1
|
Niu Q, Hao J, Li Z, Zhang H. Helper T cells: A potential target for sex hormones to ameliorate rheumatoid arthritis? (Review). Mol Med Rep 2024; 30:215. [PMID: 39370806 PMCID: PMC11450432 DOI: 10.3892/mmr.2024.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease whose etiology is not fully understood. Defective peripheral immune tolerance and subsequent mis‑differentiation and aberrant infiltration of synovium by various immune cells, especially helper T (Th) cells, play an important role in the development of RA. There are significant sex differences in RA, but the results of studies on the effects of sex hormones on RA have been difficult to standardize and hormone replacement therapy has been limited by the potential for serious side effects. Existing research has amply demonstrated that cellular immune responses are largely determined by sex and that sex hormones play a key role in Th cell responses. Based on the aforementioned background and the plasticity of Th cells, it is reasonable to hypothesize that the action of sex hormones on Th cells will hopefully become a therapeutic target for RA. The present review discussed the role of various Th cell subsets in the pathogenesis of RA and also explored the role of sex hormones on the phenotype and function of these aberrantly regulated immune cells in RA as well as other pathologic effects on RA.
Collapse
Affiliation(s)
- Quanjun Niu
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Junhang Hao
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Zhen Li
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Huiping Zhang
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| |
Collapse
|
2
|
Jiang C, Chen Z, Liao W, Zhang R, Chen G, Ma L, Yu H. The Medicinal Species of the Lycium Genus (Goji Berries) in East Asia: A Review of Its Effect on Cell Signal Transduction Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1531. [PMID: 38891336 PMCID: PMC11174690 DOI: 10.3390/plants13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Natural plants contain numerous chemical compounds that are beneficial to human health. The berries from the Lycium genus are widely consumed and are highly nutritious. Moreover, their chemical constituents have attracted attention for their health-promoting properties. In East Asia, there are three varieties of the Lycium genus (Lycium barbarum L., Lycium chinense Miller, and L. ruthenicum Murray) that possess medicinal value and are commonly used for treating chronic diseases and improving metabolic disorders. These varieties are locally referred to as "red Goji berries" or "black Goji berries" due to their distinct colors, and they differ in their chemical compositions, primarily in terms of carotenoid and anthocyanin content. The pharmacological functions of these berries include anti-aging, antioxidant, anti-inflammatory, and anti-exercise fatigue effects. This review aims to analyze previous and recent studies on the active ingredients and pharmacological activities of these Lycium varieties, elucidating their signaling pathways and assessing their impact on the gut microbiota. Furthermore, the potential prospects for using these active ingredients in the treatment of COVID-19 are evaluated. This review explores the potential targets of these Lycium varieties in the treatment of relevant diseases, highlighting their potential value in drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Ma
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| | - Haijie Yu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| |
Collapse
|
3
|
Mosquera-Sulbaran JA, Pedreañez A, Carrero Y, Hernandez-Fonseca JP. Angiotensin II and post-streptococcal glomerulonephritis. Clin Exp Nephrol 2024; 28:359-374. [PMID: 38170299 DOI: 10.1007/s10157-023-02446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Post-streptococcal glomerulonephritis (PSGN) is a consequence of the infection by group A beta-hemolytic streptococcus. During this infection, various immunological processes generated by streptococcal antigens are triggered, such as the induction of antibodies and immune complexes. This activation of the immune system involves both innate and acquired immunity. The immunological events that occur at the renal level lead to kidney damage with chronic renal failure as well as resolution of the pathological process (in most cases). Angiotensin II (Ang II) is a molecule with vasopressor and pro-inflammatory capacities, being an important factor in various inflammatory processes. During PSGN some events are defined that make Ang II conceivable as a molecule involved in the inflammatory processes during the disease. CONCLUSION This review is focused on defining which reported events would be related to the presence of this hormone in PSGN.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Apartado Postal: 23, MaracaiboZulia, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Facultad de Medicina, Cátedra de Inmunología, Escuela de Bioanálisis, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Apartado Postal: 23, MaracaiboZulia, 4001-A, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Apartado Postal: 23, MaracaiboZulia, 4001-A, Venezuela
- Servicio de Microscopia Electrónica del Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Mooslechner AA, Schuller M, Artinger K, Kirsch AH, Schabhüttl C, Eller P, Rosenkranz AR, Eller K. Low-Dose rIL-15 Protects from Nephrotoxic Serum Nephritis via CD8 + T Cells. Cells 2022; 11:cells11223656. [PMID: 36429085 PMCID: PMC9688325 DOI: 10.3390/cells11223656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid progressive glomerulonephritis (GN) often leads to end-stage kidney disease, driving the need for renal replacement therapy and posing a global health burden. Low-dose cytokine-based immunotherapies provide a new strategy to treat GN. IL-15 is a strong candidate for the therapy of immune-mediated kidney disease since it has proven to be tubular-protective before. Therefore, we set out to test the potential of low-dose rIL-15 treatment in a mouse model of nephrotoxic serum nephritis (NTS), mimicking immune complex-driven GN in humans. A single low-dose treatment with rIL-15 ameliorated NTS, reflected by reduced albuminuria, less tissue scarring, fewer myeloid cells in the kidney, and improved tubular epithelial cell survival. In addition, CD8+ T cells, a primary target of IL-15, showed altered gene expression and function corresponding with less cytotoxicity mediated by rIL-15. With the use of transgenic knock-out mice, antibody depletion, and adoptive cell transfer studies, we here show that the beneficial effects of rIL-15 treatment in NTS depended on CD8+ T cells, suggesting a pivotal role for them in the underlying mechanism. Our findings add to existing evidence of the association of IL-15 with kidney health and imply a potential for low-dose rIL-15 immunotherapies in GN.
