1
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
2
|
Steichen C, Hannoun Z, Luce E, Hauet T, Dubart-Kupperschmitt A. Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World J Stem Cells 2019; 11:729-747. [PMID: 31692979 PMCID: PMC6828592 DOI: 10.4252/wjsc.v11.i10.729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Ten years after the initial generation of induced pluripotent stem cells (hiPSCs) from human tissues, their potential is no longer questioned, with over 15000 publications listed on PubMed, covering various fields of research; including disease modeling, cell therapy strategies, pharmacology/toxicology screening and 3D organoid systems. However, despite evidences that the presence of mutations in hiPSCs should be a concern, publications addressing genomic integrity of these cells represent less than 1% of the literature. After a first overview of the mutation types currently reported in hiPSCs, including karyotype abnormalities, copy number variations, single point mutation as well as uniparental disomy, this review will discuss the impact of reprogramming parameters such as starting cell type and reprogramming method on the maintenance of the cellular genomic integrity. Then, a specific focus will be placed on culture conditions and subsequent differentiation protocols and how their may also trigger genomic aberrations within the cell population of interest. Finally, in a last section, the impact of genomic alterations on the possible usages of hiPSCs and their derivatives will also be exemplified and discussed. We will also discuss which techniques or combination of techniques should be used to screen for genomic abnormalities with a particular focus on the necessary quality controls and the potential alternatives.
Collapse
Affiliation(s)
- Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
| | - Zara Hannoun
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eléanor Luce
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers F-86021, France
- Université de Poitiers, Faculté de Médecine et Pharmacie, Bâtiment D1, 6 rue de la milétrie, TSA 51115, 86073 Poitiers Cedex 9, France
- Service de Biochimie, Pôle Biospharm, CHU de Poitiers, Poitiers F-86021, France
- Fédération Hospitalo-Universitaire SUPORT, CHU de Poitiers, Poitiers F-86021, France
| | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif F-94800, France
- UMR_S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif F-94800, France
- Département Hospitalo-Universitaire Hepatinov, Hôpital Paul Brousse, Villejuif F-94807, France
| |
Collapse
|
3
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
4
|
Petkova R, Zhelev N, Pankov R, Chakarov S. Individual capacity for repair of DNA damage and potential uses of stem cell lines for clinical applications: a matter of (genomic) integrity. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1520611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Rumena Petkova
- Faculty of Medicine, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Nikolai Zhelev
- CMCBR, School of Science, Engineering & Technology, Abertay University, Dundee, UK
| | - Roumen Pankov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|
5
|
Rodríguez Varela MS, Mucci S, Videla Richardson GA, Morris Hanon O, Furmento VA, Miriuka SG, Sevlever GE, Scassa ME, Romorini L. Regulation of cyclin E1 expression in human pluripotent stem cells and derived neural progeny. Cell Cycle 2018; 17:1721-1744. [PMID: 29995582 DOI: 10.1080/15384101.2018.1496740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells (hESCs and hiPSCs) show unique cell cycle characteristics, such as a short doubling time due to an abbreviated G1 phase. Whether or not the core cell cycle machinery directly regulates the stemness and/or the differentiation potential of hPSCs remains to be determined. To date, several scenarios describing the atypical cell cycle of hPSCs have been suggested, and therefore there is still controversy over how cyclins, master regulators of the cell cycle, are expressed and regulated. Furthermore, the cell cycle profile and the expression pattern of major cyclins in hESCs-derived neuroprogenitors (NP) have not been studied yet. Therefore, herein we characterized the expression pattern of major cyclins in hPSCs and NP. We determined that all studied cyclins mRNA expression levels fluctuate along cell cycle. Particularly, after a thorough analysis of