1
|
Lu S, Liu Z, Qi M, Wang Y, Chang L, Bai X, Jiao Y, Chen X, Zhen J. Ferroptosis and its role in osteoarthritis: mechanisms, biomarkers, and therapeutic perspectives. Front Cell Dev Biol 2024; 12:1510390. [PMID: 39744014 PMCID: PMC11688369 DOI: 10.3389/fcell.2024.1510390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of disability worldwide, characterized by a complex pathological process involving cartilage degradation, synovial inflammation, and subchondral bone remodeling. In recent years, ferroptosis, a form of programmed cell death driven by iron-dependent lipid peroxidation, has been recognized as playing a critical role in the onset and progression of OA. Investigating the molecular mechanisms of ferroptosis and its involvement in OA may offer novel strategies for diagnosing and treating this disease. This review first outlines the core mechanisms of ferroptosis, with a particular focus on the roles of critical molecules such as Glutathione Peroxidase 4 (GPX4), Transferrin Receptor 1 (TfR1), and Nuclear Receptor Coactivator 4 (NCOA4). Subsequently, this study examines the specific impacts of ferroptosis on the pathophysiology of OA. Building on this, the potential of ferroptosis-related biomarkers for OA diagnosis and treatment is highlighted, along with proposed therapeutic strategies targeting ferroptosis regulation. This review aims to deepen the understanding of ferroptosis mechanisms and advance the clinical application of regulatory therapies for OA.
Collapse
Affiliation(s)
- Shanyu Lu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Zhenyu Liu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Meiling Qi
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Yingchao Wang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Le Chang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Bai
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingguang Jiao
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyao Chen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junping Zhen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Molecular Imaging Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Liu Y, Zhang Z, Fang Y, Liu C, Zhang H. Ferroptosis in Osteoarthritis: Current Understanding. J Inflamm Res 2024; 17:8471-8486. [PMID: 39529997 PMCID: PMC11552513 DOI: 10.2147/jir.s493001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease in elderly people that is characterized by cartilage loss and abrasion, leading to joint pain and dysfunction. The aetiology of OA is complicated and includes abnormal mechanical stress, a mild inflammatory environment, chondrocyte senescence and apoptosis, and changes in chondrocyte metabolism. Ferroptosis is a regulated cell death modality characterized by the excessive accumulation of lipid peroxidation and mitochondrial dysfunction. The role of ferroptosis in OA pathogenesis has aroused researchers' attention in the past two years, and there is mounting evidence indicating that ferroptosis is destructive. However, the impact of ferroptosis on OA and how the regulators of ferroptosis affect OA development are unclear. Here, we reviewed the current understanding of ferroptosis in OA pathogenesis and summarized several drugs and compounds targeting ferroptosis in OA treatment. The accumulation of intracellular iron, the trigger of Fenton reaction, the excessive production of ROS, the peroxidation of PUFA-PLs, and mitochondrial and membrane damage are involved in chondrocyte ferroptosis. System Xc - and GPX4 are the most important regulators that control ferroptosis. Several compounds, such as DFO and Fer-1, have been proven effective in preventing ferroptosis and slowing OA progression on animal models. Collectively, targeting ferroptosis shows great potential in treating OA.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People’s Republic of China
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zian Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Yuan Fang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Chang Liu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| |
Collapse
|
3
|
Tchetina EV, Taskina EA. Studies on postoperative outcome prognostic factors reveal intrinsic nature of osteoarthritis as a systemic disease: Comment on Osteoarthritis and Cartilage 2023;24(1):98-107. Osteoarthritis Cartilage 2024; 32:740-741. [PMID: 38556107 DOI: 10.1016/j.joca.2024.03.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Affiliation(s)
- E V Tchetina
- Department of Immunology and Molecular Biology, Nasonova Research Institute of Rheumatology, Moscow, Russia.
