1
|
Wang S, Ruan P, Peng L, Wang J. Cytokine-stimulated human amniotic epithelial cells alleviate DSS-induced colitis in mice through anti-inflammation and regulating Th17/Treg balance. Int Immunopharmacol 2023; 120:110265. [PMID: 37196557 DOI: 10.1016/j.intimp.2023.110265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/05/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon characterized by immune dysregulation. Restoration of the balance between regulatory T (Tregs) and T helper 17 (Th17) cells improves UC symptoms. Human amniotic epithelial cells (hAECs) have emerged as a promising therapeutic option for UC because of their immunomodulatory properties. In this study, we aimed to optimize and maximize the therapeutic potential of hAECs by pre-treating them with tumor necrosis factor (TNF)-α and interferon (IFN)-γ (pre-hAECs) for UC treatment. We evaluated the efficacy of hAECs and pre-hAECs in treating dextran sulfate sodium (DSS)-induced colitis mice. Compared to hAECs, pre-hAECs were found to be more effective in alleviating colitis in acute DSS mouse models than in the controls. Additionally, pre-hAEC treatment significantly reduced weight loss, shortened the colon length, decreased the disease activity index, and effectively maintained the recovery of colon epithelial cells. Furthermore, pre-hAEC treatment significantly inhibited the production of pro-inflammatory cytokines, such as interleukin (IL)-1β and TNF-α, and promoted the expression of anti-inflammatory cytokines, such as IL-10. Both in vivo and in vitro studies revealed that pre-treatment with hAECs significantly increased the number of Treg cells, decreased the numbers of Th1, Th2, and Th17 cells, and regulated the balance of Th17/Treg cells. In conclusion, our results revealed that hAECs pre-treated with TNF-α and IFN-γ were highly effective in treating UC, suggesting their potential as therapeutic candidates for UC immunotherapy.
Collapse
Affiliation(s)
- Susu Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China; Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Pinglang Ruan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan Province, China
| | - Lin Peng
- Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, China
| | - Jian Wang
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, China; National Engineering and Research Center of Human Stem Cell, Changsha, China.
| |
Collapse
|
2
|
Ivosevic Z, Ljujic B, Pavlovic D, Matovic V, Gazdic Jankovic M. Mesenchymal Stem Cell-Derived Extracellular Vesicles: New Soldiers in the War on Immune-Mediated Diseases. Cell Transplant 2023; 32:9636897231207194. [PMID: 37882092 PMCID: PMC10605687 DOI: 10.1177/09636897231207194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory diseases are a group of debilitating disorders with varying degrees of long-lasting functional impairment of targeted system. New therapeutic agents that will attenuate on-going inflammation and, at the same time, promote regeneration of injured organ are urgently needed for the treatment of autoimmune and inflammatory disorders. During the last decade numerous studies have demonstrated that crucial therapeutic benefits of mesenchymal stem cells (MSCs) in inflammatory diseases are based on the effects of MSC-produced paracrine mediators and not on the activity of engrafted cells themselves. Thus, to overcome the limitations of stem cell transplantation, MSC-derived extracellular vesicles (MSC-EVs) have been rigorously investigated, as a promising cell-free pharmaceutical component. In this review, we focus on the mechanisms of MSC-EV covering the current knowledge on their potential therapeutic applications for immune-mediated diseases.
Collapse
Affiliation(s)
- Zeljko Ivosevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vesna Matovic
- Cardiology Clinic, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
3
|
Sheikholeslami A, Fazaeli H, Kalhor N, Khoshandam M, Eshagh Hoseini SJ, Sheykhhasan M. Use of Mesenchymal Stem Cells in Crohn's Disease and Perianal Fistulas: A Narrative Review. Curr Stem Cell Res Ther 2023; 18:76-92. [PMID: 34530720 DOI: 10.2174/1574888x16666210916145717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Crohn's Disease (CD), which usually leads to anal fistulas among patients, is the most important inflammatory bowel disease that causes morbidity in many people around the world. This review article proposes using MSCs as a hopeful therapeutic strategy for CD and anal fistula treatment in both preclinical and clinical conditions. Finally, darvadstrocel, a cell-based medication to treat complex anal fistulas in adults, as the only European Medicines Agency (EMA)-approved product for the treatment of anal fistulas in CD is addressed. Although several common therapies, such as surgery and anti-tumor necrosis factor-alpha (TNF-α) drugs as well as a combination of these methods is used to improve this disease, however, due to the low effectiveness of these treatments, the use of new strategies with higher efficiency is still recommended. Cell therapy is among the new emerging therapeutic strategies that have attracted great attention from clinicians due to its unique capabilities. One of the most widely used cell sources administrated in cell therapy is mesenchymal stem cell (MSC). This review article will discuss preclinical and clinical studies about MSCs as a potent and promising therapeutic option in the treatment of CD and anal fistula.
