1
|
Disli HB, Hizlisoy H, Gungor C, Barel M, Dishan A, Gundog DA, Al S, Onmaz NE, Yildirim Y, Gonulalan Z. Investigation and characterization of Aliarcobacter spp. isolated from cattle slaughterhouse in Türkiye. Int Microbiol 2024; 27:1321-1332. [PMID: 38206523 DOI: 10.1007/s10123-023-00478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.
Collapse
Affiliation(s)
- Huseyin Burak Disli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Harun Hizlisoy
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Candan Gungor
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Mukaddes Barel
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Adalet Dishan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Dursun Alp Gundog
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Serhat Al
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Nurhan Ertas Onmaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Yeliz Yildirim
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Zafer Gonulalan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Gaetano AS, Semeraro S, Greco S, Greco E, Cain A, Perrone MG, Pallavicini A, Licen S, Fornasaro S, Barbieri P. Bioaerosol Sampling Devices and Pretreatment for Bacterial Characterization: Theoretical Differences and a Field Experience in a Wastewater Treatment Plant. Microorganisms 2024; 12:965. [PMID: 38792794 PMCID: PMC11124041 DOI: 10.3390/microorganisms12050965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Studies on bioaerosol bacterial biodiversity have relevance in both ecological and health contexts, and molecular methods, such as 16S rRNA gene-based barcoded sequencing, provide efficient tools for the analysis of airborne bacterial communities. Standardized methods for sampling and analysis of bioaerosol DNA are lacking, thus hampering the comparison of results from studies implementing different devices and procedures. Three samplers that use gelatin filtration, swirling aerosol collection, and condensation growth tubes for collecting bioaerosol at an aeration tank of a wastewater treatment plant in Trieste (Italy) were used to determine the bacterial biodiversity. Wastewater samples were collected directly from the untreated sewage to obtain a true representation of the microbiological community present in the plant. Different samplers and collection media provide an indication of the different grades of biodiversity, with condensation growth tubes and DNA/RNA shieldTM capturing the richer bacterial genera. Overall, in terms of relative abundance, the air samples have a lower number of bacterial genera (64 OTUs) than the wastewater ones (75 OTUs). Using the metabarcoding approach to aerosol samples, we provide the first preliminary step toward the understanding of a significant diversity between different air sampling systems, enabling the scientific community to orient research towards the most informative sampling strategy.
Collapse
Affiliation(s)
- Anastasia Serena Gaetano
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
- INSTM National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Sabrina Semeraro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
- INSTM National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, 34127 Trieste, Italy;
| | - Enrico Greco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
- INSTM National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Andrea Cain
- ACEGAS APS AMGA S.p.a., Via degli Alti Forni, 11, 34121 Trieste, Italy;
| | | | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, 34127 Trieste, Italy;
| | - Sabina Licen
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
| | - Pierluigi Barbieri
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri, 1, 34127 Trieste, Italy; (A.S.G.); (S.S.); (E.G.); (S.L.); (S.F.)
- INSTM National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti, 9, 50121 Firenze, Italy
| |
Collapse
|
3
|
Ekundayo TC, Itiolu IF, Ijabadeniyi OA. Arcobacter species in milk contamination: a prevalence-based systematic review and meta-analysis. J Appl Microbiol 2022; 134:lxac037. [PMID: 36626780 DOI: 10.1093/jambio/lxac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2023]
Abstract
AIMS Milk is consumed raw or minimally processed and plays a role in the dissemination of pathogens of public health concerns. The present investigation is aimed at assessing the occurrence of pathogenic Arcobacter species in 2945 milk samples. METHODS AND RESULTS Arcobacter data systematically retrieved from five repositories until 20 February 2022 according to PRISMA principles were logit transformed and fitted using a generalized linear mixed-effects model. The between-study heterogeneity was estimated as I2-value. Leave-one-out cross-validation and funnel plot with Egger's tests were used to assess the hardiness and bias in the model. The global prevalence of Arcobacter genus in the milk was 12% [95% confidence interval (CI): 7-19%; I2 = 87.3%, 95% CI: 83.0-90.6%] and no publication bias observed (Egger's test: P = 0.112). Arcobacter genus prevalence in milk was 13% (95% CI: 5-30%), 10% (95% CI: 1-46%), and 9% (95% CI: 4-19%) in Europe, South America, and Asia, respectively. Arcobacter butzleri was the most prevalent [8% (95% CI: 4-13%)], followed by A. cryaerophilus [0.6% (95% CI: 0.2-33.2%)] and A. skirrowii [0.19% (95% CI: 0.03-1.2%)]. Also, species-specific prevalence of A. butzleri, A. cryaerophilus, and A. skirrowii varied continentally, but the test for species-specific/continental differences was not significantly different (P > 0.5).