| | - E A Taskina
- Department of Immunology and Molecular Biology, Nasonova Research Institute of Rheumatology, Moscow, Russia; Osteoarthritis Laboratory, Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
4
|
Wang W, Ma Z, Feng X, Ren J, Sun S, Shao Y, Zhang W, Yang X, Zhang J, Jing X. TfR1 mediated iron metabolism dysfunction as a potential therapeutic target for osteoarthritis. Arthritis Res Ther 2024; 26:71. [PMID: 38493104 PMCID: PMC10943767 DOI: 10.1186/s13075-024-03304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Transferrin receptor-1 (TfR1) plays important roles in controlling cellular iron levels, but its role in OA pathology is unknown. Herein we aim to investigate the role of TfR1 in OA progression and its underlying mechanisms. METHODS TfR1 expression in cartilage during OA development were examined both in vivo and in vitro. Then IL-1β was used to induce chondrocytes degeneration in vitro and TfR1 siRNA was used for observing the effect of TfR1 in modulating iron homeostasis, mitochondrial function and degrading enzymes expression. Also the inhibitor of TfR1 was exploited to analyze the protective effect of TfR1 inhibition in vivo. RESULTS TfR1 is elevated in OA cartilage and contributes to OA inflammation condition. Excess iron not only results in oxidative stress damage and sensitizes chondrocytes to ferroptosis, but also triggers c-GAS/STING-mediated inflammation by promoting mitochondrial destruction and the release of mtDNA. Silencing TfR1 using TfR1 siRNA not only reduced iron content in chondrocytes and inhibited oxidative stress, but also facilitated the mitophagy process and suppressed mtDNA/cGAS/STING-mediated inflammation. Importantly, we also found that Ferstatin II, a novel and selective TfR1 inhibitor, could substantially suppress TfR1 activity both in vivo and in vitro and ameliorated cartilage degeneration. CONCLUSION Our work demonstrates that TfR1 mediated iron influx plays important roles in chondrocytes degeneration and OA pathogenesis, suggesting that maintaining iron homeostasis through the targeting of TfR1 may represent a novel therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Wenchao Wang
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Zhenkai Ma
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, 256600, China
| | - Xuemin Feng
- Department of Endocrinology, Binzhou People's Hospital, Binzhou, 256600, China
| | - Jiabin Ren
- Department of Spine Surgery, Binzhou Medical University Hospital, Binzhou, 256600, China
| | - Shengyao Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Yuandong Shao
- Department of Spine Surgery, Binzhou People's Hospital, Binzhou, 256600, China
| | - Weimin Zhang
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Xiaoxia Yang
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Jiaming Zhang
- Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China.
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250000, Shandong, China.
| |
Collapse
|
5
|
Herrero-Beaumont G, Castro-Dominguez F, Migliore A, Naredo E, Largo R, Reginster JY. Systemic osteoarthritis: the difficulty of categorically naming a continuous condition. Aging Clin Exp Res 2024; 36:45. [PMID: 38376694 PMCID: PMC10879223 DOI: 10.1007/s40520-024-02714-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Osteoarthritis (OA) is a disease with systemic implications that go beyond joint problems. Its pathogenic mechanisms involve a variety of systemic conditions that contribute to joint damage. These include metabolic dysfunction, chronic low-grade inflammation, neuroplastic pain, and the influence of the central nervous system in the development of neuropathic pain. Besides, OA can negatively affect other aspects of health, such as quality of life, reduced physical activity, social isolation, depression, and anxiety. OA can be considered a complex system in which pathological interactions involve not only obesity and metabolic dysfunction, but also fragility syndrome, sarcopenia, neurological complications, and systemic energy redistribution. Complex systems are composed of multiple interacting and dynamic parts and exhibit emergent properties that cannot be fully explained by examining their individual components. Chronic low-grade inflammation is characteristic of OA, occurring both in the affected joint, and systemically, mainly due to adipose tissue inflammation in obese patients. Obesity is a key factor in the progression of OA, so primary treatment should focus on its control, while maintaining muscle health. The chronic inflammation could lead to changes in energy distribution among the affected joint tissues. Therefore, OA should be approached as a systemic disease, considering individual patient factors, such as genetics, inflammatory response, and lifestyle. Medical care should be more holistic and personalized. Consideration of a name change, such as "systemic OA", could help to move away from the perception of a disease focused only on the joints.
Collapse
Affiliation(s)
| | | | - Alberto Migliore
- Rheumatology Unit, San Pietro Fatebenefratelli Hospital, Rome, Italy
| | - Esperanza Naredo
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Dept, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Jean-Yves Reginster
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
安 可, 周 学. [Latest Findings on Ferroptosis and Osteoarthropathy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1294-1299. [PMID: 38162082 PMCID: PMC10752773 DOI: 10.12182/20231160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 01/03/2024]
Abstract
Ferroptosis, a newly-discovered mode of programmed cell death, is closely associated with the development of various diseases throughout the human body, such as tumors of the digestive system, ischemia-reperfusion injury, osteoarthropathy, etc. Therefore, ferroptosis has become a hot research topic in many fields of study in recent years, providing new ideas for the prevention and treatment of relevant diseases. Among them, structural lesions in osteoarthropathies involving articular cartilage, subchondral bone, and synovial tissue have been found to be associated with iron overload, as well as oxidative stress, which suggests that inhibition of ferroptosis in relevant joint tissue cells may have a positive effect in halting the development of osteoarthropathy. Herein, focusing on ferroptosis and osteoarthropathy, we summarized the research developments in mechanisms related to iron metabolism and ferroptosis, analyzed the impact of ferroptosis on the pathogenesis and development of osteoarthropathy, and proposed new ideas for medication therapies of osteoarthropathy, taking into account the latest research findings.