Collapse
Affiliation(s)
- Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom,Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Mohadeseh Khoshandam
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | | | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
- Department of Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2023; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Exo-D-Mapps Attenuates Production of Inflammatory Cytokines and Promoted Generation of Immunosuppressive Phenotype in Peripheral Blood Mononuclear Cells. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2019-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mesenchymal stem cells (MSCs) produce immunomodulatory factors that regulate production of cytokines and chemokines in immune cells affecting their functional properties. Administration of MSCs-sourced secretome, including MSC-derived conditioned medium (MSC-CM) and MSC-derived exosomes (MSC-Exos), showed beneficial effects similar to those observed after transplantation of MSCs. Due to their nano-size dimension, MSC-Exos easily penetrate through the tissue and in paracrine and endocrine manner, may deliver MSC-sourced factors to the target immune cells modulating their function. MSCs derived from amniotic fluid (AF-MSCs) had superior cell biological properties than MSCs derived from bone marrow. We recently developed “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling (Exo-d-MAPPS)”, a biological product in which the activity is based on AF-MSC-derived Exos capable to deliver immunomodulatory molecules and growth factors to the target cells. Herewith, we analyzed immunosuppressive capacity of Exo-d-MAPPS against human peripheral blood mononuclear cells (pbMNCs) and demonstrated that Exo-d-MAPPS efficiently suppressed generation of inflammatory phenotype in activated pbMNCs. Exo-d-MAPPS attenuated production of inflammatory cytokines and promoted generation of immunosuppressive phenotype in Lipopolysaccharide-primed pbMNCs. Exo-d-MAPPS treatment reduced expansion of inflammatory Th1 and Th17 cells and promoted generation of immunosuppressive T regulatory cells in the population of Concanavalin A-primed pbMNCs. Similarly, Exod-MAPPS treatment suppressed pro-inflammatory and promoted anti-inflammatory properties of α-GalCer-primed pbMNCs. In summing up, due to its capacity for suppression of activated pbMNCs, Exo-d-MAPPS should be further explored in animal models of acute and chronic inflammatory diseases as a potentially new remedy for the attenuation of detrimental immune response.
Collapse
|
6
|
Zhou B, Liu J, Wang Y, Wu F, Wang C, Wang C, Liu J, Li P. Protective Effect of Ethyl Rosmarinate against Ulcerative Colitis in Mice Based on Untargeted Metabolomics. Int J Mol Sci 2022; 23:1256. [PMID: 35163182 PMCID: PMC8836019 DOI: 10.3390/ijms23031256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aiming at assessing the therapeutic effect of ethyl rosmarinate (ER) on ulcerative colitis (UC), the following activities were performed in vitro and in vivo in the present study. Firstly, a lipopolysaccharide (LPS)-induced RAW264.7 cell inflammation model was established to determine the level of inflammatory factors. Then, a UC mice model induced by dextran sodium sulfate (DSS) was established to further investigate the effects of ER on symptoms, inflammatory factors and colon histopathology. Finally, serum and colon metabolomics studies were performed to identify the biomarkers and metabolisms closely related to the protective effect of ER on UC. The results showed that after ER intervention, the levels of inflammatory factors (NO, TNF-α, IL-1β and IL-6) and key enzyme (MPO) in cell supernatant, serum or colon were significantly decreased, and the disease activity index and colon tissue damage in mice were also effectively improved or restored. In addition, 28 biomarkers and 6 metabolisms were found to be re-regulated by ER in the UC model mice. Therefore, it could be concluded that ER could effectively ameliorate the progression of UC and could be used as a new natural agent for the treatment of UC.
Collapse
Affiliation(s)
- Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Yaru Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Fulin Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Improving the Efficacy of Mesenchymal Stem/Stromal-Based Therapy for Treatment of Inflammatory Bowel Diseases. Biomedicines 2021; 9:biomedicines9111507. [PMID: 34829736 PMCID: PMC8615066 DOI: 10.3390/biomedicines9111507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) consisting of persistent and relapsing inflammatory processes of the intestinal mucosa are caused by genetic, environmental, and commensal microbiota factors. Despite recent advances in clinical treatments aiming to decrease inflammation, nearly 30% of patients treated with biologicals experienced drawbacks including loss of response, while others can develop severe side effects. Hence, novel effective treatments are highly needed. Mesenchymal stem/stromal cell (MSCs) therapy is an innovative therapeutic alternative currently under investigation for IBD. MSCs have the inherent capacity of modulating inflammatory immune responses as well as regenerating damaged tissues and are therefore a prime candidate to use as cell therapy in patients with IBD. At present, MSC-based therapy has been shown preclinically to modulate intestinal inflammation, whilst the safety of MSC-based therapy has been demonstrated in clinical trials. However, the successful results in preclinical studies have not been replicated in clinical trials. In this review, we will summarize the protocols used in preclinical and clinical trials and the novel approaches currently under investigation which aim to increase the beneficial effects of MSC-based therapy for IBD.
Collapse
|
8
|
Hasgur S, Desbourdes L, Relation T, Overholt KM, Stanek JR, Guess AJ, Yu M, Patel P, Roback L, Dominici M, Otsuru S, Horwitz EM. Splenic macrophage phagocytosis of intravenously infused mesenchymal stromal cells attenuates tumor localization. Cytotherapy 2021; 23:411-422. [PMID: 33781710 DOI: 10.1016/j.jcyt.2020.04.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess remarkable tumor tropism, making them ideal vehicles to deliver tumor-targeted therapeutic agents; however, their value in clinical medicine has yet to be realized. A barrier to clinical utilization is that only a small fraction of infused MSCs ultimately localize to the tumor. In an effort to overcome this obstacle, we sought to enhance MSC trafficking by focusing on the factors that govern MSC arrival within the tumor microenvironment. Our findings show that MSC chemoattraction is only present in select tumors, including osteosarcoma, and that the chemotactic potency among similar tumors varies substantially. Using an osteosarcoma xenograft model, we show that human MSCs traffic to the tumor within several hours of infusion. After arrival, MSCs are observed to localize in clusters near blood vessels and MSC-associated bioluminescence signal intensity is increased, suggesting that the seeded cells expand after engraftment. However, our studies reveal that a significant portion of MSCs are eliminated en route by splenic macrophage phagocytosis, effectively limiting the number of cells available for tumor engraftment. To increase MSC survival, we transiently depleted macrophages with liposomal clodronate, which resulted in increased tumor localization without substantial reduction in tumor-associated macrophages. Our data suggest that transient macrophage depletion will significantly increase the number of MSCs in the spleen and thus improve MSC localization within a tumor, theoretically increasing the effective dose of an anti-cancer agent. This strategy may subsequently improve the clinical efficacy of MSCs as vehicles for the tumor-directed delivery of therapeutic agents.
