1
|
Chen A, Zhang J, Yan Z, Lu Y, Chen W, Sun Y, Gu Q, Li F, Yang Y, Qiu S, Lin X, Zhang D, Teng J, Fang Y, Shen B, Song N, Ding X. Acidic preconditioning induced intracellular acid adaptation to protect renal injury via dynamic phosphorylation of focal adhesion kinase-dependent activation of sodium hydrogen exchanger 1. Cell Commun Signal 2024; 22:393. [PMID: 39118129 PMCID: PMC11308338 DOI: 10.1186/s12964-024-01773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.
Collapse
Affiliation(s)
- Annan Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Zhixin Yan
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Weize Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yingxue Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Qiuyu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Fang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yan Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Shanfang Qiu
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xueping Lin
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Dong Zhang
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
- Department of Nephrology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Fudan Zhangjiang Institute, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Medical Center of Kidney, Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
2
|
Li N, Zhou H. Sodium-glucose Cotransporter Type 2 Inhibitors: A New Insight into the Molecular Mechanisms of Diabetic Nephropathy. Curr Pharm Des 2022; 28:2131-2139. [PMID: 35718973 DOI: 10.2174/1381612828666220617153331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy is one of the chronic microvascular complications of diabetes and is a leading cause of end-stage renal disease. Fortunately, clinical trials have demonstrated that sodium-glucose cotransporter type 2 inhibitors could decrease proteinuria and improve renal endpoints and are promising agents for the treatment of diabetic nephropathy. The renoprotective effects of sodium-glucose cotransporter type 2 inhibitors cannot be simply attributed to their advantages in aspects of metabolic benefits, such as glycemic control, lowering blood pressure, and control of serum uric acid, or improving hemodynamics associated with decreased glomerular filtration pressure. Some preclinical evidence suggests that sodium-glucose cotransporter type 2 inhibitors exert their renoprotective effects by multiple mechanisms, including attenuation of oxidative and endoplasmic reticulum stresses, anti-fibrosis and anti-inflammation, protection of podocytes, suppression of megalin function, improvement of renal hypoxia, restored mitochondrial dysfunction and autophagy, as well as inhibition of sodium-hydrogen exchanger 3. In the present study, the detailed molecular mechanisms of sodium-glucose cotransporter type 2 inhibitors with the actions of diabetic nephropathy were reviewed, with the purpose of providing the basis for drug selection for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Zhang W, Fan W, Guo J, Wang X. Osmotic stress activates RIPK3/MLKL-mediated necroptosis by increasing cytosolic pH through a plasma membrane Na +/H + exchanger. Sci Signal 2022; 15:eabn5881. [PMID: 35580168 DOI: 10.1126/scisignal.abn5881] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Necroptosis is a form of cell death triggered by stimuli such as the tumor necrosis factor family of cytokines, which induce necrotic cell death through the RIPK1-RIPK3-MLKL pathway. We report here that necroptosis is also activated by extracellular osmotic stresses. Unlike the previously identified inducers of necroptosis, osmotic stress stimulated necroptosis through the direct activation of the kinase activity of RIPK3 by an increase in cytosolic pH mediated by the Na+/H+ exchanger SLC9A1. Knockout, knockdown, or chemical inhibition of SLC9A1 blocked necroptosis induced by osmotic stresses. Moreover, setting intracellular pH at above-physiological values directly activated RIPK3 and necroptosis. The activation of RIPK3 by osmotic stresses did not require its RHIM domain, the protein-interacting domain required for the activation of RIPK3 when cells respond to other previously identified necroptotic stimuli. These results thus delineate a pathway that activates necroptosis in response to osmotic stresses.
