1
|
Figueiredo FB, Tomaselli PJ, Hallak J, Mattiello-Sverzut AC, Covaleski APPM, Sobreira CFDR, de Paula Gouvêa S, Marques W. Genetic diversity in hereditary axonal neuropathy: Analyzing 53 Brazilian children. J Peripher Nerv Syst 2024; 29:97-106. [PMID: 38375759 DOI: 10.1111/jns.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND AIMS The genetic epidemiology of inherited neuropathies in children remains largely unknown. In this study, we specifically investigated the genetic profile of a Brazilian cohort of pediatric patients with pure or complex axonal neuropathies, a crucial knowledge in the near future for establishing treatment priorities and perspectives for this group of patients. METHODS Fifty-three pediatric patients who were assessed prior to reaching the age of 20, and who had clinical diagnoses of axonal hereditary neuropathy or presented with axonal neuropathy as the primary clinical feature, were included in the study. The recruitment of these cases took place from January 1, 2018, to December 31, 2020. The diagnosis was based on clinical and electrophysiological data. A molecular assessment was made using target-gene panel or whole-exome sequencing. Subsequently, segregation analysis was performed on available family members, and all candidate variants found were confirmed through Sanger. RESULTS A molecular diagnosis was reached in 68% of the patients (n = 36/53), considering only pathogenic and probably pathogenic variants. Variants in MFN2 (n = 15) and GJB1 (n = 3) accounted for half of the genetically confirmed patients (50%; n = 18/36). The other 18 genetically diagnosed patients had variants in several less common genes. INTERPRETATION Apart from MFN2 and GJB1 genes, universally recognized as a frequent cause of axonal neuropathies in most studied population, our Brazilian cohort of children with axonal neuropathies showed an important genetic heterogeneity, probably reflecting the multi ethnicity of the Brazilian population. Diagnostic, counseling, and future interventions should consider this characteristic.
Collapse
Affiliation(s)
- Fernanda Barbosa Figueiredo
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pedro José Tomaselli
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jaime Hallak
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Sciences and Technology-INCT-Translational Medicine-CNPq/FAPESP, Ribeirao Preto, Brazil
| | | | | | | | - Silmara de Paula Gouvêa
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Wilson Marques
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Sciences and Technology-INCT-Translational Medicine-CNPq/FAPESP, Ribeirao Preto, Brazil
| |
Collapse
|
2
|
Ghasemi A, Sadr Z, Babanejad M, Rohani M, Alavi A. Copy Number Variations in Hereditary Spastic Paraplegia-Related Genes: Evaluation of an Iranian Hereditary Spastic Paraplegia Cohort and Literature Review. Mol Syndromol 2023; 14:477-484. [PMID: 38058755 PMCID: PMC10697729 DOI: 10.1159/000531507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction In human genetic disorders, copy number variations (CNVs) are considered a considerable underlying cause. CNVs are generally detected by array-based methods but can also be discovered by read-depth analysis of whole-exome sequencing (WES) data. We performed WES-based CNV identification in a cohort of 35 Iranian families with hereditary spastic paraplegia (HSP) patients. Methods Thirty-five patients whose routine single-nucleotide variants (SNVs) and insertion/deletion analyses from exome data were unrevealing underwent a pipeline of CNV analysis using the read-depth detection method. Subsequently, a comprehensive search about the existence of CNVs in all 84 known HSP-causing genes was carried out in all reported HSP cases, so far. Results and Discussion CNV analysis of exome data indicated that 1 patient harbored a heterozygous deletion in exon 17 of the SPAST gene. Multiplex ligation-dependent probe amplification analysis confirmed this deletion in the proband and his affected father. Literature review demonstrated that, to date, pathogenic CNVs have been identified in 30 out of 84 HSP-causing genes (∼36%). However, CNVs in only 17 of these genes were specifically associated with the HSP phenotype. Among them, CNVs were more common in L1CAM, PLP1, SPAST, SPG7, SPG11, and REEP1 genes. The identification of the CNV in 1 of our patients suggests that WES allows the detection of both SNVs and CNVs from a single method without additional costs and execution time. However, because of intrinsic issues of WES in the detection of large rearrangements, it may not yet be exploited to replace the CNV detection methods in standard clinical practice.