Collapse
Affiliation(s)
- Suheyla Hasgur
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Laura Desbourdes
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Theresa Relation
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen M Overholt
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Joseph R Stanek
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Adam J Guess
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Minjun Yu
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Pratik Patel
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linda Roback
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Edwin M Horwitz
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
9
|
Hosseini-Asl SK, Mehrabani D, Karimi-Busheri F. Therapeutic Effect of Mesenchymal Stem Cells in Ulcerative Colitis: A Review on Achievements and Challenges. J Clin Med 2020; 9:E3922. [PMID: 33287220 PMCID: PMC7761671 DOI: 10.3390/jcm9123922] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemiology of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), still shows an increasing trend in Asia and Iran. Despite an improvement in the treatment landscape focused on symptomatic control, long-term colectomies have not decreased over the last 10-year period. Thus, novel therapies are urgently needed in clinics to supplement the existing treatments. Mesenchymal stem cells (MSCs) are multipotent adult stem cells with immunosuppressive effects, targeting IBD as a new treatment strategy. They have recently received global attention for their use in cell transplantation due to their easy expansion and wide range of activities to be engrafted, and because they are home to the mucosa of the intestine. Moreover, MSCs are able to differentiate into epithelial and other cells that can directly promote repair in the mucosal damages in UC. It seems that there is a need to deepen our understanding to target MSCs as a promising treatment option for UC patients who are refractory to conventional therapies. Here, we overviewed the therapeutic effects of MSCs in UC and discussed the achievements and challenges in the cell transplantation of UC.
Collapse
Affiliation(s)
- Seyed-Kazem Hosseini-Asl
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
10
|
Hong H, Chen X, Li K, Wang N, Li M, Yang B, Yu X, Wei X. Dental follicle stem cells rescue the regenerative capacity of inflamed rat dental pulp through a paracrine pathway. Stem Cell Res Ther 2020; 11:333. [PMID: 32746910 PMCID: PMC7397608 DOI: 10.1186/s13287-020-01841-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/27/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Pulpitis is a common dental disease characterized by sustained inflammation and impaired pulp self-repair. Mesenchymal stem cell-based minimally invasive vital pulp therapy (MSC-miVPT) is a potential treatment method, but its application is limited by the difficulty in acquiring MSCs. We recently revealed the immunomodulatory effects of rat dental follicle stem cells (rDFSCs) on acute lung injury. The present study focused on the paracrine effects of rDFSCs on the inflammation and regeneration of rat injured dental pulp to detect whether DFSCs are a potential candidate for MSC-miVPT. Methods Conditioned medium from rDFSCs (rDFSC-CM) was applied to lipopolysaccharide (LPS)-induced inflammatory rat dental pulp cells (rDPCs). The inflammation and regeneration of rDPCs were detected by RT-qPCR, Western blotting, immunofluorescence staining, Cell Counting Kit-8 (CCK-8) assay, flow cytometry, wound-healing assay, and Masson’s staining. The effects of rDFSC-CM on inflamed rat dental pulp were further evaluated by hematoxylin-eosin and immunohistochemical staining. Results rDFSC-CM downregulated the ERK1/2 and NF-κB signaling pathways, which resulted in suppression of the expression of IL-1β, IL-6, and TNF-α and promotion of the expression of IL-4 and TGF-β, and these findings lead to the attenuation of rDPC inflammation. rDFSC-CM enhanced the in vitro proliferation, migration, and odontogenic differentiation of inflammatory rDPCs and their in vivo ectopic dentinogenesis. Furthermore, rDFSC-CM inhibited inflammatory cell infiltration in rat pulpitis and triggered Runx2 expression in some of the odontoblast-like cells surrounding the injured site, and these effects were conducive to the repair of inflamed dental pulp. Conclusions rDFSC-CM exhibits therapeutic potential by rescuing the regeneration of the inflamed rat dental pulp through an immunomodulatory mechanism, indicating the application prospects of DFSCs in biological regenerative endodontics.