Collapse
Affiliation(s)
- Temitope C Ekundayo
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Health Services, 121 Steve Biko Rd, Musgrave, Berea, Durban 4001, South Africa
| | - Ibilola F Itiolu
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Health Services, 121 Steve Biko Rd, Musgrave, Berea, Durban 4001, South Africa
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Health Services, 121 Steve Biko Rd, Musgrave, Berea, Durban 4001, South Africa
| |
Collapse
|
4
|
Rolbiecki D, Korzeniewska E, Czatzkowska M, Harnisz M. The Impact of Chlorine Disinfection of Hospital Wastewater on Clonal Similarity and ESBL-Production in Selected Bacteria of the Family Enterobacteriaceae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13868. [PMID: 36360746 PMCID: PMC9655713 DOI: 10.3390/ijerph192113868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Hospitals are regarded as ecological niches of antibiotic-resistant bacteria (ARB). ARB can spread outside the hospital environment via hospital wastewater (HWW). Therefore, HWW is often disinfected in local stations to minimize that risk. Chlorine-based treatment is the most popular method of HWW disinfection around the world, however, recent research has suggested that it can contribute to the spread of antimicrobial resistance (AMR). The aim of this study is to determine the impact of HWW disinfection on the clonal similarity of Enterobacteriaceae species and their ability to produce extended-spectrum beta-lactamases (ESBLs). The study was conducted in a hospital with a local chlorine-based disinfection station. Samples of wastewater before disinfection and samples of disinfected wastewater, collected in four research seasons, were analyzed. Bacteria potentially belonging to the Enterobacteriaceae family were isolated from HWW. The Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) method was used to generate DNA fingerprints of all bacterial isolates. The isolates were phenotypically tested for the production of ESBLs. Antibiotic resistance genes (blaSHV, blaTEM, and blaOXA, blaCTX-M-1-group, blaCTX-M-2-group, blaCTX-9-group and blaCTX-M-8/25-group) were detected by PCR in strains with confirmed phenotypic ability to produce ESBLs. The ESBL+ isolates were identified by the sequencing of 16S rDNA. In the present study, the same bacterial clones were isolated from HWW before and after disinfection and HWW was sampled in different seasons. Genetic and phenotypic variations were observed in bacterial clones. ESBL+ strains were isolated significantly more often from disinfected than from non-disinfected HWW. The blaOXA gene was significantly more prevalent in isolates from disinfected than non-disinfected HWW. Enterobacter hormaechei and Klebsiella pneumoniae were the dominant species in ESBL+ strains isolated from both sampling sites. The results of this study indicate that chlorine-based disinfection promotes the survival of ESBL-producing bacteria and/or the transmission of genetic determinants of antimicrobial resistance. As a result, chlorination increases the proportion of ESBL-producing Enterobacteriaceae in disinfected wastewater. Consequently, chlorine-based disinfection practices may pose a risk to the environment and public health by accelerating the spread of antimicrobial resistance.