Collapse
Affiliation(s)
- Wenbin Zhang
- School of Life Sciences, Peking University, Beijing 100871, China.,National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Weiliang Fan
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Jia Guo
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Das NA, Carpenter AJ, Belenchia A, Aroor AR, Noda M, Siebenlist U, Chandrasekar B, DeMarco VG. Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition. Cell Signal 2019; 68:109506. [PMID: 31862399 DOI: 10.1016/j.cellsig.2019.109506] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Proximal tubular epithelial cells (PTEC) in the S1 segment of the kidney abundantly express sodium-glucose co-transporters (SGLT) that play a critical role in whole body glucose homeostasis. We recently reported suppression of RECK (Reversion Inducing Cysteine Rich Protein with Kazal Motifs), a membrane anchored endogenous MMP inhibitor and anti-fibrotic mediator, in the kidneys of db/db mice, a model of diabetic kidney disease (DKD), as well as in high glucose (HG) treated human kidney proximal tubule cells (HK-2). We further demonstrated that empagliflozin (EMPA), an SGLT2 inhibitor, reversed these effects. Little is known regarding the mechanisms underlying RECK suppression under hyperglycemic conditions, and its rescue by EMPA. Consistent with our previous studies, HG (25 mM) suppressed RECK expression in HK-2 cells. Further mechanistic investigations revealed that HG induced superoxide and hydrogen peroxide generation, oxidative stress-dependent TRAF3IP2 upregulation, NF-κB and p38 MAPK activation, inflammatory cytokine expression (IL-1β, IL-6, TNF-α, and MCP-1), miR-21 induction, MMP2 activation, and RECK suppression. Moreover, RECK gain-of-function inhibited HG-induced MMP2 activation and HK-2 cell migration. Similar to HG, advanced glycation end products (AGE) induced TRAF3IP2 and suppressed RECK, effects that were inhibited by EMPA. Importantly, EMPA treatment ameliorated all of these deleterious effects, and inhibited epithelial-to-mesenchymal transition (EMT) and HK-2 cell migration. Collectively, these findings indicate that hyperglycemia and associated AGE suppress RECK expression via oxidative stress/TRAF3IP2/NF-κB and p38 MAPK/miR-21 induction. Furthermore, these results suggest that interventions aimed at restoring RECK or inhibiting SGLT2 have the potential to treat kidney inflammatory response/fibrosis and nephropathy under chronic hyperglycemic conditions, such as DKD.
Collapse
Affiliation(s)
- Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Anthony Belenchia
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| | - Annayya R Aroor
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA; Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.
| | - Makoto Noda
- Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA.
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Division of Cardiology, Department of Medicine, University of Missouri Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA; Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Zhu ML, Wang G, Wang H, Guo YM, Song P, Xu J, Li P, Wang S, Yang L. Amorphous nano-selenium quantum dots improve endothelial dysfunction in rats and prevent atherosclerosis in mice through Na +/H + exchanger 1 inhibition. Vascul Pharmacol 2019; 115:26-32. [PMID: 30695730 DOI: 10.1016/j.vph.2019.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/08/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
AIM Selenium, a trace element involved in important enzymatic activities inside the body, has protective effects against cardiovascular diseases including atherosclerosis. The safe dose of selenium in the organism is very narrow, limiting the supplementation of selenium in diet. The aim of this study is to explore whether selenium quantum dots (SeQDs) prevent atherosclerosis and to investigate the potential mechanisms. METHODS An amorphous form of SeQDs (A-SeQDs) and a crystalline form of SeQDs (C-SeQDs) were prepared through self-redox decomposition of selenosulfate precursor. Endothelial dysfunction was induced by balloon injury plus high fat diet (HFD) in rats. Atherosclerotic model was established by feeding Apoe-/- mice with HFD. RESULTS Administrations of A-SeQDs but not C-SeQDs dramatically improved endothelium-dependent relaxation, and accelerated would healing in primary endothelial cells isolated from rats, which was comprised by co-treatment of LiCl. Lentivirus-mediated knockdown of Na+/H+ exchanger 1 (NHE1) abolished LiCl-induced endothelial dysfunction in rats. In cultured endothelial cells, A-SeQDs, as well as cariporide, inhibited NHE1 activities, decreased intracellular pH value and Ca2+ concentration, and reduced calpain activity increased by ox-LDL. These protective effects of A-SeQDs were reversed by LiCl treatment in endothelial cells. In Apoe-/- mice feeding with HFD, A-SeQDs prevented endothelial dysfunction and reduced the size of atherosclerotic plaque in aortic arteries. Further, lentivirus-mediated NHE1 gene overexpression abolished the protective effects of A-SeQDs against endothelial