Collapse
Affiliation(s)
- Hong Hong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
| | - Xiaochuan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China.,Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Nan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Mengjie Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
11
|
Wu X, Wu D, Mu Y, Zhao Y, Ma Z. Serum-Free Medium Enhances the Therapeutic Effects of Umbilical Cord Mesenchymal Stromal Cells on a Murine Model for Acute Colitis. Front Bioeng Biotechnol 2020; 8:586. [PMID: 32671030 PMCID: PMC7332562 DOI: 10.3389/fbioe.2020.00586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
The usage of animal serum may ultimately prevent the application of ex vivo cultured mesenchymal stromal cells (MSCs) in a clinical setting due to safety concerns and batch-to-batch variability. Increasing regulatory pressure to limit use of animal serum has been issued and serum-free, xeno-free, and chemically defined media (S&XFM-CD) is encouraged to replace serum-containing media (SCM) in the stem cell preparation process. We previously developed a S&XFM-CD for the expansion of umbilical cord-derived MSCs (UCMSCs). Different culture conditions affect the function of MSCs, which may further affect the therapeutic efficiency and mechanisms of action. In this study, we compared the therapeutic effect and mechanism of UCMSCs in S&XFM-CD (UCMSCS&XFM−CD) in experimental colitis with those in SCM (UCMSCSCM). UCMSCS&XFM−CD exhibited better therapeutic effects than UCMSCSCM by body weight, disease activity index, and histological colitis score. UCMSCS&XFM−CD or UCMSCSCM migrated to the inflammation site of injured colon, but exhibited low levels of recruitment and persistence. Systemic depletion of endogenous macrophages impaired the therapeutic effects of UCMSCSCM and UCMSCS&XFM−CD. Furthermore, UCMSCS&XFM−CD more markedly promoted intestinal macrophage polarisation from M1 to M2 phenotype to produce higher levels of IL-10 and lower levels of TNF-α in colon tissue than UCMSCSCM, while a higher level of IL-4 was produced in UCMSCSCM-treated group. UCMSCS&XFM−CD cocultured with RAW264.7 cells in a transwell system promoted the release of TSG-6 and IL-6, whereas UCMSCSCM increased PGE2 levels. Taken together, we demonstrated that UCMSCs in S&XFM-CD exhibited improved therapeutic effects with altered cytokine secretion in an experimental acute colitis model.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China.,Department of Technology, Stem Cell Medicine Engineering & Technology Research Center of Inner Mongolia, Huhhot, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yongxu Mu
- Interventional Department, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yuxia Zhao
- Department of Blood, The People's Hospital of Xing'an League, Ulanhot, China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Hoogduijn MJ, Lombardo E. Mesenchymal Stromal Cells Anno 2019: Dawn of the Therapeutic Era? Concise Review. Stem Cells Transl Med 2019; 8:1126-1134. [PMID: 31282113 PMCID: PMC6811696 DOI: 10.1002/sctm.19-0073] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
2018 was the year of the first marketing authorization of an allogeneic stem cell therapy by the European Medicines Agency. The authorization concerns the use of allogeneic adipose tissue-derived mesenchymal stromal cells (MSCs) for treatment of complex perianal fistulas in Crohn's disease. This is a breakthrough in the field of MSC therapy. The last few years have, furthermore, seen some breakthroughs in the investigations into the mechanisms of action of MSC therapy. Although the therapeutic effects of MSCs have largely been attributed to their secretion of immunomodulatory and regenerative factors, it has now become clear that some of the effects are mediated through host phagocytic cells that clear administered MSCs and in the process adapt an immunoregulatory and regeneration supporting function. The increased interest in therapeutic use of MSCs and the ongoing elucidation of the mechanisms of action of MSCs are promising indicators that 2019 may be the dawn of the therapeutic era of MSCs and that there will be revived interest in research to more efficient, practical, and sustainable MSC-based therapies. Stem Cells Translational Medicine 2019;8:1126-1134.
Collapse
Affiliation(s)
- Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
13
|
Arsenijevic A, Milovanovic J, Stojanovic B, Djordjevic D, Stanojevic I, Jankovic N, Vojvodic D, Arsenijevic N, Lukic ML, Milovanovic M. Gal-3 Deficiency Suppresses Novosphyngobium aromaticivorans Inflammasome Activation and IL-17 Driven Autoimmune Cholangitis in Mice. Front Immunol 2019; 10:1309. [PMID: 31231399 PMCID: PMC6568238 DOI: 10.3389/fimmu.2019.01309] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Gal-3 has the role in multiple inflammatory pathways. Multiple-hit etiology of primary biliary cholangitis (PBC) and evolving immune response at various stages of the disease includes involvement of Gal-3 in PBC pathogenesis. In this study we aimed to clarify the role of Gal-3 in Novosphingobium aromaticivorans (N. aromaticivorans) induced biliary disease. Autoimmune cholangitis was induced in mice by two intra-peritoneal injections of N. aromaticivorans within 2 weeks. The role of Gal-3 was evaluated by using Lgals3−/− mice and mice treated with Gal-3 inhibitor. The histological and serological parameters of disease, phenotype of dendritic, NK, NKT, and T cells and inflammasome expression were evaluated. Marked attenuation of the disease in Lgals3−/− and Gal-3 inhibitor, DAVANAT®, treated mice is manifested by the absence of bile duct damage, granulomas and fibrosis. Liver infiltrates of N. aromaticivorans infected wild type mice had higher incidence of pro-inflammatory macrophages, dendritic cells, NK, NKT, and T cells. Lgals3 deletion and treatment with Gal-3 inhibitor reduced inflammatory mononuclear cell infiltrate, expression of NLRP3 inflammasome in the liver infiltrates and interleukin-1β (IL-1β) production in the livers of N. aromaticivorans infected mice. In vitro stimulation of wild type peritoneal macrophages with N. aromaticivorans caused increased NLRP3 expression, caspase-1 activity and IL-1β production compared with Lgals3−/− cells. Our data highlight the importance of Gal-3 in promotion of inflammation in N. aromaticivorans induced PBC by enhancing the activation of NLRP3 inflammasome and production of IL-1β and indicate Gal-3 as possible therapeutical target in autoimmune cholangitis. Galectin-3 appears involved in inflammatory response to gut commensal leading to PBC.