Collapse
Affiliation(s)
- Aida Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zahra Sadr
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Cifuentes-Diaz C, Canali G, Garcia M, Druart M, Manett T, Savariradjane M, Guillaume C, Le Magueresse C, Goutebroze L. Differential impacts of Cntnap2 heterozygosity and Cntnap2 null homozygosity on axon and myelinated fiber development in mouse. Front Neurosci 2023; 17:1100121. [PMID: 36793543 PMCID: PMC9922869 DOI: 10.3389/fnins.2023.1100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last decade, a large variety of alterations of the Contactin Associated Protein 2 (CNTNAP2) gene, encoding Caspr2, have been identified in several neuronal disorders, including neurodevelopmental disorders and peripheral neuropathies. Some of these alterations are homozygous but most are heterozygous, and one of the current challenges is to estimate to what extent they could affect the functions of Caspr2 and contribute to the development of these pathologies. Notably, it is not known whether the disruption of a single CNTNAP2 allele could be sufficient to perturb the functions of Caspr2. To get insights into this issue, we questioned whether Cntnap2 heterozygosity and Cntnap2 null homozygosity in mice could both impact, either similarly or differentially, some specific functions of Caspr2 during development and in adulthood. We focused on yet poorly explored functions of Caspr2 in axon development and myelination, and performed a morphological study from embryonic day E17.5 to adulthood of two major brain interhemispheric myelinated tracts, the anterior commissure (AC) and the corpus callosum (CC), comparing wild-type (WT), Cntnap2 -/- and Cntnap2 +/- mice. We also looked for myelinated fiber abnormalities in the sciatic nerves of mutant mice. Our work revealed that Caspr2 controls the morphology of the CC and AC throughout development, axon diameter at early developmental stages, cortical neuron intrinsic excitability at the onset of myelination, and axon diameter and myelin thickness at later developmental stages. Changes in axon diameter, myelin thickness and node of Ranvier morphology were also detected in the sciatic nerves of the mutant mice. Importantly, most of the parameters analyzed were affected in Cntnap2 +/- mice, either specifically, more severely, or oppositely as compared to Cntnap2 -/- mice. In addition, Cntnap2 +/- mice, but not Cntnap2 -/- mice, showed motor/coordination deficits in the grid-walking test. Thus, our observations show that both Cntnap2 heterozygosity and Cntnap2 null homozygosity impact axon and central and peripheral myelinated fiber development, but in a differential manner. This is a first step indicating that CNTNAP2 alterations could lead to a multiplicity of phenotypes in humans, and raising the need to evaluate the impact of Cntnap2 heterozygosity on the other neurodevelopmental functions of Caspr2.
Collapse
Affiliation(s)
- Carmen Cifuentes-Diaz
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Giorgia Canali
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Marta Garcia
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Mélanie Druart
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Taylor Manett
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Mythili Savariradjane
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Camille Guillaume
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Corentin Le Magueresse
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Laurence Goutebroze
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France,*Correspondence: Laurence Goutebroze,
| |
Collapse
|
4
|
Adjei AA, Lopez CL, Schaid DJ, Sloan JA, Le-Rademacher JG, Loprinzi CL, Norman AD, Olson JE, Couch FJ, Beutler AS, Vachon CM, Ruddy KJ. Genetic Variations and Health-Related Quality of Life (HRQOL): A Genome-Wide Study Approach. Cancers (Basel) 2021; 13:cancers13040716. [PMID: 33578652 PMCID: PMC7916362 DOI: 10.3390/cancers13040716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Health-related quality of life (HRQOL) is associated with cancer prognosis as well as with age, sex, race, and lifestyle factors, including diet and physical activity. To investigate the hypothesis that HRQOL has genetic underpinnings in patients with cancer, we performed a genome-wide association study to evaluate genetic variants (single nucleotide polymorphisms, SNPs) associated with mental and physical QOL as measured by the PROMIS assessment tool in breast cancer survivors participating in a longitudinal cohort study, the Mayo Clinic Breast Disease Registry (MCBDR). Age and financial concerns were associated with worse physical and mental health, and previous receipt of