Collapse
Affiliation(s)
- Agnes A. Mooslechner
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Max Schuller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Katharina Artinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander H. Kirsch
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Corinna Schabhüttl
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Alexander R. Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Kathrin Eller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
5
|
Qing J, Zheng F, Zhi H, Yaigoub H, Tirichen H, Li Y, Zhao J, Qiang Y, Li Y. Identification of Unique Genetic Biomarkers of Various Subtypes of Glomerulonephritis Using Machine Learning and Deep Learning. Biomolecules 2022; 12:biom12091276. [PMID: 36139115 PMCID: PMC9496457 DOI: 10.3390/biom12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Objective: Identification of potential genetic biomarkers for various glomerulonephritis (GN) subtypes and discovering the molecular mechanisms of GN. (2) Methods: four microarray datasets of GN were downloaded from Gene Expression Omnibus (GEO) database and merged to obtain the gene expression profiles of eight GN subtypes. Then, differentially expressed immune-related genes (DIRGs) were identified to explore the molecular mechanisms of GN, and single-sample gene set enrichment analysis (ssGSEA) was performed to discover the abnormal inflammation in GN. In addition, a nomogram model was generated using the R package "glmnet", and the calibration curve was plotted to evaluate the predictive power of the nomogram model. Finally, deep learning (DL) based on a multilayer perceptron (MLP) network was performed to explore the characteristic genes for GN. (3) Results: we screened out 274 common up-regulated or down-regulated DIRGs in the glomeruli and tubulointerstitium. These DIRGs are mainly involved in T-cell differentiation, the RAS signaling pathway, and the MAPK signaling pathway. ssGSEA indicates that there is a significant increase in DC (dendritic cells) and macrophages, and a significant decrease in neutrophils and NKT cells in glomeruli, while monocytes and NK cells are increased in tubulointerstitium. A nomogram model was constructed to predict GN based on 7 DIRGs, and 20 DIRGs of each subtype of GN in glomeruli and tubulointerstitium were selected as characteristic genes. (4) Conclusions: this study reveals that the DIRGs are closely related to the pathogenesis of GN and could serve as genetic biomarkers in GN. DL further identified the characteristic genes that are essential to define the pathogenesis of GN and develop targeted therapies for eight GN subtypes.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
| | - Fang Zheng
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030001, China
| | - Huiwen Zhi
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
| | - Hasnaa Yaigoub
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030001, China
| | - Hasna Tirichen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030001, China
| | - Yaheng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
- Laboratory for Molecular Diagnosis and Treatment of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
| | - Juanjuan Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030001, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030001, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan 030001, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
6
|
Hall BM, Verma ND, Tran GT, Hodgkinson SJ. Transplant Tolerance, Not Only Clonal Deletion. Front Immunol 2022; 13:810798. [PMID: 35529847 PMCID: PMC9069565 DOI: 10.3389/fimmu.2022.810798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The quest to understand how allogeneic transplanted tissue is not rejected and how tolerance is induced led to fundamental concepts in immunology. First, we review the research that led to the Clonal Deletion theory in the late 1950s that has since dominated the field of immunology and transplantation. At that time many basic mechanisms of immune response were unknown, including the role of lymphocytes and T cells in rejection. These original observations are reassessed by considering T regulatory cells that are produced by thymus of neonates to prevent autoimmunity. Second, we review "operational tolerance" induced in adult rodents and larger animals such as pigs. This can occur spontaneously especially with liver allografts, but also can develop after short courses of a variety of rejection inhibiting therapies. Over time these animals develop alloantigen specific tolerance to the graft but retain the capacity to reject third-party grafts. These animals have a "split tolerance" as peripheral lymphocytes from these animals respond to donor alloantigen in graft versus host assays and in mixed lymphocyte cultures, indicating there is no clonal deletion. Investigation of this phenomenon excludes many mechanisms, including anti-donor antibody blocking rejection as well as anti-idiotypic responses mediated by antibody or T cells. This split tolerance is transferred to a second immune-depleted host by T cells that retain the capacity to effect rejection of third-party grafts by the same host. Third, we review research on alloantigen specific inhibitory T cells that led to the first identification of the CD4+CD25+T regulatory cell. The key role of T cell derived cytokines, other than IL-2, in promoting survival and expansion of antigen specific T regulatory cells that mediate transplant tolerance is reviewed. The precise methods for inducing and diagnosing operational tolerance remain to be defined, but antigen specific T regulatory cells are key mediators.