dysfunction and atherosclerosis in Apoe-/- mice. CONCLUSION A-SeQDs prevents endothelial dysfunction and the growth of atherosclerotic plaque through NHE1 inhibition and subsequent inactivation of Ca2+/calpain signaling. Clinically, the administration of A-SeQDs is an effective approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Mo-Li Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ge Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - He Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Yu-Ming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Ping Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jian Xu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shuangxi Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Lu JX, Guo C, Ou WS, Jing Y, Niu HF, Song P, Li QZ, Liu Z, Xu J, Li P, Zhu ML, Yin YL. Citronellal prevents endothelial dysfunction and atherosclerosis in rats. J Cell Biochem 2018; 120:3790-3800. [PMID: 30367511 DOI: 10.1002/jcb.27660] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis is a chronical inflammatory disease in arterial walls, which is involved in oxidative stress and endothelial dysfunction. Aromatherapy is one of the complementary therapies that use essential oils as the major therapeutic agents to treat several diseases. Citronellal (CT) is a monoterpene predominantly formed by the secondary metabolism of plants, producing antithrombotic, antiplatelet, and antihypertensive activities. AIM The aim of the present study is to explore whether aromatherapy with CT improves endothelial function to prevent the formation of atherosclerotic plaque in vivo. METHODS An AS model in carotid artery was induced by balloon injury and vitamin D3 injection in rats fed with a high-fat diet. The size of the carotid atherosclerotic plaque was determined by ultrasound, oil red, and hematoxylin-eosin staining. Endothelial function was assessed by measuring acetylcholine-induced vessel relaxation in an organ chamber. RESULTS Administrations of CT (50, 100, and 150 mg/kg) as well as lovastatin dramatically reduced the size of carotid atherosclerotic plaque in rats in a dose-dependent manner, compared with atherosclerotic rats fed with a high-fat diet plus balloon injury and vitamin D3. Mechanically, CT improved endothelial dysfunction, increased cell migration, and suppressed oxidative stress and inflammation in vascular endothelium in rats feeding on the high-fat diet plus balloon injury. Further, CT downregulated the protein levels of sodium-hydrogen exchanger 1 in rats with atherosclerosis. CONCLUSION CT improves endothelial dysfunction and prevents the growth of atherosclerosis in rats by reducing oxidative stress. Clinically, CT is potentially considered as a medicine to treat patients with atherosclerosis.
Collapse
Affiliation(s)
- Jun-X Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wen-S Ou
- Department of Gastroenterology, Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Yun Jing
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hui-F Niu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quan-Z Li
- Department of Cardiology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Zhan Liu
- Department of Clinical Nutrition, The Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jian Xu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-L Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-L Yin
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Guan X, Hasan MN, Begum G, Kohanbash G, Carney KE, Pigott VM, Persson AI, Castro MG, Jia W, Sun D. Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death Dis 2018; 9:1010. [PMID: 30262908 PMCID: PMC6160445 DOI: 10.1038/s41419-018-1062-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022]
Abstract
The weak immunogenicity of gliomas presents a barrier for effective immunotherapy. Na/H exchanger isoform 1 (NHE1) maintains alkaline intracellular pH (pHi) of glioma cells and acidic microenvironment. In addition, NHE1 is expressed in tumor-associated microglia and tumor-associated macrophages (TAMs) and involved in protumoral communications between glioma and TAMs. Therefore, we hypothesize that NHE1 plays a role in developing tumor resistance and immunosuppressive tumor microenvironment. In this study, we investigated the efficacy of pharmacological inhibition of NHE1 on combinatorial therapies. Here we show that temozolomide (TMZ) treatment stimulates NHE1 protein expression in two intracranial syngeneic mouse glioma models (SB28, GL26). Pharmacological inhibition of NHE1 potentiated the cytotoxic effects of TMZ, leading to reduced tumor growth and increased median survival of mice. Blockade of NHE1 stimulated proinflammatory activation of TAM and increased cytotoxic T cell infiltration into tumors. Combining TMZ, anti-PD-1 antibody treatment with NHE1 blockade significantly prolonged the median survival in the mouse glioma model. These results demonstrate that pharmacological inhibition of NHE1 protein presents a new strategy for potentiating TMZ-induced cytotoxicity and increasing tumor immunogenicity for immunotherapy to improve glioma therapy.