Collapse
|
5
|
Bagi A, Skogerbø G. Tracking bacterial pollution at a marine wastewater outfall site - A case study from Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154257. [PMID: 35247400 DOI: 10.1016/j.scitotenv.2022.154257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Coastal marine environments are increasingly affected by anthropogenic impacts, such as the release of sewage at outfall sites and agricultural run-off. Fecal pollution introduced to the sea through these activities poses risks of spreading microbial diseases and disseminating antibiotic resistant bacteria and their genes. The study area of this research, Bore beach, is situated between two such point sources, an outfall site where treated sewage is released 1 km off the coast and a stream that carries run-off from an agricultural area to the northern end of the beach. In order to investigate whether and to what extent fecal contamination from the sewage outfall reached the beach, we used microbial source tracking, based on whole community analysis. Samples were collected from sea water at varying distances from the sewage outfall site and along the beach, as well as from the sewage effluent and the stream. Amplicon sequencing of 16S rRNA genes from all the collected samples was carried out at two time points (June and September). In addition, the seawater at the sewage outfall site and the sewage effluent were subject to shotgun metagenomics. To estimate the contribution of the sewage effluent and the stream to the microbial communities at Bore beach, we employed SourceTracker2, a program that uses a Bayesian algorithm to perform such quantification. The SourceTracker2 results suggested that the sewage effluent is likely to spread fecal contamination towards the beach to a greater extent than anticipated based on the prevailing sea current. The estimated mixing proportions of sewage at the near-beach site (P4) were 0.22 and 0.035% in June and September, respectively. This was somewhat below that stream's contribution in June (0.028%) and 10-fold higher than the stream's contribution in September (0.004%). Our analysis identified a sewage signal in all the tested seawater samples.
Collapse
Affiliation(s)
- Andrea Bagi
- NORCE Norwegian Research Centre, Marine Ecology, Mekjarvik 12, 4070 Randaberg, Norway.
| | | |
Collapse
|
6
|
Kobayashi M, Zhang Q, Segawa T, Maeda M, Hirano R, Okabe S, Ishii S. Temporal dynamics of Campylobacter and Arcobacter in a freshwater lake that receives fecal inputs from migratory geese. WATER RESEARCH 2022; 217:118397. [PMID: 35421690 DOI: 10.1016/j.watres.2022.118397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Migratory geese could influence the microbiological water quality; however, their impacts on pathogen dynamics remain largely unknown. In this study, we analyzed the population dynamics of Campylobacter and Arcobacter group bacteria (AGB) in a freshwater lake in Japan over two years. The bacteria were quantified by using both culture-dependent and -independent methods. The potential sources of these bacteria were examined by a high-throughput flaA sequencing approach. Campylobacter was abundantly detected both by culture-dependent and -independent methods in the lake, especially when migratory geese were present in the lake. High-throughput flaA sequencing suggests that geese were the likely source of Campylobacter in the lake. The viable population of Campylobacter exceeds the concentrations that can potentially cause 10-4 infections per person per year when water is used to grow fresh vegetables. The occurrence of AGB, on the other hand, was not directly related to the population of migratory geese. AGB were not detected in geese fecal samples. Diverse AGB flaA genotypes occurred in the lake over multiple seasons. Our results suggest that AGB likely comprise a part of the indigenous microbial population of the lake and grow in response to high nutrient, warm temperature, and low dissolved oxygen concentrations in the lake. Geese therefore can indirectly impact the AGB population by providing nutrients to cause eutrophication and lower the dissolved oxygen concentration. Since geese travel long-distance and disperse their fecal microbiota and nutrients to wide areas, they may have significant impacts on water quality and public health.
Collapse
Affiliation(s)
- Mayumi Kobayashi
- Division of Environmental Engineering, Graduate School of Engineering, Hokakido University, Sapporo, Japan; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Qian Zhang
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Mitsuto Maeda
- Division of Environmental Engineering, Graduate School of Engineering, Hokakido University, Sapporo, Japan
| | - Reiko Hirano
- Division of Environmental Engineering, Graduate School of Engineering, Hokakido University, Sapporo, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Graduate School of Engineering, Hokakido University, Sapporo, Japan
| | - Satoshi Ishii
- Division of Environmental Engineering, Graduate School of Engineering, Hokakido University, Sapporo, Japan; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
7
|
Martinez-Malaxetxebarria I, Girbau C, Salazar-Sánchez A, Baztarrika I, Martínez-Ballesteros I, Laorden L, Alonso R, Fernández-Astorga A. Genetic characterization and biofilm formation of potentially pathogenic foodborne Arcobacter isolates. Int J Food Microbiol 2022; 373:109712. [DOI: 10.1016/j.ijfoodmicro.2022.109712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
|
8
|
A Review on the Prevalence of Arcobacter in Aquatic Environments. WATER 2022. [DOI: 10.3390/w14081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Arcobacter is an emerging pathogen that is associated with human and animal diseases. Since its first introduction in 1991, 33 Arcobacter species have been identified. Studies have reported that with the presence of Arcobacter in environmental water bodies, animals, and humans, a possibility of its transmission via water and food makes it a potential waterborne and foodborne pathogen. Therefore, this review article focuses on the general characteristics of Arcobacter, including its pathogenicity, antimicrobial resistance, methods of detection by cultivation and molecular techniques, and its presence in water, fecal samples, and animal products worldwide. These detection methods include conventional culture methods, and rapid and accurate Arcobacter identification at the species level, using quantitative polymerase chain reaction (qPCR) and multiplex PCR. Arcobacter has been identified worldwide from feces of various hosts, such as humans, cattle, pigs, sheep, horses, dogs, poultry, and swine, and also from meat, dairy products, carcasses, buccal cavity, and cloacal swabs. Furthermore, Arcobacter has been detected in groundwater, river water, wastewater (influent and effluent), canals, treated drinking water, spring water, and seawater. Hence, we propose that understanding the prevalence of Arcobacter in environmental water and fecal-source samples and its infection of humans and animals will contribute to a better strategy to control and prevent the survival and growth of the bacteria.