chemotherapy was associated with worse mental health. SNPs in SCN10A, LMX1B, SGCD, PARP12, and SEMA5A were associated with physical and mental QOL, but none at the genome-wide significance thresholds of p < 5 × 10−8. Abstract Health-related quality of life (HRQOL) is an important prognostic patient-reported outcome in oncology. Because prior studies suggest that HRQOL is, in part, heritable, we performed a GWAS to elucidate genetic factors associated with HRQOL in breast cancer survivors. Physical and mental HRQOL were measured via paper surveys that included the PROMIS-10 physical and mental health domain scales in 1442 breast cancer survivors participating in the Mayo Clinic Breast Disease Registry (MCBDR). In multivariable regression analyses, age and financial concerns were significantly associated with global physical health (age: p = 1.6 × 10−23; financial concerns: p = 4.8 × 10−40) and mental health (age: p = 3.5 × 10−7; financial concerns: p = 2.0 × 10−69). Chemotherapy was associated with worse global mental health (p = 0.01). In the GWAS, none of the SNPs reached the genome-wide association significance threshold of 5 × 10−8 for associations with either global physical or global mental health, however, a cluster of SNPs in SCN10A, particularly rs112718371, appeared to be linked to worse global physical health (p = 5.21 × 10−8). Additionally, SNPs in LMX1B, SGCD, PARP12 and SEMA5A were also moderately associated with worse physical and mental health (p < 10−6). These biologically plausible candidate SNPs warrant further study as possible predictors of HRQOL.
Collapse
Affiliation(s)
- Araba A. Adjei
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
| | - Camden L. Lopez
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (A.D.N.); (J.E.O.); (C.M.V.)
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (A.D.N.); (J.E.O.); (C.M.V.)
| | - Jeff A. Sloan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (A.D.N.); (J.E.O.); (C.M.V.)
| | - Jennifer G. Le-Rademacher
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (A.D.N.); (J.E.O.); (C.M.V.)
| | - Charles L. Loprinzi
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
| | - Aaron D. Norman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (A.D.N.); (J.E.O.); (C.M.V.)
| | - Janet E. Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (A.D.N.); (J.E.O.); (C.M.V.)
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA;
| | - Andreas S. Beutler
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
| | - Celine M. Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (A.D.N.); (J.E.O.); (C.M.V.)
| | - Kathryn J. Ruddy
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
- Correspondence:
| |
Collapse
|
5
|
Clinical and genomic characteristics of LAMA2 related congenital muscular dystrophy in a patients' cohort from Qatar. A population specific founder variant. Neuromuscul Disord 2020; 30:457-471. [PMID: 32444167 DOI: 10.1016/j.nmd.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Congenital LAMA2 related muscular dystrophy (LAMA2-RD), the most commonly recognized type of congenital muscular dystrophies, has been described in patients' cohorts from Europe and the UK but not from Middle-Eastern. This study aimed to reveal the prevalence, clinical and genomic characteristics of congenital LAMA2-RD in a patient's cohort of 17 families (21 patients) from the Gulf and Middle East. Affected subjects exhibited the classic phenotype of generalized hypotonia, developmental delay, and progressive muscular weakness. Despite the homogeneous background of most of our patients, clinical variability was evident; however, none of our patients was able to achieve independent ambulation. The associated features of nephrocalcinosis, infantile-onset osteopenia, and cardiac arrest were first described in this study. LAMA2 mutations constituted 48% of the genetic causes underlying congenital muscular dystrophies (CMDs) in our patients. We estimated a point prevalence of 0.8 in 100.000 for LAMA2-RD in Qatar, relatively higher compared to that described in Europe's studies. The founder mutation and high rate of consanguinity are potential contributors. This study identified five LAMA2 truncating variants, two novel and three recurrent, of which the c.6488delA-frameshift that was found in 12 unrelated Qatari families, highlighting a founder mutation in Qatari patients. The two novel variants involved an acceptor splice site and N-terminus deletion that removes the LAMA2 promoter, exon1, and part of intron1. The "residual" expression of LAMA2 transcript and protein associated with this large N-terminus deletion suggested an alternative promoter that, while seems to be activated, acts less efficiently.