Collapse
Affiliation(s)
- 可 安
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Zhang X, Hou L, Guo Z, Wang G, Xu J, Zheng Z, Sun K, Guo F. Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov 2023; 9:320. [PMID: 37644030 PMCID: PMC10465515 DOI: 10.1038/s41420-023-01613-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial and increasingly prevalent degenerative disease that affects the whole joint. The pathogenesis of OA is poorly understood and there is a lack of therapeutic interventions to reverse the pathological process of this disease. Accumulating studies have shown that the overproduction of reactive oxygen species (ROS) and ROS-induced lipid peroxidation are involved in the pathogenesis of OA. 4-Hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) have received considerable attention for their role in cartilage degeneration and subchondral bone remodeling during OA development. Ferroptosis is a form of cell death characterized by a lack of control of membrane lipid peroxidation and recent studies have suggested that chondrocyte ferroptosis contributes to OA progression. In this review, we aim to discuss lipid peroxidation-derived 4-HNE and MDA in the progression of OA. In addition, the therapeutic potential for OA by controlling the accumulation of lipid peroxidation and inhibiting chondrocyte ferroptosis are discussed.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
8
|
Lin J, Guo Z, Zheng Z, Hou L, Xu J, Liu Q, Du T, Guo F, Jing X. Desferoxamine protects against hemophilic arthropathy through the upregulation of HIF-1α-BNIP3 mediated mitophagy. Life Sci 2023; 312:121172. [PMID: 36410411 DOI: 10.1016/j.lfs.2022.121172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
AIMS Hemophilic arthropathy (HA) is a typically iron overload induced joint disease secondary to continuous joint bleeding, however, the exact role of iron chelators in HA has not been fully elucidated. In the present study, we investigated whether desferoxamine (DFO), an iron chelator, could limit the development of HA and the underlying mechanisms. MATERIALS AND METHODS A HA mice model was established by needle puncture in the left knees of FVIII-deficient hemophilic mice. HA progression was evaluated at 8 weeks after DFO administration. Moreover, chondrocytes were treated with ferric ammonium citrate (FAC) to mimic iron overload in vitro. Modulating effect of DFO on iron overload induced oxidative stress, chondrocytes apoptosis and extracellular matrix (ECM) degradation and the role of HIF-1α-BNIP3 mediated mitophagy were examined. KEY FINDINGS We found that DFO limited the development of HA and protected iron overload induced ECM degradation, chondrocytes apoptosis and oxidative stress. Besides chelating Fe2+, we found that HIF-1α-BNIP3 mediated mitophagy played important roles in the protective effect of DFO. HIF-1α inhibition suppressed chondrocytes mitophagy process and partly diminished the protective effect of DFO on chondrocytes iron overload. SIGNIFICANCE In conclusion, DFO could protect against HA development via HIF-1α-BNIP3 mediated mitophagy, suggesting DFO might be a potential therapeutic supplement for HA treatment.
Collapse
Affiliation(s)
- Jiamin Lin
- Department of Plastic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318000, Zhejiang, PR China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Qiang Liu
- Medical Department, Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100191, PR China
| | - Ting Du
- Medical Department, Yidu Cloud (Beijing) Technology Co., Ltd., Beijing 100191, PR China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China.
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong, PR China.