Collapse
Affiliation(s)
- Bruce M. Hall
- Immune Tolerance Laboratory, School of Medicine, University of New South Wales (UNSW) Sydney, Ingham Institute, and Renal Service and Multiple Sclerosis Clinic, Liverpool Hospital, Liverpool, NSW, Australia
| | | | | | | |
Collapse
|
7
|
Pisani LF, Tontini G, Vecchi M, Croci GA, Pastorelli L. NF-kB pathway is involved in microscopic colitis pathogenesis. J Int Med Res 2022; 50:3000605221080104. [PMID: 35301900 PMCID: PMC8935566 DOI: 10.1177/03000605221080104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the potential inflammatory pathways involved in the development of microscopic colitis (MC). METHODS This prospective study analysed human intestinal tissue that was collected and classified as healthy controls (HC), microscopic colitis (MC) and ulcerative colitis (UC). An RT2 Profiler PCR Array for human inflammatory response and autoimmunity was used to evaluate the expression of 84 specific genes related to the inflammatory and autoimmunity pathways. Data were validated by means of real-time polymerase chain reaction on an independent group of MC intestinal tissue samples. RESULTS This study measured the expression of inflammatory genes in HC (n = 10), in patients with MC (n = 8) and in patients with active UC (n = 10). Of the 84 genes included in the array, the expression of the C-C motif chemokine ligand 19, C-C motif chemokine ligand 21, lymphotoxin beta and complement C3 genes that are involved in the non-canonical nuclear transcription factor kappa B (NF-kB) pathway was increased by 2.96, 6.05, 5.96 and 5.93 times in MC compared with HC, respectively. These results were confirmed by real-time polymerase chain reaction. CONCLUSIONS The findings suggest that an impairment of the non-canonical NF-kB pathway is involved in the development of MC.
Collapse
Affiliation(s)
- Laura Francesca Pisani
- Gastroenterology and Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gianeugenio Tontini
- Department of Medical-Surgical Physiopathology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Gastroenterology and Endoscopy Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Maurizio Vecchi
- Department of Medical-Surgical Physiopathology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Gastroenterology and Endoscopy Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Giorgio Alberto Croci
- Department of Medical-Surgical Physiopathology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Pathology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico di Milano, Milano, Italy
| | - Luca Pastorelli
- Gastroenterology and Liver Unit, ASST Santi Paolo e Carlo, ASST Santi Paolo e Carlo, Milano, Italy
- Department of Health Sciences, School of Medicine Ospedale San Paolo, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
8
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
9
|
IL-10 producing B cells regulated 1,3-β-glucan induced Th responses in coordinated with Treg. Immunol Lett 2021; 235:15-21. [PMID: 33951473 DOI: 10.1016/j.imlet.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
Repeated exposure to fungi-contaminated dust can lead to multiple adverse effects on the lung, such as hypersensitivity pneumonitis, granuloma even irreversible fibrosis. 1,3-β-glucan, a major cell wall component of fungi, is considered as its exposure biomarker. Existing studies showed that a series of Th responses were involved in 1,3-β-glucan induced hypersensitivity pneumonitis, in which macrophages, Treg, and IL-10 producing B cells were reported to participate. The reciprocal interaction among those critical immune cells in 1,3-β-glucan induced inflammation was not investigated yet. To clarify the regulatory mechanism of IL-10 producing B cells on Th and Treg, the current study set up a primary cell co-culture system. The anti-CD22 antibody was injected intraperitoneally to generate IL-10 producing B cells deficiency mouse model. Cells were isolated and purified from C57BL∖6 mice in different groups. Flow cytometry was used to check the phenotype of different cell subtypes. CBA assay and real-time PCR were used to examine the levels of multiple cytokines. Our results indicated that IL-10 producing B cells could modulate the 1,3-β-glucan induced inflammatory response. The modulation of IL-10 producing B cells on Th response after 1,3-β-glucan treatment was cell contact independent. What's more, the modulation pattern of IL-10 producing B cells might be impaired without Treg response. IL-10-producing B cells regulated 1,3-β-glucan induced Th responses in co-ordination with Treg cells.
Collapse
|
10
|
Abstract
Renal inflammation, induced by autoantigen recognition or toxic drugs, leads to renal tissue injury and decline in kidney function. Recent studies have demonstrated the crucial role for regulatory T cells in suppressing pathogenic adaptive but also innate immune responses in the inflamed kidney. However, there is also evidence for other immune cell populations with immunosuppressive function in renal inflammation. This review summarizes mechanisms of immune cell regulation in immune-mediated glomerulonephritis and acute and chronic nephrotoxicity.
Collapse
|
11
|
Kasatskaya SA, Ladell K, Egorov ES, Miners KL, Davydov AN, Metsger M, Staroverov DB, Matveyshina EK, Shagina IA, Mamedov IZ, Izraelson M, Shelyakin PV, Britanova OV, Price DA, Chudakov DM. Functionally specialized human CD4 + T-cell subsets express physicochemically distinct TCRs. eLife 2020; 9:57063. [PMID: 33289628 PMCID: PMC7773335 DOI: 10.7554/elife.57063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
The organizational integrity of the adaptive immune system is determined by functionally discrete subsets of CD4+ T cells, but it has remained unclear to what extent lineage choice is influenced by clonotypically expressed T-cell receptors (TCRs). To address this issue, we used a high-throughput approach to profile the αβ TCR repertoires of human naive and effector/memory CD4+ T-cell subsets, irrespective of antigen specificity. Highly conserved physicochemical and recombinatorial features were encoded on a subset-specific basis in the effector/memory compartment. Clonal tracking further identified forbidden and permitted transition pathways, mapping effector/memory subsets related by interconversion or ontogeny. Public sequences were largely confined to particular effector/memory subsets, including regulatory T cells (Tregs), which also displayed hardwired repertoire features in the naive compartment. Accordingly, these cumulative repertoire portraits establish a link between clonotype fate decisions in the complex world of CD4+ T cells and the intrinsic properties of somatically rearranged TCRs.