Collapse
|
6
|
Mortreux J, Bacquet J, Boyer A, Alazard E, Bellance R, Giguet-Valard AG, Cerino M, Krahn M, Audic F, Chabrol B, Laugel V, Desvignes JP, Béroud C, Nguyen K, Verschueren A, Lévy N, Attarian S, Delague V, Missirian C, Bonello-Palot N. Identification of novel pathogenic copy number variations in Charcot-Marie-Tooth disease. J Hum Genet 2019; 65:313-323. [PMID: 31852984 DOI: 10.1038/s10038-019-0710-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a hereditary sensory-motor neuropathy characterized by a strong clinical and genetic heterogeneity. Over the past few years, with the occurrence of whole-exome sequencing (WES) or whole-genome sequencing (WGS), the molecular diagnosis rate has been improved by allowing the screening of more than 80 genes at one time. In CMT, except the recurrent PMP22 duplication accounting for about 60% of pathogenic variations, pathogenic copy number variations (CNVs) are rarely reported and only a few studies screening specifically CNVs have been performed. The aim of the present study was to screen for CNVs in the most prevalent genes associated with CMT in a cohort of 200 patients negative for the PMP22 duplication. CNVs were screened using the Exome Depth software on next generation sequencing (NGS) data obtained by targeted capture and sequencing of a panel of 81 CMT associated genes. Deleterious CNVs were identified in four patients (2%), in four genes: GDAP1, LRSAM1, GAN, and FGD4. All CNVs were confirmed by high-resolution oligonucleotide array Comparative Genomic Hybridization (aCGH) and/or quantitative PCR. By identifying four new CNVs in four different genes, we demonstrate that, although they are rare mutational events in CMT, CNVs might contribute significantly to mutational spectrum of Charcot-Marie-Tooth disease and should be searched in routine NGS diagnosis. This strategy increases the molecular diagnosis rate of patients with neuropathy.
Collapse
Affiliation(s)
- J Mortreux
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - J Bacquet
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - A Boyer
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - E Alazard
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - R Bellance
- Centre de référence Caribéen pour les maladies neuromusculaires, CeRCa, Hôpital Pierre-Zobda-Quitman, CHU de Martinique, France
| | - A G Giguet-Valard
- Centre de référence Caribéen pour les maladies neuromusculaires, CeRCa, Hôpital Pierre-Zobda-Quitman, CHU de Martinique, France
| | - M Cerino
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - M Krahn
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - F Audic
- Centre de référence des maladies neuromusculaires, Hôpital de la Timone enfant, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - B Chabrol
- Centre de référence des maladies neuromusculaires, Hôpital de la Timone enfant, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - V Laugel
- Centre de référence des maladies neuromusculaires, Service de pédiatrie, CHU Strasbourg, France
| | - J P Desvignes
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - C Béroud
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - K Nguyen
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - A Verschueren
- Centre de référence des maladies neuromusculaires, Hôpital de la Timone Adulte, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - N Lévy
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - S Attarian
- Centre de référence des maladies neuromusculaires, Hôpital de la Timone Adulte, Assistance-Publique Hôpitaux de Marseille, Marseille, France
| | - V Delague
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - C Missirian
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France.,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France
| | - N Bonello-Palot
- Département de génétique médicale, Hôpital Timone enfants, Assistance-Publique Hôpitaux de Marseille, Marseille, France. .,Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France.