Collapse
|
9
|
Wang L, Yuan L, Li ZH, Zhang X, Leung KMY, Sheng GP. Extracellular polymeric substances (EPS) associated extracellular antibiotic resistance genes in activated sludge along the AAO process: Distribution and microbial secretors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151575. [PMID: 34767888 DOI: 10.1016/j.scitotenv.2021.151575] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) are important sources of antibiotic resistance genes (ARGs). Increasing attention has been paid to extracellular ARGs in cell-free form due to their horizontal gene transfer via transformation. However, the fate of the adsorbed form of extracellular ARGs that exist in extracellular polymeric substances (EPS) of activated sludge in WWTP remains largely unknown. Herein, seven EPS-associated ARGs along the anaerobic-anoxic-aerobic (AAO) process were quantified using quantitative polymerase chain reaction. Results show that the absolute abundances of EPS-associated ARGs were 0.69-4.52 logs higher than those of cell-free ARGs. There was no significant difference in the abundances of EPS-associated ARGs along the AAO process. Among these target genes, the abundances of EPS-associated sul genes were higher than those of EPS-associated tet and bla genes. Proteobacteria and Bacteroidetes were identified as the major secretors of EPS-associated ARGs, and they may play an important role in the proliferation of extracellular ARGs. Moreover, the transformation efficiencies of EPS-associated ARGs were 3.55-4.65 logs higher than those of cell-free ARGs, indicating that EPS-associated ARGs have higher environmental risks. These findings have advanced our understanding of EPS-associated ARGs and are useful for the control and risk assessment of ARGs in WWTPs.
Collapse
Affiliation(s)
- Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; USTC-CityU Joint Advanced Research Center, Suzhou Research Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
10
|
Venâncio I, Luís Â, Domingues F, Oleastro M, Pereira L, Ferreira S. The Prevalence of Arcobacteraceae in Aquatic Environments: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:244. [PMID: 35215187 PMCID: PMC8880612 DOI: 10.3390/pathogens11020244] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Members of the family Arcobacteraceae are distributed widely in aquatic environments, and some of its species have been associated with human and animal illness. However, information about the diversity and distribution of Arcobacteraceae in different water bodies is still limited. In order to better characterize the health risk posed by members in the family Arcobacteraceae, a systematic review and meta-analysis-based method was used to investigate the prevalence of Arcobacteraceae species in aquatic environments based on available data published worldwide. The database search was performed using related keywords and considering studies up to February 2021. The pooled prevalence in aquatic environments was 69.2%, ranging from 0.6 to 99.9%. These bacteria have a wide geographical distribution, being found in diverse aquatic environments with the highest prevalence found in raw sewage and wastewater treatment plants (WWTP), followed by seawater, surface water, ground water, processing water from food processing plants and water for human consumption. Assessing the effectiveness of treatments in WWTP in eliminating this contamination, it was found that the wastewater treatment may not be efficient in the removal of Arcobacteraceae. Among the analyzed Arcobacteraceae species, Al. butzleri was the most frequently found species. These results highlight the high prevalence and distribution of Arcobacteraceae in different aquatic environments, suggesting a risk to human health. Further, it exposes the importance of identifying and managing the sources of contamination and taking preventive actions to reduce the burden of members of the Arcobacteraceae family.
