their healthy counterparts. We propose that IL-33 becomes an additional immunostimulatory factor used to induce Treg expansion in future clinical trials of adoptive therapy in type 1 diabetes.
Collapse
|
30
|
Wounds that heal and wounds that don't - The role of the IL-33/ST2 pathway in tissue repair and tumorigenesis. Semin Cell Dev Biol 2016; 61:41-50. [PMID: 27521518 DOI: 10.1016/j.semcdb.2016.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
IL-33 is a member of the IL-1 family of cytokines. IL-33 is predominantly located within the nucleus of cells where it plays a role in gene regulation. Given the right combination of signals and cellular damage, stored IL-33 is released from the cell where it can interact with its receptor ST2, triggering danger-associated responses and act as a cellular "alarmin". Whilst IL-33/ST2 signalling has been shown to induce potent pro-inflammatory responses that can be detrimental in certain disease states, a dichotomous, protective role of IL-33 in promoting wound healing has also emerged in multiple tissues types. This review will explore the current literature concerning this homeostatic role of IL-33/ST2 in tissue repair and also review its role in uncontrolled wound responses as seen in both fibrosis and tumorigenesis.
Collapse
|
31
|
Potential Therapeutic Aspects of Alarmin Cytokine Interleukin 33 or Its Inhibitors in Various Diseases. Clin Ther 2016; 38:1000-1016.e1. [PMID: 26992663 DOI: 10.1016/j.clinthera.2016.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this review was to examine the comprehensively accumulated data regarding potential therapeutic aspects of exogenous administration of interleukin 33 (IL-33) or its antagonists in allergic, cancerous, infectious, and inflammatory diseases. METHODS A selected review was undertaken of publications that examined the protective and exacerbating effects of IL-33 or its inhibitors in different diseases. Mechanisms of action are summarized to examine the putative role of IL-33 in various diseases. FINDINGS IL-33 promoted antibacterial, antiviral, anti-inflammatory, and vaccine adjuvant functions. However, in TH2-biased respiratory, allergic, parasitic, and inflammatory conditions, IL-33 exhibited disease-sensitizing effects. The alarmin cytokine IL-33 induced protective effects in diseases via recruitment of regulatory T cells; antiviral CD8(+) cells, natural killer cells, γδ T cells, and nuocytes; antibacterial and antifungal neutrophils or macrophages; vaccine-associated B/T cells; and inhibition of nuclear factor-κB-mediated gene transcription. In contrast, IL-33 exacerbated the disease process by increasing TH2 cytokines, IgE and eosinophilic immune responses, and inhibition of leukocyte recruitment in various diseases. IMPLICATIONS The protective or exacerbated aspects of use of IL-33 or its inhibitors are dependent on the type of infection or inflammatory condition, duration of disease (acute or chronic), organ involved, cytokine microenvironment, dose or kinetics of IL-33, and genetic predisposition. The alarmin cytokine IL-33 acts at cellular, molecular, and transcriptional levels to mediate pluripotent functions in various diseases and has potential therapeutic value to mitigate the disease process.
Collapse
|