| |
Collapse
|
7
|
Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLoS Genet 2018; 14:e1007535. [PMID: 30586385 PMCID: PMC6324819 DOI: 10.1371/journal.pgen.1007535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/08/2019] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is a member of the neurexin superfamily. CNTNAP2 was first implicated in the cortical dysplasia-focal epilepsy (CDFE) syndrome, a recessive disease characterized by intellectual disability, epilepsy, language impairments and autistic features. Associated SNPs and heterozygous deletions in CNTNAP2 were subsequently reported in autism, schizophrenia and other psychiatric or neurological disorders. We aimed to comprehensively examine evidence for the role of CNTNAP2 in susceptibility to psychiatric disorders, by the analysis of multiple classes of genetic variation in large genomic datasets. In this study we used: i) summary statistics from the Psychiatric Genomics Consortium (PGC) GWAS for seven psychiatric disorders; ii) examined all reported CNTNAP2 structural variants in patients and controls; iii) performed cross-disorder analysis of functional or previously associated SNPs; and iv) conducted burden tests for pathogenic rare variants using sequencing data (4,483 ASD and 6,135 schizophrenia cases, and 13,042 controls). The distribution of CNVs across CNTNAP2 in psychiatric cases from previous reports was no different from controls of the database of genomic variants. Gene-based association testing did not implicate common variants in autism, schizophrenia or other psychiatric phenotypes. The association of proposed functional SNPs rs7794745 and rs2710102, reported to influence brain connectivity, was not replicated; nor did predicted functional SNPs yield significant results in meta-analysis across psychiatric disorders at either SNP-level or gene-level. Disrupting CNTNAP2 rare variant burden was not higher in autism or schizophrenia compared to controls. Finally, in a CNV mircroarray study of an extended bipolar disorder family with 5 affected relatives we previously identified a 131kb deletion in CNTNAP2 intron 1, removing a FOXP2 transcription factor binding site. Quantitative-PCR validation and segregation analysis of this CNV revealed imperfect segregation with BD. This large comprehensive study indicates that CNTNAP2 may not be a robust risk gene for psychiatric phenotypes. Genetic mutations that disrupt both copies of the CNTNAP2 gene lead to severe disease, characterized by profound intellectual disability, epilepsy, language difficulties and autistic traits, leading to the hypothesis that this gene may also be involved in autism given some overlapping clinical features with this disease. Indeed, several large DNA deletions affecting one of the two copies of CNTNAP2 were found in some patients with autism, and later also in patients with schizophrenia, bipolar disorder, ADHD and epilepsy, suggesting that this gene was implicated in several psychiatric or neurologic diseases. Other studies considered genetic sequence variations that are common in the general population, and suggested that two such sequence variations in CNTNAP2 predispose to psychiatric diseases by influencing the functionality and connectivity of the brain. To better understand the involvement of CNTNAP2 in risk of mental illness, we performed several genetic analyses using a series of large publicly available or in-house datasets, comprising many thousands of patients and controls. Furthermore, we report the deletion of one copy of CNTNAP2 in two patients with bipolar disorder and one unaffected relative from an extended family where five relatives were affected with this condition. Despite the previous consideration of CNTNAP2 as a strong candidate gene for autism or schizophrenia, we show little evidence across multiple classes of DNA variation, that CNTNAP2 is likely to play a major role in risk of psychiatric diseases.
Collapse
|
8
|
Salpietro V, Manole A, Efthymiou S, Houlden H. A Review of Copy Number Variants in Inherited Neuropathies. Curr Genomics 2018; 19:412-419. [PMID: 30258273 PMCID: PMC6128387 DOI: 10.2174/1389202919666180330153316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/23/2016] [Accepted: 03/13/2018] [Indexed: 11/22/2022] Open
Abstract
The rapid development in the last 10-15 years of microarray technologies, such as oligonucleotide array Comparative Genomic Hybridization (CGH) and Single Nucleotide Polymorphisms (SNP) genotyping array, has improved the identification of fine chromosomal structural variants, ranging in length from kilobases (kb) to megabases (Mb), as an important cause of genetic differences among healthy individuals and also as disease-susceptibility and/or disease-causing factors. Structural genomic variations due to unbalanced chromosomal rearrangements are known as Copy-Number Variants (CNVs) and these include variably sized deletions, duplications, triplications and translocations. CNVs can significantly contribute to human diseases and rearrangements in several dosage-sensitive genes have been identified as an important causative mechanism in the molecular aetiology of Charcot-Marie-Tooth (CMT) disease and of several CMT-related disorders, a group of inherited neuropathies with a broad range of clinical phenotypes, inheritance patterns and causative genes. Duplications or deletions of the dosage-sensitive gene PMP22 mapped to chromosome 17p12 represent the most frequent causes of CMT type 1A and Hereditary Neuropathy with liability to Pressure Palsies (HNPP), respectively. Additionally, CNVs have been identified in patients with other CMT types (e.g., CMT1X, CMT1B, CMT4D) and different hereditary poly- (e.g., giant axonal neuropathy) and focal- (e.g., hereditary neuralgic amyotrophy) neuropathies, supporting the notion of hereditary peripheral nerve diseases as possible genomic disorders and making crucial the identification of fine chromosomal rearrangements in the molecular assessment of such patients. Notably, the application of advanced computational tools in the analysis of Next-Generation Sequencing (NGS) data has emerged in recent years as a powerful technique for identifying a genome-wide scale complex structural variants (e.g., as the ones resulted from balanced rearrangements) and also smaller pathogenic (intragenic) CNVs that often remain beyond the detection limit of most conventional genomic microarray analyses; in the context of inherited neuropathies where more than 70 disease-causing genes have been identified to date, NGS and particularly Whole-Genome Sequencing (WGS) hold the potential to reduce the number of genomic assays required per patient to reach a diagnosis, analyzing with a single test all the Single Nucleotide Variants (SNVs) and CNVs in the genes possibly implicated in this heterogeneous group of disorders.