Collapse
Affiliation(s)
- Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Chinese National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria M Pigott
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Maria G Castro
- Department of Neurological Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Chinese National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Neurosurgical Institute, Beijing, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
de Albuquerque Rocha N, Neeland IJ, McCullough PA, Toto RD, McGuire DK. Effects of sodium glucose co-transporter 2 inhibitors on the kidney. Diab Vasc Dis Res 2018; 15:375-386. [PMID: 29963920 DOI: 10.1177/1479164118783756] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors are antihyperglycaemic medications with an emerging evidence base for cardiovascular and kidney disease risk reduction. Sodium-glucose cotransporter 2 inhibitors medications lower plasma glucose by inhibiting glucose reabsorption in the proximal tubule of the kidney independent of insulin. Furthermore, they reduce intraglomerular pressure by restoring tubuloglomerular feedback. Large cardiovascular outcome trials of both empagliflozin and canagliflozin have consistently shown beneficial kidney effects that go beyond glycaemic control, such as reducing risk for incident nephropathy and progression of chronic kidney disease. The mechanisms by which sodium-glucose cotransporter 2 inhibitors improve kidney outcomes are not clear. Proposed hypotheses underpinning the kidney benefits include kidney-specific effects such as decreased intraglomerular pressure, activation of angiotensin-(1-7) and the Mas receptor leading to decreased inflammation, decrease in overall kidney oxygen consumption, rise in erythropoietin levels, inhibition of the renal sodium-hydrogen exchanger and secondary kidney effects related to improvements in HbA1c and blood pressure. This review will focus on describing the mechanisms of action of sodium-glucose cotransporter 2 inhibitors in the kidney, clinical efficacy data on their use in patients with chronic kidney disease, postulated physiologic underpinnings of kidney protection observed with sodium-glucose cotransporter 2 inhibitors and the promise and potential pitfalls for their use in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Natalia de Albuquerque Rocha
- 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- 2 Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ian J Neeland
- 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- 2 Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter A McCullough
- 3 Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, TX, USA
| | - Robert D Toto
- 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- 4 Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- 5 Department of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darren K McGuire
- 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- 2 Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- 4 Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Zhang HM, Liu MY, Lu JX, Zhu ML, Jin Q, Ping S, Li P, Jian X, Han YL, Wang SX, Li XY. Intracellular acidosis via activation of Akt-Girdin signaling promotes post ischemic angiogenesis during hyperglycemia. Int J Cardiol 2018; 277:205-211. [PMID: 30316647 DOI: 10.1016/j.ijcard.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
AIMS The impaired angiogenesis is the major cause of diabetic delayed wound healing. The molecular insight remains unknown. Previous study has shown that high glucose (HG) activates Na+/H+ exchanger 1 (NHE1) and induces intracellular alkalinization, resulting in endothelial dysfunction. The aim of this study is to investigate whether activation of NHE1 in endothelial cells by HG damages the angiogenesis in vitro and in vivo. METHODS AND RESULTS We used western blot to detect the phosphorylations of both Akt and Girdin, and pH-sensitive BCECF fluorescence to assay NHE1 activity and pHi value, respectively. The angiogenesis was evaluated by measuring the number of tube formation in vitro, and blood perfusion by laser doppler and neovascularization by staining CD31 in vivo. Our results indicated that induction of intracellular acidosis (IA) increased p-Akt and p-Girdin in human umbilical vein endothelial cells (HUVEC). HG activated NHE1 and increased pHi value in a time-dependent manner, associated with the decreased phosphorylations of both Akt and Gridin, while inhibition of NHE1 by amiloride abolished the HG-induced reductions of p-Akt and p-Girdin. However, silence of Akt by siRNA transfection or pharmacological inhibitors (wortmannin and LY294002) bypassed IA-induced Girdin phosphorylation. Overexpression of constitutively active Akt abolished HG-reduced Girdin phosphorylation. In addition, upregulation of Akt or inhibition of NHE1 remarkably attenuated HG-impaired tube formation in HUVEC. In vivo study revealed that amiloride dramatically rescued hyperglycemia-delayed blood perfusion and neovascularization by augmenting ischemia-induced angiogenesis. CONCLUSION IA promotes ischemia-induced angiogenesis via Akt-dependent Girdin phosphorylation in diabetic mice.