Collapse
Affiliation(s)
- Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Faculty of Medical Sciences, Institute of Histology, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Faculty of Medical Sciences, Institute of Pathophysiology, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Djordjevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Stanojevic
- Institute of Medical Research, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Nenad Jankovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Danilo Vojvodic
- Institute of Medical Research, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
14
|
Kang J, Zhang L, Luo X, Ma X, Wang G, Yang Y, Yan Y, Qian H, Zhang X, Xu W, Mao F. Systematic Exposition of Mesenchymal Stem Cell for Inflammatory Bowel Disease and Its Associated Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9652817. [PMID: 30687760 PMCID: PMC6327253 DOI: 10.1155/2018/9652817] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) therapy has been applied to a wide range of diseases with excessive immune response, including inflammatory bowel disease (IBD), owing to its powerful immunosuppression and its ability to repair tissue lesions. Different sources of MSCs show different therapeutic properties. Engineering managements are able to enhance the immunomodulation function and the survival of MSCs involved in IBD. The therapeutic mechanism of MSCs in IBD mainly focuses on cell-to-cell contact and paracrine actions. One of the promising therapeutic options for IBD can focus on exosomes of MSCs. MSCs hold promise for the treatment of IBD-associated colorectal cancer because of their tumor-homing function and chronic inflammation inhibition. Encouraging results have been obtained from clinical trials in IBD and potential challenges caused by MSCs therapy are getting solved. This review can assist investigators better to understand the research progress for enhancing the efficacy of MSCs therapy involved in IBD and CAC.
Collapse
Affiliation(s)
- Jingjing Kang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Zhang
- Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu 211200, China
| | - Xiao Luo
- The Third People's Hospital of Sihong County, Suqian, Jiangsu 223911, China
| | - Xiangyu Ma
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhui Yang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongmin Yan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
15
|
Zhu X, Tu Y, Chen H, Jackson AO, Patel V, Yin K. Micro-environment and intracellular metabolism modulation of adipose tissue macrophage polarization in relation to chronic inflammatory diseases. Diabetes Metab Res Rev 2018; 34:e2993. [PMID: 29475214 DOI: 10.1002/dmrr.2993] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Abstract
The accumulation and pro-inflammatory polarization of immune cells, mainly macrophages, in adipose tissue (AT) are considered crucial factors for obesity-induced chronic inflammatory diseases. In this review, we highlighted the role of adipose tissue macrophage (ATM) polarization on AT function in the obese state and the effect of the micro-environment and intracellular metabolism on the dynamic switch of ATMs into their pro-inflammatory or anti-inflammatory phenotypes, which may have distinct influences on obesity-related chronic inflammatory diseases. Obesity-associated metabolic dysfunctions, including those of glucose, fatty acid, cholesterol, and other nutrient substrates such as vitamin D and iron in AT, promote the pro-inflammatory polarization of ATMs and AT inflammation via regulating the interaction between ATMs and adipocytes and intracellular metabolic pathways, including glycolysis, fatty acid oxidation, and reverse cholesterol transportation. Focusing on the regulation of ATM metabolism will provide a novel target for the treatment of obesity-related chronic inflammatory diseases, including insulin resistance, cardiovascular diseases, and cancers.
Collapse
Affiliation(s)
- Xiao Zhu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Yixuan Tu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Hainan Chen
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Ampadu O Jackson
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Vaibhav Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
16
|
Jakovljevic J, Harrell CR, Fellabaum C, Arsenijevic A, Jovicic N, Volarevic V. Modulation of autophagy as new approach in mesenchymal stem cell-based therapy. Biomed Pharmacother 2018; 104:404-410. [PMID: 29787987 DOI: 10.1016/j.biopha.2018.05.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Due to their trophic and immunoregulatory characteristics mesenchymal stem cells (MSCs) have tremendous potential for use in a variety of clinical applications. Challenges in MSCs' clinical applications include low survival of transplanted cells and low grafting efficiency requiring use of a high number of MSCs to achieve therapeutic benefits. Accordingly, new approaches are urgently needed in order to overcome these limitations. Recent evidence indicates that modulation of autophagy in MSCs prior to their transplantation enhances survival and viability of engrafted MSCs and promotes their pro-angiogenic and immunomodulatory characteristics. Here, we review the current literature describing mechanisms by which modulation of autophagy strengthens pro-angiogenic and immunosuppressive characteristics of MSCs in animal models of multiple sclerosis, osteoporosis, diabetic limb ischemia, myocardial infarction, acute graft-versus-host disease, kidney and liver diseases. Obtained results suggest that modulation of autophagy in MSCs may represent a new therapeutic approach that could enhance efficacy of MSCs in the treatment of ischemic and autoimmune diseases.