| |
Collapse
|
9
|
Otarola GA, Hu JC, Athanasiou KA. Ion modulatory treatments toward functional self-assembled neocartilage. Acta Biomater 2022; 153:85-96. [PMID: 36113725 PMCID: PMC11575480 DOI: 10.1016/j.actbio.2022.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Signals that recapitulate in vitro the conditions found in vivo, such as hypoxia or mechanical forces, contribute to the generation of tissue-engineered hyaline-like tissues. The cell regulatory processes behind hypoxic and mechanical stimuli rely on ion concentration; iron is required to degrade the hypoxia inducible factor 1a (HIF1α) under normoxia, whereas the initiation of mechanotransduction requires the cytoplasmic increase of calcium concentration. In this work, we propose that ion modulation can be used to improve the biomechanical properties of self-assembled neocartilage constructs derived from rejuvenated expanded minipig rib chondrocytes. The objectives of this work were 1) to determine the effects of iron sequestration on self-assembled neocartilage constructs using two doses of the iron chelator deferoxamine (DFO), and 2) to evaluate the performance of the combined treatment of DFO and ionomycin, a calcium ionophore that triggers cytoplasmic calcium accumulation. This study employed a two-phase approach. In Phase I, constructs treated with a high dose of DFO (100 µM) exhibited an 87% increase in pyridinoline crosslinks, a 57% increase in the Young's modulus, and a 112% increase in the ultimate tensile strength (UTS) of the neotissue. In Phase II, the combined use of both ion modulators resulted in 150% and 176% significant increases in the Young's modulus and UTS of neocartilage constructs, respectively; for the first time, neocartilage constructs achieved a Young's modulus of 11.76±3.29 MPa and UTS of 4.20±1.24 MPa. The results of this work provide evidence that ion modulation can be employed to improve the biomechanical properties in engineered neotissues. STATEMENT OF SIGNIFICANCE: The translation of tissue-engineered products requires the development of strategies capable of producing biomimetic neotissues in a replicable, controllable, and cost-effective manner. Among other functions, Fe2+ and Ca2+ are involved in the control of the hypoxic response and mechanotransduction, respectively. Both stimuli, hypoxia and mechanical forces, are known to favor chondrogenesis. This study utilized ion modulators to improve the mechanical properties self-assembled neocartilage constructs derived from expanded and rejuvenated costal chondrocytes via Fe2+ sequestration and Ca2+ influx, alone or in combination. The results indicate that ion modulation induced tissue maturation and a significant improvement of the mechanical properties, and holds potential as a tool to mitigate the need for bioreactors and engineer hyaline-like tissues.
Collapse
Affiliation(s)
- Gaston A Otarola
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Jerry C Hu
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Kyriacos A Athanasiou
- 3131 Engineering Hall, Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
10
|
The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants (Basel) 2022; 11:antiox11091668. [PMID: 36139742 PMCID: PMC9495695 DOI: 10.3390/antiox11091668] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, a recently discovered regulated cell death modality, is characterised by iron-dependent accumulation of lipid hydroperoxides, which can reach lethal levels but can be specifically reversed by ferroptosis inhibitors. Osteoarthritis (OA), the most common degenerative joint disease, is characterised by a complex pathogenesis involving mechanical overload, increased inflammatory mediator levels, metabolic alterations, and cell senescence and death. Since iron accumulation and oxidative stress are the universal pathological features of OA, the role played by ferroptosis in OA has been extensively explored. Increasing evidence has shown that iron dyshomeostasis and lipid peroxidation are closely associated with OA pathogenesis. Therefore, in this review, we summarize recent evidence by focusing on ferroptotic mechanisms and the role played by ferroptosis in OA pathogenesis from the perspectives of clinical findings, animal models, and cell research. By summarizing recent research advances that characterize the relationship between ferroptosis and OA, we highlight avenues for further research and potential therapeutic targets.
Collapse
|
11
|
Zheng L, Han Z, Luo D, Li J, Ye H, Feng R, Zhong Q, Jing J, Yao Y. FGF23 and SOX9 expression in hemophilic cartilage: In vitro studies of the effects of iron. Haemophilia 2022; 28:1062-1068. [PMID: 35802007 DOI: 10.1111/hae.14623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Clarifying the links between iron and FGF23, SOX9 expression in chondrocytes would be helpful for comprehending articular cartilage degradation pathogenesis in blood-induced arthritis and exploring new protective methods. AIM The purpose of this study was to determine iron regulation of fibroblast growth factor 23 (FGF23) and SRY-box 9 (SOX9) in human chondrocytes, an area which is unexplored in blood-induced arthritis cartilage degradation pathogenesis. METHODS Expression of FGF23, SOX9, MMP13 and collagen Ⅱ in articular cartilage of patients with osteoarthritis (OA) or haemophilic arthritis (HA) was determined by western blot (WB). Iron induced FGF23 and SOX9 mRNA and protein expression in primary human normal chondrocyte cells (HUM-iCell-s018) was quantifified by qRT-PCR and WB, respectively. RESULTS We found that compared with OA patients, the expression of FGF23, MMP13 in articular cartilage of patients with HA was up-regulated, while the expression of SOX9, collagen Ⅱ was down-regulated. Iron induced FGF23 and suppressed SOX9 expression in chondrocytes in a dose-dependent manner. CONCLUSIONS These findings demonstrated that iron were involved in hemophilic cartilage lesion directly via changing cartilage phenotype through regulation of FGF23 and SOX9 expression in chondrocytes.