Collapse
Affiliation(s)
- Hong-Ming Zhang
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Mo-Yan Liu
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Jun-Xiu Lu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-Li Zhu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Qun Jin
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Song Ping
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-Ling Han
- Department of Cardiology, General Hospital of Shenyang Military Command, Shenyang, China.
| | - Shuang-Xi Wang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiao-Yan Li
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China.
| |
Collapse
|
10
|
Hamzawy M, Gouda SAA, Rashed L, Morcos MA, Shoukry H, Sharawy N. 22-oxacalcitriol prevents acute kidney injury via inhibition of apoptosis and enhancement of autophagy. Clin Exp Nephrol 2018; 23:43-55. [PMID: 29968126 DOI: 10.1007/s10157-018-1614-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between tubular cell damage and regeneration. Several lines of evidences suggest a potential renoprotective effect of vitamin D. In this study, we investigated the effect of 22-oxacalcitriol (OCT), a synthetic vitamin D analogue, on renal fate in a rat model of ischemia reperfusion injury (IRI) induced acute kidney injury (AKI). METHODS 22-oxacalcitriol (OCT) was administered via intraperitoneal (IP) injection before ischemia, and continued after IRI that was performed through bilateral clamping of the renal pedicles. 96 h after reperfusion, rats were sacrificed for the evaluation of autophagy, apoptosis, and cell cycle arrest. Additionally, assessments of toll-like receptors (TLR), interferon gamma (IFN-g) and sodium-hydrogen exchanger-1 (NHE-1) were also performed to examine their relations to OCT-mediated cell response. RESULTS Treatment with OCT-attenuated functional deterioration and histological damage in IRI induced AKI, and significantly decreased cell apoptosis and fibrosis. In comparison with IRI rats, OCT + IRI rats manifested a significant exacerbation of autophagy as well as reduced cell cycle arrest. Moreover, the administration of OCT decreased IRI-induced upregulation of TLR4, IFN-g and NHE-1. CONCLUSION These results demonstrate that treatment with OCT has a renoprotective effect in ischemic AKI, possibly by suppressing cell loss. Changes in the expression of IFN-g and NHE-1 could partially link OCT to the cell survival-promoted effects.
Collapse
Affiliation(s)
- Magda Hamzawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mary Attia Morcos
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Shoukry
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt. .,Cairo University Hospitals, Cairo, Egypt.
| |
Collapse
|
11
|
Packer M. Role of the sodium-hydrogen exchanger in mediating the renal effects of drugs commonly used in the treatment of type 2 diabetes. Diabetes Obes Metab 2018; 20:800-811. [PMID: 29227582 DOI: 10.1111/dom.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/19/2023]
Abstract
Diabetes is characterized by increased activity of the sodium-hydrogen exchanger (NHE) in the glomerulus and renal tubules, which contributes importantly to the development of nephropathy. Despite the established role played by the exchanger in experimental studies, it has not been specifically targeted by those seeking to develop novel pharmacological treatments for diabetes. This review demonstrates that many existing drugs that are commonly prescribed to patients with diabetes act on the NHE1 and NHE3 isoforms in the kidney. This action may explain their effects on sodium excretion, albuminuria and the progressive decline of glomerular function in clinical trials; these responses cannot be readily explained by the influence of these drugs on blood glucose. Agents that may affect the kidney in diabetes by virtue of an action on NHE include: (1) insulin and insulin sensitizers; (2) incretin-based agents; (3) sodium-glucose cotransporter 2 inhibitors; (4) antagonists of the renin-angiotensin system (angiotensin converting-enzyme inhibitors, angiotensin receptor blockers and angiotensin receptor neprilysin inhibitors); and (5) inhibitors of aldosterone action and cholesterol synthesis (spironolactone, amiloride and statins). The renal effects of each of these drug classes in patients with type 2 diabetes may be related to a single shared biological mechanism.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
12
|
Zhao Z, Hu J, Gao X, Liang H, Yu H, Liu S, Liu Z. Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells. Oncotarget 2018; 8:30030-30038. [PMID: 28415790 PMCID: PMC5444723 DOI: 10.18632/oncotarget.16273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/06/2017] [Indexed: 01/02/2023] Open
Abstract
Diabetes is one of high risk factors for cardio- and cerebra-vascular diseases, including stroke, atherosclerosis and hypertension. This study was conducted to elucidate whether and how thromboxane receptor (TPr) activation contributes to blood-brain barrier (BBB) dysfunction in diabetes. Human brain microvascular endothelial cells (HBMECs) were cultured. The levels of phosphorylated endothelial nitric oxide synthase (eNOS) at Ser1177 (p-eNOS) and Akt at Ser473 (p-Akt) were assayed by western blot. Exposure of HBMECs to either high glucose (HG) or thromboxane A2 (TxA2) mimetic U46619, significantly reduced p-eNOS and p-Akt. These effects were abolished by pharmacological or genetic inhibitors of TPr. HG/U46619-induced suppressions of eNOS and Akt phosphorylation were accompanied by upregulation of PTEN and Ser380/Thr382/383 PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation or HG. The small GTPase, Rho, was also activated by HG stimulation, and pretreatment of HBMECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued HG-impaired Akt-eNOS signaling. In STZ-injected rats, we found that hyperglycemia dramatically increased the levels of PTEN and PTEN-Ser380/Thr382/383 phosphorylation, reduced both levels of p-eNOS and p-Akt, and disrupted BBB function assayed by Evans blue staining, which were abolished by SQ29548 treatment. We conclude that hyperglycemia activates thromboxane A2 receptor to impair the integrity and function of blood-brain barrier via the ROCK-PTEN-Akt-eNOS pathway.