Collapse
Affiliation(s)
- Vincenzo Salpietro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andreea Manole
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
9
|
La Cognata V, Morello G, Gentile G, Cavalcanti F, Cittadella R, Conforti FL, De Marco EV, Magariello A, Muglia M, Patitucci A, Spadafora P, D’Agata V, Ruggieri M, Cavallaro S. NeuroArray: A Customized aCGH for the Analysis of Copy Number Variations in Neurological Disorders. Curr Genomics 2018; 19:431-443. [PMID: 30258275 PMCID: PMC6128384 DOI: 10.2174/1389202919666180404105451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurological disorders are a highly heterogeneous group of pathological conditions that affect both the peripheral and the central nervous system. These pathologies are characterized by a complex and multifactorial etiology involving numerous environmental agents and genetic susceptibility factors. For this reason, the investigation of their pathogenetic basis by means of traditional methodological approaches is rather arduous. High-throughput genotyping technologies, including the microarray-based comparative genomic hybridization (aCGH), are currently replacing classical detection methods, providing powerful molecular tools to identify genomic unbalanced structural rearrangements and explore their role in the pathogenesis of many complex human diseases. METHODS In this report, we comprehensively describe the design method, the procedures, validation, and implementation of an exon-centric customized aCGH (NeuroArray 1.0), tailored to detect both single and multi-exon deletions or duplications in a large set of multi- and monogenic neurological diseases. This focused platform enables a targeted measurement of structural imbalances across the human genome, targeting the clinically relevant genes at exon-level resolution. CONCLUSION An increasing use of the NeuroArray platform may offer new insights in investigating potential overlapping gene signatures among neurological conditions and defining genotype-phenotype relationships.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sebastiano Cavallaro
- Address correspondence to this author at the Institute of Neurological Sciences, National Research Council, Via Paolo Gaifami 18, 95125, Catania, Italy; Tel: +39-095-7338111; E-mail:
| |
Collapse
|
10
|
Saint-Martin M, Joubert B, Pellier-Monnin V, Pascual O, Noraz N, Honnorat J. Contactin-associated protein-like 2, a protein of the neurexin family involved in several human diseases. Eur J Neurosci 2018; 48:1906-1923. [PMID: 30028556 DOI: 10.1111/ejn.14081] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/08/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Contactin-associated protein-like 2 (CASPR2) is a cell adhesion protein of the neurexin family. Proteins of this family have been shown to play a role in the development of the nervous system, in synaptic functions, and in neurological diseases. Over recent years, CASPR2 function has gained an increasing interest as demonstrated by the growing number of publications. Here, we gather published data to comprehensively review CASPR2 functions within the nervous system in relation to CASPR2-related diseases in humans. On the one hand, studies on Cntnap2 (coding for CASPR2) knockout mice revealed its role during development, especially, in setting-up the inhibitory network. Consistent with this result, mutations in the CNTNAP2 gene coding for CASPR2 in human have been identified in neurodevelopmental disorders such as autism, intellectual disability, and epilepsy. On the other hand, CASPR2 was shown to play a role beyond development, in the localization of voltage-gated potassium channel (VGKC) complex that is composed of TAG-1, Kv1.1, and Kv1.2. This complex was found in several subcellular compartments essential for action potential propagation: the node of Ranvier, the axon initial segment, and the synapse. In line with a role of CASPR2 in the mature nervous system, neurological autoimmune diseases have been described in patients without neurodevelopmental disorders but with antibodies directed against CASPR2. These autoimmune diseases were of two types: central with memory disorders and temporal lobe seizures, or peripheral with muscular hyperactivity. Overall, we review the up-to-date knowledge on CASPR2 function and pinpoint confused or lacking information that will need further investigation.