Collapse
Affiliation(s)
- Liujie Zheng
- Department of Orthopaedic Surgery, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhiwei Han
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Dasheng Luo
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiale Li
- Department of Orthopaedic Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, People's Republic of China
| | - Houlong Ye
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ru Feng
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qigang Zhong
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Juehua Jing
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yunfeng Yao
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
12
|
Cai C, Hu W, Chu T. Interplay Between Iron Overload and Osteoarthritis: Clinical Significance and Cellular Mechanisms. Front Cell Dev Biol 2022; 9:817104. [PMID: 35096841 PMCID: PMC8795893 DOI: 10.3389/fcell.2021.817104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
There are multiple diseases or conditions such as hereditary hemochromatosis, hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency that can cause iron overload in the human body. These diseases or conditions are frequently associated with osteoarthritic phenotypes, such as progressive cartilage degradation, alterations in the microarchitecture and biomechanics of the subchondral bone, persistent joint inflammation, proliferative synovitis, and synovial pannus. Growing evidences suggest that the conditions of pathological iron overload are associated with these osteoarthritic phenotypes. Osteoarthritis (OA) is an important complication in patients suffering from iron overload-related diseases and conditions. This review aims to summarize the findings and observations made in the field of iron overload-related OA while conducting clinical and basic research works. OA is a whole-joint disease that affects the articular cartilage lining surfaces of bones, subchondral bones, and synovial tissues in the joint cavity. Chondrocytes, osteoclasts, osteoblasts, and synovial-derived cells are involved in the disease. In this review, we will elucidate the cellular and molecular mechanisms associated with iron overload and the negative influence that iron overload has on joint homeostasis. The promising value of interrupting the pathologic effects of iron overload is also well discussed for the development of improved therapeutics that can be used in the field of OA.
Collapse
Affiliation(s)
- Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
13
|
Sun K, Guo Z, Hou L, Xu J, Du T, Xu T, Guo F. Iron homeostasis in arthropathies: From pathogenesis to therapeutic potential. Ageing Res Rev 2021; 72:101481. [PMID: 34606985 DOI: 10.1016/j.arr.2021.101481] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Iron is an essential element for proper functioning of cells within mammalian organ systems; in particular, iron homeostasis is critical for joint health. Excess iron can induce oxidative stress damage, associated with the pathogenesis of iron-storage and ageing-related diseases. Therefore, iron levels in body tissues and cells must be tightly regulated. In the past decades, excess iron content within joints has been found in some patients with joint diseases including hemophilic arthropathy, hemochromatosis arthropathy, and osteoarthritis (OA). Currently, increased evidence has shown that iron accumulation is closely associated with multiple pathological changes of these arthropathies. This review summarizes system-level and intracellular regulation of iron homeostasis, and emphasizes the role of iron in synovial alterations, cartilage degeneration, and subchondral bone of several arthropathies. Of note, we discuss the potential link between iron homeostasis and OA pathogenesis. Finally, we discuss the therapeutic potential of maintaining iron homeostasis in these arthropathies.
Collapse
|
14
|
Wei JY, Zhang DM, Xie J, Zhou XD. [Research Progress in Glucose Metabolism of Chondrocytes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:923-928. [PMID: 34841755 PMCID: PMC10408824 DOI: 10.12182/20211160206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chondrocytes have a limited supply of glucose and oxygen for metabolism since articular cartilages are relatively avascular. We herein reviewed the characteristics of chondrocyte glucose metabolism and the new research progress in chondrocyte glucose metabolism in the osteoarthritis process. Current research has shown that chondrocytes obtain glucose from synovial fluids and subchondral bones, take in glucose via specific glucose transporters, and metabolize glucose mainly through glycolysis and mitochondrial respiration to produce adenosine triphosphate (ATP). Glucose metabolism in chondrocytes is distinctive because it relies much more on glycolysis rather than mitochondrial respiration for ATP production, and shows Warburg effect and Crabtree effect. In osteoarthritic chondrocytes, the glucose metabolism disorder is presented as further suppression of mitochondrial respiration, over-active or impaired glycolysis, and decreased total production of ATP. However, the significance of the glucose supply for chondrocytes from synovial fluids and subchondral bones remains undefined. There are still disputes in the understanding of the changes in glycolytic pathways in osteoarthritic chondrocytes. Therefore, future research is needed to explore the characteristics of glucose metabolism in normal and osteoarthritic chondrocytes in order to develop new diagnostic and therapeutic strategies for osteoarthritis.