Collapse
Affiliation(s)
- Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Jue Hu
- Department of Neurology, Changsha Central Hospital, Changsha, Hunan, China
| | - Xiaoping Gao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Haiya Yu
- Department of Neurology, The People's Hospital of Xishui, Huangang, Hubei, China
| | - Suosi Liu
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China.,Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhan Liu
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
13
|
Antagonist of thromboxane A2 receptor by SQ29548 lowers DOCA-induced hypertension in diabetic rats. Eur J Pharmacol 2017; 815:298-303. [DOI: 10.1016/j.ejphar.2017.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
|
14
|
Packer M. Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure. Circulation 2017; 136:1548-1559. [PMID: 29038209 DOI: 10.1161/circulationaha.117.030418] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the progression of diabetes mellitus and heart failure are closely intertwined, such that worsening of one condition is frequently accompanied by worsening of the other; the degree of clinical acceleration is marked when the 2 coexist. Activation of the sodium-hydrogen exchanger in the heart and vasculature (NHE1 isoform) and the kidneys (NHE3 isoform) may serve as a common mechanism that links both disorders and may underlie their interplay. Insulin insensitivity and adipokine abnormalities (the hallmarks of type 2 diabetes mellitus) are characteristic features of heart failure; conversely, neurohormonal systems activated in heart failure (norepinephrine, angiotensin II, aldosterone, and neprilysin) impair insulin sensitivity and contribute to microvascular disease in diabetes mellitus. Each of these neurohormonal derangements may act through increased activity of both NHE1 and NHE3. Drugs used to treat diabetes mellitus may favorably affect the pathophysiological mechanisms of heart failure by inhibiting either or both NHE isoforms, and drugs used to treat heart failure may have beneficial effects on glucose tolerance and the complications of diabetes mellitus by interfering with the actions of NHE1 and NHE3. The efficacy of NHE inhibitors on the risk of cardiovascular events may be enhanced when heart failure and glucose intolerance coexist and may be attenuated when drugs with NHE inhibitory actions are given concomitantly. Therefore, the sodium-hydrogen exchanger may play a central role in the interplay of diabetes mellitus and heart failure, contribute to the physiological and clinical progression of both diseases, and explain certain drug-drug and drug-disease interactions that have been reported in large-scale randomized clinical trials.
Collapse
Affiliation(s)
- Milton Packer
- From Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX.