Collapse
Affiliation(s)
- Sofya A Kasatskaya
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Evgeniy S Egorov
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Alexey N Davydov
- Adaptive Immunity Group, Central European Institute of Technology, Brno, Czech Republic
| | - Maria Metsger
- Adaptive Immunity Group, Central European Institute of Technology, Brno, Czech Republic
| | - Dmitry B Staroverov
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Elena K Matveyshina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Irina A Shagina
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Ilgar Z Mamedov
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Mark Izraelson
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Pavel V Shelyakin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga V Britanova
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Dmitriy M Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| |
Collapse
|
12
|
Mosquera J, Pedreañez A. Acute post-streptococcal glomerulonephritis: analysis of the pathogenesis. Int Rev Immunol 2020; 40:381-400. [PMID: 33030969 DOI: 10.1080/08830185.2020.1830083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Increasing evidence supports a central role of the immune system in acute post streptococcal glomerulonephritis (APSGN), but the current view of how streptococcal biology affects immunity, and vice versa, remains to be clarified. Renal glomerular immune complex deposition is critical in the initiation of APSGN; however, mechanisms previous to immune complex formation could modulate the initiation and the progression of the disease. Initial and late renal events involved in the nephritis can also be related to host factors and streptococcal factors. In this review we describe the mechanisms reported for the APSGN pathogenesis, the interactions of streptococcal products with renal cells and leukocytes, the possible effects of different nephritogenic antigens in the renal environment and the possibility that APSGN is not just due to a single streptococcal antigen and its antibody; instead, kidney damage may be the result of different factors acting at the same time related to both streptococcus and host factors. Addressing these points should help us to better understand APSGN physiopathology.
Collapse
Affiliation(s)
- Jesús Mosquera
- Facultad de Medicina, Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Universidad del Zulia, Maracaibo, Venezuela
| | - Adriana Pedreañez
- Facultad de Medicina, Cátedra de Inmunología, Escuela de Bioanálisis, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
13
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
14
|
Growth Differentiation Factor 15 Ameliorates Anti-Glomerular Basement Membrane Glomerulonephritis in Mice. Int J Mol Sci 2020; 21:ijms21196978. [PMID: 32977372 PMCID: PMC7583818 DOI: 10.3390/ijms21196978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) cytokine family and an inflammation-associated protein. Here, we investigated the role of GDF15 in murine anti-glomerular basement membrane (GBM) glomerulonephritis. Glomerulonephritis induction in mice induced systemic expression of GDF15. Moreover, we demonstrate the protective effects for GDF15, as GDF15-deficient mice exhibited increased proteinuria with an aggravated crescent formation and mesangial expansion in anti-GBM nephritis. Herein, GDF15 was required for the regulation of T-cell chemotactic chemokines in the kidney. In addition, we found the upregulation of the CXCR3 receptor in activated T-cells in GDF15-deficient mice. These data indicate that CXCL10/CXCR3-dependent-signaling promotes the infiltration of T cells into the organ during acute inflammation controlled by GDF15. Together, these results reveal a novel mechanism limiting the migration of lymphocytes to the site of inflammation during glomerulonephritis.
Collapse
|
15
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1196] [Impact Index Per Article: 239.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
16
|
Placental Mesenchymal Stromal Cells (PMSCs) and PMSC-Derived Extracellular Vesicles (PMSC-EVs) Attenuated Renal Fibrosis in Rats with Unilateral Ureteral Obstruction (UUO) by Regulating CD4 + T Cell Polarization. Stem Cells Int 2020; 2020:2685820. [PMID: 32774389 PMCID: PMC7396053 DOI: 10.1155/2020/2685820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/22/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Recent evidence has shown that CD4+ T helper (Th) cells are involved in renal inflammation and fibrosis. However, whether renal fibrosis can be alleviated by intervening in the polarization of CD4+ T cells remains unknown. Our research investigated the effects of intravenously administered placenta mesenchymal stromal cells (PMSCs) or treatment with extracellular EVs (EVs) derived from PMSCs (PMSC-EVs) on the polarization of CD4+ T cells in rats with unilateral ureteral obstruction (UUO). We further verified how PMSCs affect inflammatory factor secretion and the levels of regulatory T (Treg) and Th17 CD4+ T cells in vitro. Materials and Methods We evaluated renal interstitial inflammation and fibrosis by pathological section staining, tested the polarization of CD4+ T cells (Th17 and Treg phenotypes) by flow cytometry (FCM) and immunohistochemistry, and detected the cytokines secreted by CD4+ T cells by enzyme-linked immunosorbent assay (ELISA). Results Compared with that of control rats, the renal tissue of PMSC-treated rats exhibited lower renal Masson scores and more Foxp3+ cell infiltration, with a significantly decreased IL17A+CD4+ T cell/CD4+ T cell ratio and a significantly elevated anti-inflammatory cytokine (IL-10) level. When CD4+ T cells were cocultured with PMSCs, CD4+IL17A+ cell percentages were decreased in a UUO model after 7 days of coculture with PMSCs. The secretion of TGF-β and IL-10 was significantly increased (P < 0.05), while the secretion of IFN-γ, IL-17, and IL-6 was significantly decreased (P < 0.05) in the PMSC coculture group. Moreover, after treatment with PMSC-EVs, tubulointerstitial fibrosis was alleviated, and Foxp3+/IL-17+ cell infiltration was increased in the kidneys of UUO model animals on day 7. Conclusions PMSCs can convert the inflammatory environment into an anti-inflammatory environment by affecting the polarization of CD4+ T cells and macrophages, inhibiting the inflammatory factors IFN-γ and IL-17, and upregulating the expression of the anti-inflammatory factors TGF-β and IL-10, ultimately leading to renal protection. Such functions may be mediated by the paracrine activity of PMSC-EVs.