Collapse
Affiliation(s)
- Margaux Saint-Martin
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bastien Joubert
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
| | - Véronique Pellier-Monnin
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Pascual
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Nelly Noraz
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
| |
Collapse
|
11
|
Cutrupi AN, Brewer MH, Nicholson GA, Kennerson M. Structural variations causing inherited peripheral neuropathies: A paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation. Mol Genet Genomic Med 2018; 6:422-433. [PMID: 29573232 PMCID: PMC6014456 DOI: 10.1002/mgg3.390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/09/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a clinically and genetically heterogeneous group of diseases affecting the motor and sensory peripheral nerves. IPNs have benefited from gene discovery and genetic diagnosis using next-generation sequencing with over 80 causative genes available for testing. Despite this success, up to 50% of cases remain genetically unsolved. In the absence of protein coding mutations, noncoding DNA or structural variation (SV) mutations are a possible explanation. The most common IPN, Charcot-Marie-Tooth neuropathy type 1A (CMT1A), is caused by a 1.5 Mb duplication causing trisomy of the dosage sensitive gene PMP22. Using genome sequencing, we recently identified two large genomic rearrangements causing IPN subtypes X-linked CMT (CMTX3) and distal hereditary motor neuropathy (DHMN1), thereby expanding the spectrum of SV mutations causing IPN. Understanding how newly discovered SVs can cause IPN may serve as a useful paradigm to examine the role of topologically associated domains (TADs), chromatin interactions, and gene dysregulation in disease. This review will describe the growing role of SV in the pathogenesis of IPN and the importance of considering this type of mutation in Mendelian diseases where protein coding mutations cannot be identified.
Collapse
Affiliation(s)
- Anthony N. Cutrupi
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Megan H. Brewer
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Garth A. Nicholson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| | - Marina L. Kennerson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| |
Collapse
|
12
|
Abstract
Intragenic deletions of the contactin-associated protein-like 2 gene (CNTNAP2) have been found in patients with Gilles de la Tourette syndrome, intellectual disability (ID), obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, stuttering, and attention deficit hyperactivity disorder. A variety of molecular mechanisms, such as loss of transcription factor binding sites and perturbation of penetrance and expressivity, have been proposed to account for the phenotypic variability resulting from CNTNAP2 mutations. Deletions of both CNTNAP2 alleles produced truncated proteins lacking the transmembrane or some of the extracellular domains, or no protein at all. This observation can be extended to heterozygous intragenic deletions by assuming that such deletion-containing alleles lead to expression of a Caspr2 protein lacking one or several extracellular domains. Such altered forms of Capr2 proteins will lack the ability to bridge the intercellular space between neurons by binding to partners, such as CNTN1, CNTN2, DLG1, and DLG4. This presumed effect of intragenic deletions of CNTNAP2, and possibly other genes involved in connecting neuronal cells, represents a molecular basis for the postulated neuronal hypoconnectivity in autism and probably other neurodevelopmental disorders, including epilepsy, ID, language impairments and schizophrenia. Thus, CNTNAP2 may represent a paradigmatic case of a gene functioning as a node in a genetic and cellular network governing brain development and acquisition of higher cognitive functions.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Copy number variability in Parkinson's disease: assembling the puzzle through a systems biology approach. Hum Genet 2016; 136:13-37. [PMID: 27896429 PMCID: PMC5214768 DOI: 10.1007/s00439-016-1749-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual’s genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a “systems biology” overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.
Collapse
|
14
|
Brewer MH, Chaudhry R, Qi J, Kidambi A, Drew AP, Menezes MP, Ryan MM, Farrar MA, Mowat D, Subramanian GM, Young HK, Zuchner S, Reddel SW, Nicholson GA, Kennerson ML. Whole Genome Sequencing Identifies a 78 kb Insertion from Chromosome 8 as the Cause of Charcot-Marie-Tooth Neuropathy CMTX3. PLoS Genet 2016; 12:e1006177. [PMID: 27438001 PMCID: PMC4954712 DOI: 10.1371/journal.pgen.1006177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022] Open
Abstract
With the advent of whole exome sequencing, cases where no pathogenic coding mutations can be found are increasingly being observed in many diseases. In two large, distantly-related families that mapped to the Charcot-Marie-Tooth neuropathy CMTX3 locus at chromosome Xq26.3-q27.3, all coding mutations were excluded. Using whole genome sequencing we found a large DNA interchromosomal insertion within the CMTX3 locus. The 78 kb insertion originates from chromosome 8q24.3, segregates fully with the disease in the two families, and is absent from the general population as well as 627 neurologically normal chromosomes from in-house controls. Large insertions into chromosome Xq27.1 are known to cause a range of diseases and this is the first neuropathy phenotype caused by an interchromosomal insertion at this locus. The CMTX3 insertion represents an understudied pathogenic structural variation mechanism for inherited peripheral neuropathies. Our finding highlights the importance of considering all structural variation types when studying unsolved inherited peripheral neuropathy cases with no pathogenic coding mutations.