Collapse
Affiliation(s)
- Jie-Ya Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - De-Mao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Wang J, Li J, Song D, Ni J, Ding M, Huang J, Yan M. AMPK: implications in osteoarthritis and therapeutic targets. Am J Transl Res 2020; 12:7670-7681. [PMID: 33437352 PMCID: PMC7791500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Osteoarthritis (OA) is the most common skeletal disease and the leading cause of pain and disability in the aged population (>65 years). However, the underlying factors involved in OA pathogenesis remain elusive which has resulted in failure to identify disease-modifying OA drugs. Altered metabolism has been shown to be a prominent pathological change in OA. As a critical bioenergy sensor, AMP-activated protein kinase (AMPK) mediates not only energy homeostasis but also redox balance in chondrocytes to counter various cell stress. Dysfunction of AMPK activity has been associated with reduced autophagy, impaired mitochondrial function, excessive reactive oxygen species generation, and inflammation in joint tissue. These abnormalities ultimately trigger articular cartilage degeneration, synovial inflammation, and abnormal subchondral bone remodeling. This review focuses on recent findings describing the central role of AMPK in joint homeostasis and OA development. We also highlight current advances that target AMPK as a novel therapeutic strategy for OA prevention.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Jiali Li
- Department of Rheumatology and Nephrology, University of South China Affiliated Changsha Central HospitalChangsha 410008, Hunan, China
| | - Deye Song
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Jiangdong Ni
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Muliang Ding
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Jun Huang
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Mingming Yan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|
16
|
Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020; 2020:4143802. [PMID: 32566279 PMCID: PMC7261331 DOI: 10.1155/2020/4143802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and type 2 diabetes mellitus (T2D) are two of the most widespread chronic diseases. OA and T2D have common epidemiologic traits, are considered heterogenic multifactorial pathologies that develop through the interaction of genetic and environmental factors, and have common risk factors. In addition, both of these diseases often manifest in a single patient. Despite differences in clinical manifestations, both diseases are characterized by disturbances in cellular metabolism and by an insulin-resistant state primarily associated with the production and utilization of energy. However, currently, the primary cause of OA development and progression is not clear. In addition, although OA is manifested as a joint disease, evidence has accumulated that it affects the whole body. As pathological insulin resistance is viewed as a driving force of T2D development, now, we present evidence that the molecular and cellular metabolic disturbances associated with OA are linked to an insulin-resistant state similar to T2D. Moreover, the alterations in cellular energy requirements associated with insulin resistance could affect many metabolic changes in the body that eventually result in pathology and could serve as a unified mechanism that also functions in many metabolic diseases. However, these issues have not been comprehensively described. Therefore, here, we discuss the basic molecular mechanisms underlying the pathological processes associated with the development of insulin resistance; the major inducers, regulators, and metabolic consequences of insulin resistance; and instruments for controlling insulin resistance as a new approach to therapy.
Collapse
|
17
|
Chetina EV, Markova GA, Sharapova EP. [there any association of metabolic disturbances with joint destruction and pain?]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 65:441-456. [PMID: 31876515 DOI: 10.18097/pbmc20196506441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteoarthritis and type 2 diabetes mellitus represent two the most common chronic diseases. They possess many shared epidemiologic traits, have common risk factors, and embody heterogeneous multifactorial pathologies, which develop due to interaction of genetic an environmental factors. In addition, these diseases are often occurring in the same patient. In spite of the differences in clinical manifestation both diseases have similar disturbances of cellular metabolism, primarily associated with ATP production and utilization. The review discusses molecular mechanisms determining pathophysiological processes associated with glucose and lipid metabolism as well as the means aiming to alleviate the disturbances of energy metabolism as a new a therapeutic approach.