Collapse
|
17
|
Tang Y, He H, Hu P, Xu X. T lymphocytes in IgA nephropathy. Exp Ther Med 2020; 20:186-194. [PMID: 32509008 PMCID: PMC7271719 DOI: 10.3892/etm.2020.8673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN), the most common primary glomerulonephritis worldwide, is the main cause of end-stage renal disease. IgAN is characterized by the accumulation of immune complexes in the circulation, which contain abnormal levels of IgA. IgAN primarily results from galactose-deficient IgA1 (Gd-IgA1) and Gd-IgA1 deposition in the renal mesangium, causing local proliferation and matrix expansion. Gd-IgA1 has been confirmed as one of the key effectors in the pathogenesis of IgAN, but the origin of Gd-IgA1 is not clear. Recent studies have shown that Gd-IgA1 deposition could be the result of mucosally primed plasma cells and is associated with T cell dysregulation. T cells contribute to the IgA response and play an important role in the development of IgAN. In the present review, the latest discoveries regarding the role of T lymphocytes in the pathogenesis of IgAN have been summarized. Understanding these advances will allow novel therapeutic strategies for the treatment of IgAN.
Collapse
Affiliation(s)
- Yuyan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Pin Hu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Xudong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
18
|
Keikha M, Soleimanpour S, Eslami M, Yousefi B, Karbalaei M. The mystery of tuberculosis pathogenesis from the perspective of T regulatory cells. Meta Gene 2020; 23:100632. [DOI: 10.1016/j.mgene.2019.100632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
19
|
Wen Y, Rudemiller NP, Zhang J, Robinette T, Lu X, Ren J, Privratsky JR, Nedospasov SA, Crowley SD. TNF-α in T lymphocytes attenuates renal injury and fibrosis during nephrotoxic nephritis. Am J Physiol Renal Physiol 2020; 318:F107-F116. [PMID: 31736350 PMCID: PMC6985827 DOI: 10.1152/ajprenal.00347.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023] Open
Abstract
Nephrotoxic serum nephritis (NTN) models immune-mediated human glomerulonephritis and culminates in kidney inflammation and fibrosis, a process regulated by T lymphocytes. TNF-α is a key proinflammatory cytokine that contributes to diverse forms of renal injury. Therefore, we posited that TNF-α from T lymphocytes may contribute to NTN pathogenesis. Here, mice with T cell-specific deletion of TNF-α (TNF TKO) and wild-type (WT) control mice were subjected to the NTN model. At 14 days after NTN, kidney injury and fibrosis were increased in kidneys from TNF TKO mice compared with WT mice. PD1+CD4+ T cell numbers and mRNA levels of IL-17A were elevated in NTN kidneys of TNF TKO mice, suggesting that augmented local T helper 17 lymphocyte responses in the TNF TKO kidney may exaggerate renal injury and fibrosis. In turn, we found increased accumulation of neutrophils in TNF TKO kidneys during NTN. We conclude that TNF-α production in T lymphocytes mitigates NTN-induced kidney injury and fibrosis by inhibiting renal T helper 17 lymphocyte responses and infiltration of neutrophils.