Collapse
Affiliation(s)
- Igor Venâncio
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (I.V.); (Â.L.); (F.D.)
| | - Ângelo Luís
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (I.V.); (Â.L.); (F.D.)
- Grupo de Revisões Sistemáticas (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal;
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (I.V.); (Â.L.); (F.D.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal;
| | - Luísa Pereira
- Grupo de Revisões Sistemáticas (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal;
- CMA-UBI-Centro de Matemática e Aplicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-284 Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (I.V.); (Â.L.); (F.D.)
| |
Collapse
|
11
|
Bell RL, Kase JA, Harrison LM, Balan KV, Babu U, Chen Y, Macarisin D, Kwon HJ, Zheng J, Stevens EL, Meng J, Brown EW. The Persistence of Bacterial Pathogens in Surface Water and Its Impact on Global Food Safety. Pathogens 2021; 10:1391. [PMID: 34832547 PMCID: PMC8617848 DOI: 10.3390/pathogens10111391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Water is vital to agriculture. It is essential that the water used for the production of fresh produce commodities be safe. Microbial pathogens are able to survive for extended periods of time in water. It is critical to understand their biology and ecology in this ecosystem in order to develop better mitigation strategies for farmers who grow these food crops. In this review the prevalence, persistence and ecology of four major foodborne pathogens, Shiga toxin-producing Escherichia coli (STEC), Salmonella, Campylobacter and closely related Arcobacter, and Listeria monocytogenes, in water are discussed. These pathogens have been linked to fresh produce outbreaks, some with devastating consequences, where, in a few cases, the contamination event has been traced to water used for crop production or post-harvest activities. In addition, antimicrobial resistance, methods improvements, including the role of genomics in aiding in the understanding of these pathogens, are discussed. Finally, global initiatives to improve our knowledge base of these pathogens around the world are touched upon.
Collapse
Affiliation(s)
- Rebecca L. Bell
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Julie A. Kase
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Lisa M. Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Kannan V. Balan
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Uma Babu
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Yi Chen
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Dumitru Macarisin
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Hee Jin Kwon
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Jie Zheng
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Eric L. Stevens
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA;
| | - Eric W. Brown
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| |
Collapse
|
12
|
Mudadu A, Salza S, Melillo R, Mara L, Piras G, Spanu C, Terrosu G, Fadda A, Virgilio S, Tedde T. Prevalence and pathogenic potential of Arcobacter spp. isolated from edible bivalve molluscs in Sardinia. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Mudadu A, Melillo R, Salza S, Mara L, Marongiu L, Piras G, Spanu C, Tedde T, Fadda A, Virgilio S, Terrosu G. Detection of Arcobacter spp. in environmental and food samples collected in industrial and artisanal sheep's milk cheese-making plants. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Cheng X, Xu J, Smith G, Zhang Y. Metagenomic insights into dissemination of antibiotic resistance across bacterial genera in wastewater treatment. CHEMOSPHERE 2021; 271:129563. [PMID: 33453487 PMCID: PMC7969412 DOI: 10.1016/j.chemosphere.2021.129563] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 05/29/2023]
Abstract
The aim of this study was to evaluate the impacts of conventional wastewater treatment processes including secondary treatment and chlorination on the removal of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), and to assess the association of ARGs with their potential hosts in each treatment process. The results showed chlorination with subinhibitory concentration (<8 mg/L) resulted in an increased ARB number in the disinfection effluent. qPCR analysis indicated secondary treatment increased relative abundance of ARGs in remaining bacteria whereas disinfection reduced the relative abundance of those genes effectively. Metagenomic analysis revealed a significant shift of dominating bacterial genera harboring ARGs. Along the treatment train, 48, 95 and 80 genera were identified to be the ARG carriers in primary effluent, secondary effluent, and disinfection effluent, respectively. It was also found that secondary treatment increased the diversity of potential ARG hosts while both secondary treatment and chlorination broadened the host range of some ARGs at the genus level, which may be attributed to the spread of antibiotic resistance across bacterial genera through horizontal transfer. This study highlights the growing concerns that wastewater treatment plants (WWTPs) may disseminate ARGs by associating this effect to specific treatment stages and by correlating ARGs with their bacterial hosts.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jiannong Xu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Geoffrey Smith