Collapse
Affiliation(s)
- Jelena Jakovljevic
- University of Kragujevac Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, 69 Svetozar Markovic Street, 34000, Kragujevac, Serbia
| | - C Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, Florida, United States
| | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, Florida, United States
| | - Aleksandar Arsenijevic
- University of Kragujevac Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, 69 Svetozar Markovic Street, 34000, Kragujevac, Serbia
| | - Nemanja Jovicic
- University of Kragujevac Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, 69 Svetozar Markovic Street, 34000, Kragujevac, Serbia
| | - Vladislav Volarevic
- University of Kragujevac Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, 69 Svetozar Markovic Street, 34000, Kragujevac, Serbia.
| |
Collapse
|
17
|
Hidalgo-Garcia L, Galvez J, Rodriguez-Cabezas ME, Anderson PO. Can a Conversation Between Mesenchymal Stromal Cells and Macrophages Solve the Crisis in the Inflamed Intestine? Front Pharmacol 2018; 9:179. [PMID: 29559912 PMCID: PMC5845680 DOI: 10.3389/fphar.2018.00179] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of the gastrointestinal tract characterized by an exacerbated mucosal immune response. Macrophages play pivotal roles in the maintenance of gut homeostasis but they are also implicated in the pathogenesis of IBD. They are highly plastic cells and their activation state depends on the local environment. In the healthy intestine, resident macrophages display an M2 phenotype characterized by inflammatory energy, while inflammatory M1 macrophages dominate in the inflamed intestinal mucosa. In this regard, modifying the balance of macrophage populations into an M2 phenotype has emerged as a new therapeutic approach in IBD. Multipotent mesenchymal stromal cells (MSCs) have been proposed as a promising cell-therapy for the treatment of IBD, considering their immunomodulatory and tissue regenerative potential. Numerous preclinical studies have shown that MSCs can induce immunomodulatory macrophages and have demonstrated that their therapeutic efficacy in experimental colitis is mediated by macrophages with an M2-like phenotype. However, some issues have not been clarified yet, including the importance of MSC homing to the inflamed colon and/or lymphoid organs, their optimal route of administration or whether they are effective as living or dead cells. In contrast, the mechanisms behind the effect of MSCs in human IBD are not known and more data are needed regarding the effect of MSCs on macrophage polarization that would support the observation reported in the experimental models. Nevertheless, MSCs have emerged as a novel method to treat IBD that has already been proven safe and with clinical benefits that could be administered in combination with the currently used pharmacological treatments.
Collapse
Affiliation(s)
- Laura Hidalgo-Garcia
- Center for Biomedical Research (CIBM), CIBER-EHD, ibs.Granada, Department of Pharmacology, University of Granada, Granada, Spain
| | - Julio Galvez
- Center for Biomedical Research (CIBM), CIBER-EHD, ibs.Granada, Department of Pharmacology, University of Granada, Granada, Spain
| | - M Elena Rodriguez-Cabezas
- Center for Biomedical Research (CIBM), CIBER-EHD, ibs.Granada, Department of Pharmacology, University of Granada, Granada, Spain
| | - Per O Anderson
- Stromal Cells and Immunology Group, Pfizer, University of Granada, Andalusian Regional Government Centre of Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
18
|
Nikolic A, Simovic Markovic B, Gazdic M, Randall Harrell C, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, L Lukic M, Stojkovic M, Volarevic V. Intraperitoneal administration of mesenchymal stem cells ameliorates acute dextran sulfate sodium-induced colitis by suppressing dendritic cells. Biomed Pharmacother 2018; 100:426-432. [PMID: 29471245 DOI: 10.1016/j.biopha.2018.02.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/02/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) have important pathogenic role in the induction and progression of ulcerative colitis (UC), but their role in mesenchymal stem cells (MSCs)-mediated suppression of colon injury and inflammation is not revealed. By using dextran sodium sulfate (DSS)-induced colitis, a well-established murine model of UC, we examined effects of MSCs on phenotype and function of colon infiltrating DCs. Clinical, histological, immunophenotypic analysis and passive transfer of MSCs-primed DCs were used to evaluate capacity of MSC to suppress inflammatory phenotype of DCs in vivo. Additionally, DCs:MSCs interplay was also investigated in vitro, to confirmed in vivo obtained findings. Intraperitoneally administered MSCs (2 × 106) significantly reduced progression of DSS-induced colitis and reduced serum levels of inflammatory cytokines (IL-1β, IL-12, and IL-6). Passive transfer of in vivo MSCs-primed DCs reduced severity of colitis while passive transfer of MSCs-non-primed DCs aggravated DSS-induced colitis. Through the secretion of immunomodulatory Galectin 3, MSCs, in paracrine manner, down-regulated production of inflammatory cytokines in DCs and attenuated expression of co-stimulatory and major histocompatibility complex class II molecules on their membranes. Taken together, these results indicate that MSCs achieved their beneficial effects in DSS-induced colitis by suppressing inflammatory phenotype of DCs in Gal-3 dependent manner. Therapeutic targeting of DCs by MSCs should be explored in future studies as a useful approach for the treatment of UC.