| |
Collapse
|
15
|
Xie X, Sun W, Wang J, Li X, Liu X, Liu N. Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice. Clin Exp Hypertens 2017; 39:312-318. [PMID: 28513223 DOI: 10.1080/10641963.2016.1246558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is one of high-risk factors for cardiovascular disease. Improvement of endothelial dysfunction in diabetes reduces vascular complications. However, the underlying mechanism needs to be uncovered. This study was conducted to elucidate whether and how thromboxane A2 receptor (TPr) activation contributes to endothelial dysfunction in diabetes. METHODS AND RESULTS Exposure of human umbilical vein endothelial cells (HUVECs) to either TPr agonists, two structurally related thromboxane A2 (TxA2) mimetics, significantly reduced phosphorylations of endothelial nitric oxide synthase (eNOS) at Ser1177 and Akt at Ser473. These effects were abolished by pharmacological or genetic inhibitors of TPr. TPr-induced suppression of eNOS and Akt phosphorylation was accompanied by upregulation of PTEN (phosphatase and tension homolog deleted on chromosome 10) and Ser380/Thr382/383 PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation. The small GTPase, Rho, was also activated by TPr stimulation, and pretreatment of HUVECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued TPr-impaired Akt-eNOS signaling. In mice, streptozotocin-induced diabetes was associated with aortic PTEN upregulation, PTEN-Ser380/Thr382/383 phosphorylation, and dephosphorylation of Akt (at Ser473) and eNOS (at Ser1177). Importantly, administration of TPr antagonist blocked these changes. CONCLUSION We conclude that TPr activation impairs endothelial function by selectively inactivating the ROCK-PTEN-Akt-eNOS pathway in diabetic mice.
Collapse
Affiliation(s)
- Xiaona Xie
- a Central Laboratory , The Second Hospital of Jilin University , Changchun , P. R. China.,b The First Hospital of Jilin University , Changchun , China
| | - Wanchun Sun
- c Key Laboratory of Zoonosis, Ministry of Education , Institute of Zoonosis, Jilin University , Changchun , China
| | - Jun Wang
- d Shenzhen Center for Chronic Disease Control , Shenzhen , China
| | - Xiaoou Li
- e Tumor Hospital of Jilin Province , Changchun , China
| | - Xiaofeng Liu
- e Tumor Hospital of Jilin Province , Changchun , China
| | - Ning Liu
- a Central Laboratory , The Second Hospital of Jilin University , Changchun , P. R. China
| |
Collapse
|
16
|
Yu W, Liu X, Feng L, Yang H, Yu W, Feng T, Wang S, Wang J, Liu N. Glycation of paraoxonase 1 by high glucose instigates endoplasmic reticulum stress to induce endothelial dysfunction in vivo. Sci Rep 2017; 7:45827. [PMID: 28374834 PMCID: PMC5379182 DOI: 10.1038/srep45827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
High-density lipoprotein (HDL) modulates low-density lipoprotein and cell membrane oxidation through the action of paraoxonase-1 (PON1). Endoplasmic reticulum (ER) stress has been linked to a wide range of human pathologies including diabetes, obesity, and atherosclerosis. Previous studies have reported that PON1 is glycated in diabetes. The aim of this study is to investigate whether and how PON1 glycation contributes to endothelial dysfunction in diabetes. ER stress markers were monitored by western blot. Endothelial function was determined by organ bath. Incubation of recombinant PON1 proteins with high glucose increased PON1 glycation and reduced PON1 activity. Exposure of HUVECs to glycated PON1 induced prolonged ER stress and reduced SERCA activity, which were abolished by tempol, apocynin, BAPTA, and p67 and p22 siRNAs. Chronic administration of amino guanidine or 4-PBA prevented endothelial dysfunction in STZ-injected rats. Importantly, injection of glycated PON1 but not native PON1 induced aberrant ER stress and endothelial dysfunction in rats, which were attenuated by tempol, BAPTA, and 4-PBA. In conclusion, glycation of PON1 by hyperglycemia induces endothelial dysfunction through ER stress. In perspectives, PON1 glycation is a novel risk factor of hyperglycemia-induced endothelial dysfunction. Therefore, inhibition of oxidative stress, chelating intracellular Ca2+, and ER chaperone would be considered to reduce vascular complications in diabetes.