Collapse
Affiliation(s)
- Megan H. Brewer
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail:
| | - Rabia Chaudhry
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Jessica Qi
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Discipline of Pathology, University of Sydney, Camperdown, New South Wales, Australia
| | - Aditi Kidambi
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
| | - Alexander P. Drew
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
| | - Manoj P. Menezes
- The Institute for Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- Paediatrics and Child Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Monique M. Ryan
- Department of Neurology, Royal Children’s Hospital, Parkville, Victoria, Australia
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle A. Farrar
- Department of Neurology, Sydney Children’s Hospital, Randwick, New South Wales, Australia
- School of Women’s and Children’s Health, UNSW Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - David Mowat
- School of Women’s and Children’s Health, UNSW Medicine, University of New South Wales, Kensington, New South Wales, Australia
- Department of Medical Genetics, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Gopinath M. Subramanian
- Department of Paediatrics, John Hunter Children’s Hospital, Newcastle, New South Wales, Australia
| | - Helen K. Young
- Department of Paediatrics, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Northern Clinical School, Sydney Medical School, University of Sydney, St Leonards, New South Wales, Australia
- Department of Neurogenetics, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - Stephan Zuchner
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Stephen W. Reddel
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Garth A. Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Marina L. Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
15
|
Antoniadi T, Buxton C, Dennis G, Forrester N, Smith D, Lunt P, Burton-Jones S. Application of targeted multi-gene panel testing for the diagnosis of inherited peripheral neuropathy provides a high diagnostic yield with unexpected phenotype-genotype variability. BMC MEDICAL GENETICS 2015; 16:84. [PMID: 26392352 PMCID: PMC4578331 DOI: 10.1186/s12881-015-0224-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023]
Abstract
Background Inherited peripheral neuropathy (IPN) is a clinically and genetically heterogeneous group of disorders with more than 90 genes associated with the different subtypes. Sequential gene screening is gradually being replaced by next generation sequencing (NGS) applications. Methods We designed and validated a targeted NGS panel assay including 56 genes associated with known causes of IPN. We report our findings following NGS panel testing of 448 patients with different types of clinically-suspected IPN. Results Genetic diagnosis was achieved in 137 patients (31 %) and involved 195 pathogenic variants in 31 genes. 93 patients had pathogenic variants in genes where a resulting phenotype follows dominant inheritance, 32 in genes where this would follow recessive inheritance, and 12 presented with X-linked disease. Almost half of the diagnosed patients (64) had a pathogenic variant either in genes not previously available for routine diagnostic testing in a UK laboratory (50 patients) or in genes whose primary clinical association was not IPN (14). Seven patients had a pathogenic variant in a gene not hitherto indicated from their phenotype and three patients had more than one pathogenic variant, explaining their complex phenotype and providing information essential for accurate prediction of recurrence risks. Conclusions Our results demonstrate that targeted gene panel testing is an unbiased approach which overcomes the limitations imposed by limited existing knowledge for rare genes, reveals high heterogeneity, and provides high diagnostic yield. It is therefore a highly efficient and cost effective tool for achieving a genetic diagnosis for IPN. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0224-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thalia Antoniadi
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Chris Buxton
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Gemma Dennis
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Natalie Forrester
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Debbie Smith
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Peter Lunt
- Department of Social & Community Medicine, University of Bristol, Oakfield House, Bristol, BS8 2BN, UK.
| | - Sarah Burton-Jones
- Bristol Genetics Laboratory, North Bristol NHS Trust, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|