synchronized cell populations, we observed that cyclin E1 mRNA levels increased sharply in G1/S concomitantly with cyclin E1 protein accumulation in hPSCs and NP. Additionally, we demonstrated that cyclin E1 mRNA expression levels involves the activation of MEK/ERK pathway and the transcription factors c-Myc and E2Fs in hPSCs. Lastly, our results reveal that proteasome mediates the marked down-regulation (degradation) of cyclin E1 protein observed in G2/M by a mechanism that requires a functional CDK2 but not GSK3β activity. ABBREVIATIONS hPSCs: human pluripotent stem cells; hESCs: human embryonic stem cells; hiPSCs: human induced pluripotent stem cells; NP: neuroprogenitors; HF: human foreskin fibroblasts; MEFs: mouse embryonic fibroblasts; iMEFs: irradiated mouse embryonic fibroblasts; CDKs: cyclindependent kinases; CKIs: CDK inhibitors; CNS: central nervous system; Oct-4: Octamer-4; EB: embryoid body; AFP: Alpha-fetoprotein; cTnT: Cardiac Troponin T; MAP-2: microtubule-associated protein; TUJ-1: neuron-specific class III β-tubulin; bFGF: basic fibroblastic growth factor; PI3K: Phosphoinositide 3-kinase; KSR: knock out serum replacement; CM: iMEF conditioned medium; E8: Essential E8 medium.
Collapse
Affiliation(s)
- María Soledad Rodríguez Varela
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Sofía Mucci
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Guillermo Agustín Videla Richardson
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Olivia Morris Hanon
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Verónica Alejandra Furmento
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Santiago Gabriel Miriuka
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Gustavo Emilio Sevlever
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - María Elida Scassa
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| | - Leonardo Romorini
- a Laboratorios de Investigación Aplicada en Neurociencias (LIAN-CONICET) , Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) , Belén de Escobar , Provincia de Buenos Aires , Argentina
| |
Collapse
|
6
|
Suchorska WM, Augustyniak E, Łukjanow M. Comparison of the early response of human embryonic stem cells and human induced pluripotent stem cells to ionizing radiation. Mol Med Rep 2017; 15:1952-1962. [PMID: 28259963 PMCID: PMC5364988 DOI: 10.3892/mmr.2017.6270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022] Open
Abstract
Despite the well-demonstrated efficacy of stem cell (SC) therapy, this approach has a number of key drawbacks. One important concern is the response of pluripotent SCs to treatment with ionizing radiation (IR), given that SCs used in regenerative medicine will eventually be exposed to IR for diagnostic or treatment-associated purposes. Therefore, the aim of the present study was to examine and compare early IR-induced responses of pluripotent SCs to assess their radioresistance and radiosensitivity. In the present study, 3 cell lines; human embryonic SCs (hESCs), human induced pluripotent SCs (hiPSCs) and primary human dermal fibroblasts (PHDFs); were exposed to IR at doses ranging from 0 to 15 gray (Gy). Double strand breaks (DSBs), and the gene expression of the following DNA repair genes were analyzed: P53; RAD51; BRCA2; PRKDC; and XRCC4. hiPSCs demonstrated greater radioresistance, as fewer DSBs were identified, compared with hESCs. Both pluripotent SC lines exhibited distinct gene expression profiles in the most common DNA repair genes that are involved in homologous recombination, non-homologous end-joining and enhanced DNA damage response following IR exposure. Although hESCs and hiPSCs are equivalent in terms of capacity for pluripotency and differentiation into 3 germ layers, the results of the present study indicate that these 2 types of SCs differ in gene expression following exposure to IR. Consequently, further research is required to determine whether hiPSCs and hESCs are equally safe for application in clinical practice. The present study contributes to a greater understanding of DNA damage response (DDR) mechanisms activated in pluripotent SCs and may aid in the future development of safe SC-based clinical protocols.
Collapse
Affiliation(s)
| | - Ewelina Augustyniak
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61‑866 Poznan, Poland
| | - Magdalena Łukjanow
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61‑866 Poznan, Poland
| |
Collapse
|