Collapse
Affiliation(s)
- Aleksandar Nikolic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Simovic Markovic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - C Randall Harrell
- Regenerative Processing Plant, LLC, Palm Harbor, Florida, United States
| | - Crissy Fellabaum
- Regenerative Processing Plant, LLC, Palm Harbor, Florida, United States
| | - Nemanja Jovicic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Nebojsa Arsenijevic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L Lukic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag Stojkovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia; Spebo Medical, Leskovac, Serbia
| | - Vladislav Volarevic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
19
|
Markovic BS, Kanjevac T, Harrell CR, Gazdic M, Fellabaum C, Arsenijevic N, Volarevic V. Molecular and Cellular Mechanisms Involved in Mesenchymal Stem Cell-Based Therapy of Inflammatory Bowel Diseases. Stem Cell Rev Rep 2017; 14:153-165. [DOI: 10.1007/s12015-017-9789-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Markovic BS, Milosavljevic N, Arsenijevic A, Gazdic M, Lukic ML, Volarevic V. Bacterial Flora Play Important Roles in Acute Dextran Sulphate Sodium-Induced Colitis But Are Not Involved in Gal-3 Dependent Modulation of Colon Inflammation. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2017. [DOI: 10.1515/sjecr-2017-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
An altered immune response to normal gut microflora is important for the pathogenesis of ulcerative colitis (UC). Galectin- 3 (Gal-3) is an endogenous lectin that plays an important pro-inflammatory role in the induction phase of acute colitis by promoting activation of the NLRP3 infl ammasome and production of IL-1β in macrophages. By using dextran sulphate sodium (DSS) induced colitis, a well-established animal model of UC, we determined whether Gal-3 affects the function of colon infiltrating macrophages by interfering with intestinal microfl ora. Our results showed that genetic deletion of Gal-3 significantly attenuates DSS-induced colitis by down-regulating infiltration of phagocytic cells (neutrophils, macrophages and dendritic cells) in colon tissue of DSS-treated mice, and this correlated with differences in bacterial flora of the gut. Antibiotic treatment attenuates DSS-induced colitis in WT and Gal-3-/- mice without affecting differences between the groups. In conclusion, Gram negative bacterial flora play an important role in DSS-induced acute colitis of mice but are not involved in Gal-3 dependent modulation of colon inflammation.
Collapse
Affiliation(s)
- Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac , Serbia
| | - Neda Milosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac , Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac , Serbia
| | - Marina Gazdic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac , Serbia
| | - Miodrag L. Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac , Serbia
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac , Serbia
- 69 Svetozara Markovica Street, 34000 Kragujevac , Serbia
| |
Collapse
|
21
|
Gazdic M, Arsenijevic A, Markovic BS, Volarevic A, Dimova I, Djonov V, Arsenijevic N, Stojkovic M, Volarevic V. Mesenchymal Stem Cell-Dependent Modulation of Liver Diseases. Int J Biol Sci 2017; 13:1109-1117. [PMID: 29104502 PMCID: PMC5666326 DOI: 10.7150/ijbs.20240] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure and cirrhosis display sequential and overlapping severe pathogenic processes that include inflammation, hepatocyte necrosis, and fibrosis, carrying a high mortality rate. Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal stem cells with immunonodulatory characteristics. MSCs are considered to act through multiple mechanisms to coordinate a dynamic, integrated response to liver inflammation and fibrosis, which prevents the progressive distortion of hepatic architecture. Accordingly, MSCs as well as their products have been investigated as a novel therapeutic approach for the treatment of inflammatory and fibrotic liver diseases. In this review, we highlight the current findings on the MSC-based modulation of liver inflammation and fibrosis, and the possible use of MSCs in the therapy of immune-mediated liver pathology. We briefly describe the cellular and molecular mechanisms involved in MSC-dependent modulation of cytokine production, phenotype and function of liver infiltrated inflammatory cells and compare effects of engrafted MSCs versus MSC-generated conditioned medium (MSC-CM) in the therapy of acute liver injury. In order to elucidate therapeutic potential of MSCs and their products in modulation of chronic liver inflammation and fibrosis, we present the current findings regarding pathogenic role of immune cells in liver fibrosis and describe mechanisms involved in MSC-dependent modulation of chronic liver inflammation with the brief overview of on-going and already published clinical trials that used MSCs for the treatment of immune mediated chronic liver diseases. The accumulating evidence shows that MSCs had a significant beneficial effect in the treatment of immune-mediated liver diseases.
Collapse
Affiliation(s)
- Marina Gazdic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics
| | - Aleksandar Arsenijevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Bojana Simovic Markovic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Ana Volarevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Ivanka Dimova
- Department of medical genetics, Medical University Sofia, Sofia, Bulgaria
| | | | - Nebojsa Arsenijevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Miodrag Stojkovic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics.,Spebo Medical, Leskovac, Serbia
| | - Vladislav Volarevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| |
Collapse
|
22
|
Crosstalk between mesenchymal stem cells and macrophages in inflammatory bowel disease and associated colorectal cancer. Contemp Oncol (Pozn) 2017; 21:91-97. [PMID: 28947877 PMCID: PMC5611497 DOI: 10.5114/wo.2017.68616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are attractive seed cells for immunotherapy, tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities, diverse immunoregulatory functions and ease of isolation from a wide range of tissues. MSCs exert their immunoregulatory effect on immune cells via cell-to-cell contact and paracrine mechanisms. In turn, MSCs can also be modulated by immune cells. Macrophages are constantly present in the mucosa of the intestinal tract of mammals and play an important role in the development and progression of inflammatory bowel disease (IBD), a chronic and recurrent inflammatory disease of the gastrointestinal tract characterized by idiopathic mucosal inflammation. The increased morbidity and mortality of IBD have made it a disease hard to cure in the clinic. MSCs have emerged as an important tool for IBD therapy due to their abilities to differentiate into enterocyte-like cells and regulate inflammatory cells, especially macrophages. In this review, we discuss the recent advances in the interaction between MSCs and macrophages in diseases, with an emphasis on IBD. We propose that an optimized MSC-based therapy would provide a novel strategy for the treatment of IBD and the prevention of IBD-associated colorectal cancer (CRC).