Collapse
Affiliation(s)
- Yi Wen
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Nathan P Rudemiller
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Jiandong Zhang
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Taylor Robinette
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Jamie R Privratsky
- Department of Anesthesiology, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Sergei A Nedospasov
- Laboratory of Molecular Immunology, Engelhardt Institute of Molecular Biology and Lomonosov Moscow State University, Moscow, Russia
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
20
|
Grywalska E, Smarz-Widelska I, Mertowski S, Gosik K, Mielnik M, Podgajna M, Abramiuk M, Drop B, Roliński J, Załuska W. CTLA-4 Expression Inversely Correlates with Kidney Function and Serum Immunoglobulin Concentration in Patients with Primary Glomerulonephritides. Arch Immunol Ther Exp (Warsz) 2019; 67:335-349. [PMID: 31177287 PMCID: PMC6732130 DOI: 10.1007/s00005-019-00548-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/21/2019] [Indexed: 12/01/2022]
Abstract
Major causes of chronic kidney disease are primary proliferative and nonproliferative glomerulonephritides (PGN and NPGN). However, the pathogenesis of PGN and NPGN is still not fully understood. Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) is a T-cell membrane receptor that plays a key role in T-cell inhibition. Despite its role in autoimmunological diseases, little is known about the involvement of CTLA-4 in the pathogenesis of PGN and NPGN. The objective of this study was to determine the role of CTLA-4 in the pathogenesis of PGN and NPGN by evaluating the frequencies of T and B lymphocytes expressing CTLA-4 and the serum concentration of the sCTLA-4 isoform in patients with PGN and NPGN in relation to clinical parameters. The study included peripheral blood (PB) samples from 40 PGN and NPGN patients and 20 healthy age- and sex-matched volunteers (control group). The viable PB lymphocytes were labeled with fluorochrome-conjugated monoclonal anti-CTLA-4 antibodies and analyzed using flow cytometry. The serum concentration of sCTLA-4 was measured using ELISA. The frequencies and absolute counts of CD4+/CTLA-4+ T lymphocytes, CD8+/CTLA-4+ T lymphocytes and CD19+/CTLA-4+ B lymphocytes and the serum sCTLA-4 concentration were lower in PGN and NPGN patients that in the control group. Reduced sCTLA-4 expression was associated with a lower concentration of serum immunoglobulins. Our results indicate that deregulation of CTLA-4 expression may result in continuous activation of T cells and contribute to the pathogenesis of PGN and NPGN.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Lublin, Poland
| | - Sebastian Mertowski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Krzysztof Gosik
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Michał Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Martyna Podgajna
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Monika Abramiuk
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Drop
- Department of Informatics and Medical Statistics, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
21
|
Yang P, Qian F, Zhang M, Xu A, Wang X, Jiang B, Zhou L. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J Leukoc Biol 2019; 106:1233-1240. [DOI: 10.1002/jlb.4ru0619-197r] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Pei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Fei‐Ya Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Ming‐Fei Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - A‐Lan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Xiang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Bao‐Ping Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Ling‐Ling Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| |
Collapse
|
22
|
Hagenstein J, Melderis S, Nosko A, Warkotsch MT, Richter JV, Ramcke T, Herrnstadt GR, Scheller J, Yan I, Mittrücker HW, Kluger MA, Steinmetz OM. A Novel Role for IL-6 Receptor Classic Signaling: Induction of ROR γt +Foxp3 + Tregs with Enhanced Suppressive Capacity. J Am Soc Nephrol 2019; 30:1439-1453. [PMID: 31311828 DOI: 10.1681/asn.2019020118] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND New therapies blocking the IL-6 receptor (IL-6R) have recently become available and are successfully being used to treat inflammatory diseases like arthritis. Whether IL-6 blockers may help patients with kidney inflammation currently remains unknown. METHODS To learn more about the complex role of CD4+ T cell-intrinsic IL-6R signaling, we induced nephrotoxic nephritis, a mouse model for crescentic GN, in mice lacking T cell-specific IL-6Ra. We used adoptive transfer experiments and studies in reporter mice to analyze immune responses and Treg subpopulations. RESULTS Lack of IL-6Ra signaling in mouse CD4+ T cells impaired the generation of proinflammatory Th17 cells, but surprisingly did not ameliorate the course of GN. In contrast, renal damage was significantly reduced by restricting IL-6Ra deficiency to T effector cells and excluding Tregs. Detailed studies of Tregs revealed unaltered IL-10 production despite IL-6Ra deficiency. However, in vivo and in vitro, IL-6Ra classic signaling induced RORγt+Foxp3+ double-positive Tregs (biTregs), which carry the trafficking receptor CCR6 and have potent immunoregulatory properties. Indeed, lack of IL-6Ra significantly reduced Treg in vitro suppressive capacity. Finally, adoptive transfer of T cells containing IL-6Ra-/- Tregs resulted in severe aggravation of GN in mice. CONCLUSIONS Our data refine the old paradigm, that IL-6 enhances Th17 responses and suppresses Tregs. We here provide evidence that T cell-intrinsic IL-6Ra classic signaling indeed induces the generation of Th17 cells but at the same time highly immunosuppressive RORγt+ biTregs. These results advocate caution and indicate that IL-6-directed therapies for GN need to be cell-type specific.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jürgen Scheller
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University, Dusseldorf, Germany
| | - Isabell Yan
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Hans-Willi Mittrücker
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | | | | |
Collapse
|
23
|