Collapse
Affiliation(s)
- Wei Yu
- Central Laboratory, Second Hospital, Jilin University, Changchun 130041, China.,Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Xiaoli Liu
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Liru Feng
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Hui Yang
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Weiye Yu
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Tiejian Feng
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Shuangxi Wang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Ning Liu
- Central Laboratory, Second Hospital, Jilin University, Changchun 130041, China
| |
Collapse
|
17
|
Resveratrol rescues hyperglycemia-induced endothelial dysfunction via activation of Akt. Acta Pharmacol Sin 2017; 38:182-191. [PMID: 27941804 DOI: 10.1038/aps.2016.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022]
Abstract
Resveratrol (RSV), a phytoalexin, has shown to prevent endothelial dysfunction and reduce diabetic vascular complications and the risk of cardiovascular diseases. The aim of this study was to investigate the signaling mechanisms underlying the protecting effects of RSV against endothelial dysfunction during hyperglycemia in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were treated with RSV, and then exposed to high glucose (HG, 30 mmol/L). Akt-Ser473 phosphorylation, eNOS-Ser1177 phosphorylation, and PTEN protein levels in the cells were detected using Western blot. For in vivo studies, WT and Akt-/- mice were fed a normal diet containing RSV (400 mg·kg-1·d-1) for 2 weeks, then followed by injection of STZ to induce hyperglycemia (300 mg/dL). Endothelial function was evaluated using aortic rings by assessing ACh-induced vasorelaxation. RSV (5-20 μmol/L) dose-dependently increased Akt-Ser473 phosphorylation, accompanied by increased eNOS-Ser1177 phosphorylation in HUVECs; these effects were more prominent under HG stimulation. Transfection with Akt siRNA abolished RSV-enhanced eNOS phosphorylation and NO release. Furthermore, RSV (5-20 μmol/L) dose-dependently decreased the levels of PTEN, which was significantly increased under HG stimulation, and PTEN overexpression abolished RSV-stimulated Akt phosphorylation in HG-treated HUVECs. Moreover, RSV dramatically increased 26S proteasome activity, which induced degradation of PTEN. In in vivo studies, pretreatment with RSV significantly increased Akt and eNOS phosphorylation in aortic tissues and ACh-induced vasorelaxation, and improved diabetes-induced endothelial dysfunction in wild-type mice but not in Akt-/- mice. RSV attenuates endothelial function during hyperglycemia via activating proteasome-dependent degradation of PTEN, which increases Akt phosphorylation, and consequentially upregulation of eNOS-derived NO production.
Collapse
|
18
|
Wu Y, Zhang M, Liu R, Zhao C. Oxidative Stress-Activated NHE1 Is Involved in High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells. Yonsei Med J 2016; 57:1252-9. [PMID: 27401659 PMCID: PMC4960394 DOI: 10.3349/ymj.2016.57.5.1252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/14/2016] [Accepted: 02/17/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes mellitus involving disturbances in electrolytes and the acid-base balance caused by a disorder of glucose metabolism. NHE1 is a Na⁺/H⁺ exchanger responsible for keeping intracellular pH (pHi) balance and cell growth. Our study aimed to investigate roles of NHE1 in high glucose (HG)-induced apoptosis in renal tubular epithelial cells. MATERIALS AND METHODS Renal epithelial tubular cell line HK-2 was cultured in medium containing 5 mM or 30 mM glucose. Then, cell apoptosis, oxidative stress, NHE1 expression, and pHi were evaluated. NHE1 siRNA and inhibitor were used to evaluate its role in cell apoptosis. RESULTS HG significantly increased cell apoptosis and the production of reactive oxygen species (ROS) and 8-OHdG (p<0.05). Meanwhile, we found that HG induced the expression of NHE1 and increased the pHi from 7.0 to 7.6 after 48 h of incubation. However, inhibiting NHE1 using its specific siRNA or antagonist DMA markedly reduced cell apoptosis stimulated by HG. In addition, suppressing cellular oxidative stress using antioxidants, such as glutathione and N-acetyl cysteine, significantly reduced the production of ROS, accompanied by a decrease in NHE1. We also found that activated cyclic GMP-Dependent Protein Kinase Type I (PKG) signaling promoted the production of ROS, which contributed to the regulation of NHE1 functions. CONCLUSION Our study indicated that HG activates PKG signaling and elevates the production of ROS, which was responsible for the induction of NHE1 expression and dysfunction, as well as subsequent cell apoptosis, in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Yiqing Wu
- Department of Nephrology, Tianjin Union Medicine Center, Tianjin, China
| | - Min Zhang
- Department of Nephrology, Tianjin Union Medicine Center, Tianjin, China
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunjie Zhao
- Department of Cardiology, Tianjin Union Medicine Center, Tianjin, China.
| |
Collapse
|
19
|
AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells. Glycoconj J 2016; 33:631-43. [PMID: 27263094 DOI: 10.1007/s10719-016-9686-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 01/12/2023]
Abstract
Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.
Collapse
|