Collapse
|
23
|
Mao F, Tu Q, Wang L, Chu F, Li X, Li HS, Xu W. Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget 2017; 8:38008-38021. [PMID: 28402942 PMCID: PMC5514968 DOI: 10.18632/oncotarget.16682] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are non-hematopoietic stem cells that facilitate tissue regeneration through mechanisms involving self-renewal and differentiation, supporting angiogenesis and tissue cell survival, and limiting inflammation. MSCs were originally identified and expanded in long-term cultures of cells from bone marrow and other organs; and their native identity was recently confined into pericytes and adventitial cells in vascularized tissue. The multipotency, as well as the trophic and immunosuppressive effects, of MSCs have prompted the rapid development of clinical applications for many diseases involving tissue inflammation and immune disorders, including inflammatory bowel disease. Although standard criteria have been established to define MSCs, their therapeutic efficacy has varied significantly among studies due to their natural heterogenicity. Thus, understanding the biological and immunological features of MSCs is critical to standardize and optimize MSCs-based therapy. In this review, we highlight the cellular and molecular mechanisms involved in MSCs-mediated tissue repair and immunosuppression. We also provide an update on the current development of MSCs-based clinical trials, with a detailed discussion of MSC-based cell therapy in inflammatory bowel disease.
Collapse
Affiliation(s)
- Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Qiang Tu
- Jiangning Hospital of Nanjing, Nanjing, Jiangsu, P.R. China
| | - Li Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Fuliang Chu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xia Li
- Department of Gastroenterology, Binzhou Medical University Yantai Affiliated Hospital, Yantai, Shandong, P.R. China
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
24
|
da Costa Gonçalves F, Grings M, Nunes NS, Pinto FO, Garcez TNA, Visioli F, Leipnitz G, Paz AH. Antioxidant properties of mesenchymal stem cells against oxidative stress in a murine model of colitis. Biotechnol Lett 2017; 39:613-622. [PMID: 28032203 DOI: 10.1007/s10529-016-2272-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the effects of oxidative stress injury in dextran sulfate sodium (DSS)-induced colitis in mice treated with mesenchymal stem cells (MSC). RESULTS Mice exposed to oral administration of 2% DSS over 7 days presented a high disease activity index and an intense colonic inflammation. Systemic infusion of MSC protected from severe colitis, reducing weight loss and diarrhea while lowering the infiltration of inflammatory cells. Moreover, toxic colitis injury increased oxidative stress. Administration of DSS decreased reduced glutathione (GSH) and superoxide dismutase (SOD) activity, and increased thiobarbituric acid-reactive substances levels in the colon. No alteration was found in catalase (CAT) and glutathione peroxidase (GPx) activity. Otherwise, MSC transplantation was able to prevent the decrease of GSH levels and SOD activity suggestive of an antioxidant property of MSC. CONCLUSION The oxidative stress is a pathomechanism underlying the pathophysiology of colitis and MSC play an important role in preventing the impairment of antioxidants defenses in inflamed colon.
Collapse
Affiliation(s)
- Fabiany da Costa Gonçalves
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil.
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre, RS, CEP 90035-903, Brazil.
| | - Mateus Grings
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Natália Schneider Nunes
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Fernanda Otesbelgue Pinto
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Tuane Nerissa Alves Garcez
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2492, Porto Alegre, RS, CEP 90035-007, Brazil
| | - Guilhian Leipnitz
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Ana Helena Paz
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre, RS, CEP 90035-903, Brazil
| |
Collapse
|
25
|
Nurkovic J, Dolicanin Z, Mustafic F, Mujanovic R, Memic M, Grbovic V, Skevin AJ, Nurkovic S. Mesenchymal stem cells in regenerative rehabilitation. J Phys Ther Sci 2016; 28:1943-8. [PMID: 27390452 PMCID: PMC4932093 DOI: 10.1589/jpts.28.1943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/12/2016] [Indexed: 02/06/2023] Open
Abstract
[Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific
plan of care based on a patient’s medical status. The intrinsic self-renewing,
multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells
offer great promise in the treatment of numerous autoimmune, degenerative, and
graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells
represent a therapeutic fortune in regenerative medicine. The aim of this review is to
discuss possibilities, limitations, and future clinical applications of mesenchymal stem
cells. [Subjects and Methods] The authors have identified and discussed clinically and
scientifically relevant articles from PubMed that have met the inclusion criteria.
[Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and
cartilage with mesenchymal stem cells has been demonstrated to be effective, with
synergies seen between cellular and physical therapies. Over the past few years, several
researchers, including us, have shown that there are certain limitations in the use of
mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem
cells significantly affect the functionality of these cells. [Conclusion] Definitive
conclusions cannot be made by these studies because limited numbers of patients were
included. Studies clarifying these results are expected in the near future.
Collapse
Affiliation(s)
- Jasmin Nurkovic
- Department of Biomedical Sciences, State University of Novi Pazar, Serbia; Center for Physical Medicine and Rehabilitation, Clinical Center Kragujevac, Serbia; Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Zana Dolicanin
- Department of Biomedical Sciences, State University of Novi Pazar, Serbia; General Hospital Novi Pazar, Serbia
| | | | - Rifat Mujanovic
- Department of Biomedical Sciences, State University of Novi Pazar, Serbia
| | - Mensur Memic
- Department of Biomedical Sciences, State University of Novi Pazar, Serbia
| | - Vesna Grbovic
- Center for Physical Medicine and Rehabilitation, Clinical Center Kragujevac, Serbia; Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Aleksandra Jurisic Skevin
- Center for Physical Medicine and Rehabilitation, Clinical Center Kragujevac, Serbia; Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Selmina Nurkovic
- Faculty of Medical Sciences, University of Kragujevac, Serbia; General Hospital Novi Pazar, Serbia
| |
Collapse
|