Kamali AN, Noorbakhsh SM, Hamedifar H, Jadidi-Niaragh F, Yazdani R, Bautista JM, Azizi G. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol Immunol 2018; 105:107-115. [PMID: 30502718 DOI: 10.1016/j.molimm.2018.11.015] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
The T helper 17 (Th17) cells contain a dynamic subset of CD4+ T-cells that are able to develop into other different lineage subsets, including the Th1-like Th17 cells. These cells co-express retinoic acid-related orphan receptor gamma t (RORγt) and transcription factor T-box-expressed-in-T-cells (T-bet) and produce both interleukin (IL)-17 and interferon (IFN)-γ. Recent reports have shown that Th1-like Th17 cells play crucial roles in the pathogenesis of autoimmune diseases such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, as well as, some primary immunodeficiency with autoimmune features. Here, the actual mechanisms for Th17 cells plasticity to Th1-like Th17 cells are discussed and reviewed in association to the role that Th1-like Th17 cells have on inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - José M Bautista
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Faculty of Veterinary Sciences, 28040, Madrid, Spain; Research Institute Hospital 12 de Octubre, Madrid, 28041, Spain
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
24
|
Li Y, Liu X, Wang W, Wang S, Zhang J, Jiang S, Wang Y, Li L, Li J, Zhang Y, Huang H. Low-dose IL-2 expands CD4 + regulatory T cells with a suppressive function in vitro via the STAT5-dependent pathway in patients with chronic kidney diseases. Ren Fail 2018; 40:280-288. [PMID: 29619880 PMCID: PMC6014482 DOI: 10.1080/0886022x.2018.1456462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/23/2017] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) often have CD4+ regulatory T cells (Tregs) dysfunction and chronic inflammation. We aim to investigate the effect, function, and related mechanism of low-dose IL-2 on CD4+ regulatory T cells expansion in vitro from patients with CKD. METHODS A total of 148 newly diagnosed patients with CKD at Stage III and 35 healthy volunteer subjects were recruited into our studies. The number of peripheral Tregs in peripheral blood mononuclear cells isolated from CKD patients, which were characterized by FACS as CD4+CD25hi and CD4+CD25+FoxP3+. The effect of low-dose IL-2 on expansion of Tregs, and the suppressive function of expanded Tregs were also analyzed by FACS. The levels of FoxP3 mRNA were detected by qRT-PCR. The activation of IL-2 induced Stat5 and blocking experiments were assessed by Western Blotting and FACS. RESULTS We found that the frequency of peripheral Tregs from CKD patients was significantly lower than that in healthy volunteer subjects. We also showed that IL-2 selectively expanded CD4+CD25hi and CD4+CD25+FoxP3+ regulatory T cells, and also upregulated the expression of FoxP3 mRNA. Our in vitro studies demonstrated that expanded CD4+ regulatory T cells from CKD patients suppressed proinflammatory Th1 and Th17 cell response. Furthermore, STAT5 activation is required for IL-2-induced expansion of regulatory T cells and expression of FoxP3 mRNA from CKD patients. CONCLUSIONS Our findings support the clinical Treg defects in CKD patients with glomerular diseases, and the rationale of evaluating low-dose IL-2 treatment for selectively modulating CD4+ Tregs.
Collapse
Affiliation(s)
- Yuanyuan Li
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Xueyong Liu
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Wei Wang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Shaohua Wang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Jianchun Zhang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Song Jiang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Yang Wang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Liping Li
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Jinghua Li
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| | - Youkang Zhang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
- Renal Division, Key Laboratory of Renal Disease, Department of Medicine, Peking University First Hospital, Beijing, China
| | - Haichang Huang
- The Kidney Disease Research Center, Jingdong Yumei Kidney Disease Hospital, Beijing, China
| |
Collapse
|
25
|
Tsanaktsi A, Solomou EE, Liossis SNC. Th1/17 cells, a subset of Th17 cells, are expanded in patients with active systemic lupus erythematosus. Clin Immunol 2018; 195:101-106. [DOI: 10.1016/j.clim.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
|
26
|
Nastase MV, Zeng-Brouwers J, Beckmann J, Tredup C, Christen U, Radeke HH, Wygrecka M, Schaefer L. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney. Matrix Biol 2018; 68-69:293-317. [DOI: 10.1016/j.matbio.2017.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
27
|
Li K, Huang SH, Lao XM, Yang L, Liao GQ, Liang YJ. Interaction of cancer cell-derived Foxp3 and tumor microenvironment in human tongue squamous cell carcinoma. Exp Cell Res 2018; 370:643-652. [PMID: 30040923 DOI: 10.1016/j.yexcr.2018.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
The forkhead transcription factor, Foxp3, has been proved essential for differentiation and activation of regulatory T cells (Tregs). Recently, Foxp3 expression in tumor cells (cancer cell-derived Foxp3) has gained increasing interest, but the function has yet to be confirmed. In the current investigation, we identified the interaction of cancer cell-derived Foxp3 and tumor microenvironment in human tongue squamous cell carcinoma(TSCC) by various in vitro methods. We detected cancer cell-derived Foxp3 was closely associated with the infiltration of Foxp3 + lymphocytes in TSCC lesions using immunohistochemical staining. The cytokines secretion (IFN-γ, TGFβ, IL-2, IL-6, IL-1β, IL-10, IL-8, IL-17, IL-23) of PBMC and differentiation of CD4 +T cells were modulated by the expression of Foxp3 in TSCC, shown by ELISA and flow cytometry. As feedback, increasing TGFβ and decreasing IL-17 further up-regulated cancer cell-derived Foxp3. Furthermore, CHIP on chip assay showed that both TGFβ and IL-17 decreased the number of Foxp3-binding genes in TSCC. GO and pathway analysis suggested that, treated with TGFβ or Th17, Foxp3-binding genes were inclined to the negative regulation of TGFβ signal pathway. Taken together, this study showed cancer cell-derived Foxp3 contributed to Tregs expansion in TSCC microenvironment with positive and negative feedbacks.