Collapse
Affiliation(s)
- E V Chetina
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - G A Markova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - E P Sharapova
- Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|
18
|
Association of IL-6, IL-8, MMP-13 gene polymorphisms with knee osteoarthritis susceptibility in the Chinese Han population. Biosci Rep 2019; 39:BSR20181346. [PMID: 30635366 PMCID: PMC6356033 DOI: 10.1042/bsr20181346] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: To identify the association between the interleukin (IL) 6 (IL-6) rs1800795 (-174 G>C), IL-8 rs4073 (-251T>A), and matrix metalloproteinase-13 (MMP-13) rs2252070 (-77G>A) gene polymorphisms and knee osteoarthritis (KOA) susceptibility in the Chinese Han population. Methods: Genomic DNA was extracted from a total of 400 KOA patients and 400 healthy subjects. Sanger sequencing was performed to determine the genotypes of the IL-6 rs1800795 (-174 G/C), IL-8 rs4073 (-251A/T), and MMP-13 rs2252070 (-77A/G) loci. The mRNA expression levels of IL-6, IL-8, and MMP-13 in osteoblasts and the protein expression levels of IL-6, IL-8, and MMP-13 in the synovial fluids of KOA patients were analyzed. Results: The recessive model of IL-6 rs1800795 locus was found to be associated with KOA risk (adjusted odds ratio (OR) = 1.657, 95% confidence interval (CI) = 1.396-1.866, P<0.001). The IL-8 rs4073 locus dominant and recessive model showed no significant association with KOA risk (P>0.05). The dominant and recessive models of the MMP-13 rs2252070 locus showed higher risk for developing KOA (dominant model: adjusted OR = 1.271, 95%CI = 1.095-1.480, P=0.001; recessive model: adjusted OR = 1.361 95%CI = 1.151-1.569, P<0.001). The G>C mutation in IL-6 rs1800795 and the G>A mutation in MMP-13 rs2252070 were associated with significantly higher KOA disease severity. The G>C mutation in the IL-6 rs1800795 locus was associated with up-regulation of IL-6 expression. The G>A mutation in the MMP-13 rs2252070 locus was associated with up-regulation of MMP-13 expression. Conclusion: The IL-8 rs4073 (-251T>A) mutation was not associated with KOA susceptibility. The IL-6 rs1800795 (-174 G>C) and MMP-13 rs2252070 (-77G>A) mutations were associated with KOA susceptibility, increased disease severity, and up-regulation of IL-6 and MMP-13 expression levels.
Collapse
|
19
|
Song YF, Gao Y, Hogstrand C, Li DD, Pan YX, Luo Z. Upstream regulators of apoptosis mediates methionine-induced changes of lipid metabolism. Cell Signal 2018; 51:176-190. [PMID: 30099089 DOI: 10.1016/j.cellsig.2018.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/20/2022]
Abstract
Although the role of methionine (Met), as precursor for l-carnitine synthesis, in the regulation of lipid metabolism has been explored. Met seems to have tissue- and species-specific regulatory effect on lipid metabolism, implying that the mechanisms in Met regulation of lipid metabolism is complex and may involve the upstream regulatory pathway of lipid metabolism. The present study was performed to determine the mechanism of apoptosis signaling pathways mediating Met-induced changes of hepatic lipid deposition and metabolism in fish, and compare the differences of the mechanisms between the fish and mammals. By iTRAQ-based quantitative proteome analyses, we found that both dietary Met deficiency and excess evoked apoptosis signaling pathways, increased hepatic lipid deposition and caused aberrant hepatic lipid metabolism of yellow catfish Pelteobagrus fulvidraco. Using primary hepatocytes from P. fulvidraco, inhibition of caspase by Z-VAD-FMK blocked the apoptotic signaling pathways with a concomitant reversal of Met deficiency- and excess-induced increase of lipid deposition, indicating that apoptosis involved the Met-mediated changes of hepatic lipid metabolism. Moreover, we explored the roles of three upstream apoptotic signaling pathways (PI3K/AKT-TOR pathway, cAMP/PKA/CREB pathway and LKB1/AMPK-FOXO pathway) influencing hepatic lipid metabolism of P. fulvidraco. The three upstream pathways participated in apoptosis mediating Met-induced changes of lipid metabolism in P. fulvidraco. At last, HepG2 cell line was used to compare the similarities of mechanisms in apoptosis mediating Met-induced changes of lipid metabolism between fish and mammals. Although several slight differences existed, apoptosis mediated the Met-induced changes of lipid metabolism between fish and mammals. The present study reveals novel apoptosis-relevant signal transduction axis which mediates the Met-induced changes of lipid metabolism, which will help understand the mechanistic link between apoptosis and lipid metabolism, and highlight the importance of the evolutionary conservative apoptosis signaling axis in regulating Met-induced changes of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Gao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Dan-Dan Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
20
|
Regulation of energy metabolism in the growth plate and osteoarthritic chondrocytes. Rheumatol Int 2018; 38:1963-1974. [DOI: 10.1007/s00296-018-4103-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022]
|
21
|