Collapse
Affiliation(s)
- Kan Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,56th Lingyuanxi Road, Guangzhou, Guangdong 510055, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China
| | - Si-Hui Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,56th Lingyuanxi Road, Guangzhou, Guangdong 510055, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China
| | - Xiao-Mei Lao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,56th Lingyuanxi Road, Guangzhou, Guangdong 510055, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China
| | - Le Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,56th Lingyuanxi Road, Guangzhou, Guangdong 510055, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,56th Lingyuanxi Road, Guangzhou, Guangdong 510055, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| | - Yu-Jie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University,56th Lingyuanxi Road, Guangzhou, Guangdong 510055, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
28
|
Grywalska E, Smarz-Widelska I, Krasowska-Zajac E, Korona-Glowniak I, Zaluska-Patel K, Mielnik M, Podgajna M, Malm A, Rolinski J, Zaluska W. The PD-1/PD-L1 Inhibitory Pathway is Altered in Primary Glomerulonephritides. Arch Immunol Ther Exp (Warsz) 2018; 66:133-143. [PMID: 28770269 PMCID: PMC5851708 DOI: 10.1007/s00005-017-0485-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023]
Abstract
The pathogenesis of primary proliferative and non-proliferative glomerulonephritides (PGN and NPGN) is still not fully understood, however, current evidence suggests that most cases of PGN and NPGN are the results of immunologic response to different etiologic agents that activates various biological processes leading to glomerular inflammation and injury. Programmed cell death protein 1 (PD-1) is the major inhibitory receptor regulating T cell exhaustion. The aim of this study was to evaluate the frequencies of PD-1-positive and PD-ligand 1 (PD-L1)-positive T and B lymphocytes in patients with NPGN and PGN in relation to clinical parameters for the first time. The study included peripheral blood (PB) samples from 20 newly diagnosed PGN and NPGN patients. The control group comprised of 20 healthy age- and sex-matched subjects. The viable PB lymphocytes underwent labelling with fluorochrome-conjugated monoclonal antibodies anti-PD-1 and anti-PD-L1, and were analyzed using a flow cytometer. The frequencies of CD4+/PD1+ T lymphocytes, CD8+/PD1+ T lymphocytes, and CD19+/PD-1+ B lymphocytes in the PGN group exceeded values obtained both in the NPGN group, and the control group. Alteration of PD-1/PD-L1 pathway may be involved in poorer prognosis, as patients with PGN are characterized by higher frequencies of PD-1-positive and PD-L1-positive T and B lymphocytes than patients with NPGN. Our results suggest that deregulation of PD-1/PD-L1 axis may contribute to the PGN and NPGN pathogenesis. High percentages of lymphocytes with PD-1 and PD-L1 expression may be related to the continuous T-cell activation and development of glomerular inflammation and injury.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Lublin, Poland
| | - Ewelina Krasowska-Zajac
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | | | - Karolina Zaluska-Patel
- Department of Didactics and Medical Simulation, Medical University of Lublin, Lublin, Poland
| | - Michal Mielnik
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Martyna Podgajna
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Jacek Rolinski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Wojciech Zaluska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Lublin, Poland.
- Department of Nephrology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
29
|
Merlo LMF, Grabler S, DuHadaway JB, Pigott E, Manley K, Prendergast GC, Laury-Kleintop LD, Mandik-Nayak L. Therapeutic antibody targeting of indoleamine-2,3-dioxygenase (IDO2) inhibits autoimmune arthritis. Clin Immunol 2017; 179:8-16. [PMID: 28223071 DOI: 10.1016/j.clim.2017.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a debilitating inflammatory autoimmune disease with no known cure. Recently, we identified the immunomodulatory enzyme indoleamine-2,3-dioxygenase 2 (IDO2) as an essential mediator of autoreactive B and T cell responses driving RA. However, therapeutically targeting IDO2 has been challenging given the lack of small molecules that specifically inhibit IDO2 without also affecting the closely related IDO1. In this study, we develop a novel monoclonal antibody (mAb)-based approach to therapeutically target IDO2. Treatment with IDO2-specific mAb alleviated arthritis in two independent preclinical arthritis models, reducing autoreactive T and B cell activation and recapitulating the strong anti-arthritic effect of genetic IDO2 deficiency. Mechanistic investigations identified FcγRIIb as necessary for mAb internalization, allowing targeting of an intracellular antigen traditionally considered inaccessible to mAb therapy. Taken together, our results offer preclinical proof of concept for antibody-mediated targeting of IDO2 as a new therapeutic strategy to treat RA and other autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Lauren M F Merlo
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Samantha Grabler
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - James B DuHadaway
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Elizabeth Pigott
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Kaylend Manley
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - George C Prendergast
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA; Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut St. #100, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th St. Suite 1050, Philadelphia, PA 19107, USA
| | - Lisa D Laury-Kleintop
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Laura Mandik-Nayak
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA.
| |
Collapse
|