Shen Y, Li X, Dong D, Zhang B, Xue Y, Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res 2018; 8:916-931. [PMID: 30034931 PMCID: PMC6048407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023] Open
Abstract
Iron as an important element plays crucial roles in various physiological and pathological processes. Iron metabolism behaves in systemic and cellular two levels that usually are in balance conditions. The disorders of the iron metabolism balances relate with many kinds of diseases including Alzheimer's disease, osteoporosis and various cancers. In systemic iron metabolism that is regulated by hepcidin-ferroportin axis, plasma iron is bound with transferrin (TF) which has two high-affinity binding sites for ferric iron. The generic cellular iron metabolism consists of iron intake, utilization and efflux. During the iron intake process in generic cells, transferrin receptors (TFRs) act as the most important receptor mediated controls. TFR1 and TFR2 are two subtypes of TFRs those bind with iron-transferrin complex to facilitate iron into cells. TFR1 is ubiquitously expressed on the surfaces of generic cells, whereas TFR2 is specially expressed in liver cells. TFR1 has attracted more attention than TFR2 by having diverse functions in both invertebrates and vertebrates. Recently reports showed that TFR1 involved in many kinds of diseases including anemia, neurodegenerative diseases and cancers. Most importantly, TFR1 has been verified to be abnormally expressed in various cancers. Some experimental and clinical drugs and antibodies targeting TFR1 have showed strong anti-tumor effects, herein TFR1 probably become a potential molecular target for diagnosis and treatment for cancer therapy. This paper reviewed the research progresses of the roles of TFR1 in the tumorigenesis and cancer progression, the regulations of TFR1, and the therapeutic effects of targeting TFR1 on many kinds of cancers.
Collapse
Affiliation(s)
- Ying Shen
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Xin Li
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Dandan Dong
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Bin Zhang
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Yanru Xue
- School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
| | - Peng Shang
- Research and Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen 518057, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Science, Northwestern Polytechnical UniversityXi’an 710072, Shaanxi, China
| |
Collapse
|
22
|
Yan HF, Liu ZY, Guan ZA, Guo C. Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr Connect 2018; 7:604-616. [PMID: 29678877 PMCID: PMC5911700 DOI: 10.1530/ec-18-0054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The mechanisms underlying obesity and anti-obesity processes have garnered remarkable attention as potential therapeutic targets for obesity-associated metabolic syndromes. Our prior work has shown the healing efficacy of iron reduction therapies for hepatic steatosis in a rodent model of diabetes and obesity. In this study, we investigated how iron depletion by deferoxamine (DFO) affected adipocyte dysfunction in the epididymal adipose tissues of ob/ob mice. METHODS Male ob/ob mice were assigned to either a vehicle-treated or DFO-treated group. DFO (100 mg/kg body weight) was injected intraperitoneally for 15 days. RESULTS We confirmed that iron deposits were statistically increased in the epididymal fat pad of 26-week-old ob/ob mice compared with wild-type (WT) mice. DFO significantly improved vital parameters of adipose tissue biology by reducing reactive oxygen species and inflammatory marker (TNFα, IL-2, IL-6, and Hepcidin) secretion, by increasing the levels of antioxidant enzymes, hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-targeted proteins, and by altering adipocytic iron-, glucose- and lipid-associated metabolism proteins. Meanwhile, hypertrophic adipocytes were decreased in size, and insulin signaling pathway-related proteins were also activated after 15 days of DFO treatment. CONCLUSIONS These findings suggest that dysfunctional iron homeostasis contributes to the pathophysiology of obesity and insulin resistance in adipose tissues of ob/ob mice. Further investigation is required to develop safe iron chelators as effective treatment strategies against obesity, with potential for rapid clinical application.
Collapse
Affiliation(s)
- Hong-Fa Yan
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Zhao-Yu Liu
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Zhi-Ang Guan
- College of Life and Health SciencesNortheastern University, Shenyang, China
| | - Chuang Guo
- College of Life and Health SciencesNortheastern University, Shenyang, China
| |
Collapse
|
23
|
Tchetina EV. Current and future trends in Russian Rheumatology Care and Research. Mediterr J Rheumatol 2017; 28:201-205. [PMID: 32185283 PMCID: PMC7046001 DOI: 10.31138/mjr.28.4.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 11/28/2022] Open
Abstract
This short article provides a description of the present state of rheumatology care and research in Russia and discusses opportunities for development and co-operation.
Collapse
Affiliation(s)
- Elena V Tchetina
- Immunology and Molecular Biology Laboratory, Nasonova Research Institute of Rheumatology, Moscow, Russia
| |
Collapse
|