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yanyan Zhang
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
15
|
Mottola A, Ciccarese G, Sinisi C, Savarino AE, Marchetti P, Terio V, Tantillo G, Barrasso R, Di Pinto A. Occurrence and characterization of Arcobacter spp. from ready-to-eat vegetables produced in Southern Italy. Ital J Food Saf 2021; 10:8585. [PMID: 33907683 PMCID: PMC8056449 DOI: 10.4081/ijfs.2021.8585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022] Open
Abstract
Given that the number of foodborne illness outbreaks linked to the consumption of ready-to-eat vegetables has been widely documented and considering that data on the occurrence of Arcobacter spp. in such foodstuffs are lacking, the aim of the present study was to evaluate the presence of Arcobacter spp. and the occurrence of virulence factors as well as to genotype Arcobacter spp. in ready-to-eat (RTE) vegetable samples, using cultural and biomolecular assays. Arcobacter spp. was detected in 16/110 (14.5%) samples, with A. butzleri being detected in 15/16 and A. cryaerophilus in 1/16 isolates. PCRs aimed at the nine putative virulence genes demonstrated widespread distribution of such genes among A. butzleri and A. cryaerophilus isolates. In addition, multilocus sequence type (MLST) analysis revealed a low genetic diversity within the arcobacters isolates. The results underline the need to develop an appropriate surveillance system based on biomolecular characterization for an integrated microbiological risk assessment of ready-toeat vegetables, and consequently of composite foods.
Collapse
Affiliation(s)
- Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari
| | | | - Carla Sinisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Lecce
| | | | | | - Valentina Terio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari
| | | | - Roberta Barrasso
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari
| |
Collapse
|
16
|
Search for Campylobacter spp. Reveals High Prevalence and Pronounced Genetic Diversity of Arcobacter butzleri in Floodwater Samples Associated with Hurricane Florence in North Carolina, USA. Appl Environ Microbiol 2020; 86:AEM.01118-20. [PMID: 32769187 PMCID: PMC7531973 DOI: 10.1128/aem.01118-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Climate change and associated extreme weather events can have massive impacts on the prevalence of microbial pathogens in floodwaters. However, limited data are available on foodborne zoonotic pathogens such as Campylobacter or Arcobacter in hurricane-associated floodwaters in rural regions with intensive animal production. With a high density of intensive animal production as well as pronounced vulnerability to hurricanes, eastern North Carolina presents unique opportunities in this regard. Our findings revealed widespread incidence of the emerging zoonotic pathogen Arcobacter butzleri in floodwaters from Hurricane Florence. We encountered high and largely unexplored diversity while also noting the potential for regionally abundant and persistent clones. We noted pronounced partitioning of the floodwater genotypes into two source-associated clades. The data will contribute to elucidating the poorly understood ecology of this emerging pathogen and highlight the importance of surveillance of floodwaters associated with hurricanes and other extreme weather events for Arcobacter and other zoonotic pathogens. In September 2018, Hurricane Florence caused extreme flooding in eastern North Carolina, USA, a region highly dense in concentrated animal production, especially swine and poultry. In this study, floodwater samples (n = 96) were collected as promptly post-hurricane as possible and for up to approximately 30 days and selectively enriched for Campylobacter using Bolton broth enrichment and isolation on modified charcoal cefoperazone deoxycholate agar (mCCDA) microaerobically at 42°C. Only one sample yielded Campylobacter, which was found to be Campylobacter jejuni with the novel sequence type 2866 (ST-2866). However, the methods employed to isolate Campylobacter readily yielded Arcobacter from 73.5% of the floodwater samples. The Arcobacter isolates failed to grow on Mueller-Hinton agar at 25, 30, 37, or 42°C microaerobically or aerobically but could be readily subcultured on mCCDA at 42°C microaerobically. Multilocus sequence typing of 112 isolates indicated that all were Arcobacter butzleri. The majority (85.7%) of the isolates exhibited novel sequence types (STs), with 66 novel STs identified. Several STs, including certain novel ones, were detected in diverse waterbody types (channel, isolated ephemeral pools, floodplain) and from multiple watersheds, suggesting the potential for regionally dominant strains. The genotypes were clearly partitioned into two major clades, one with high representation of human and ruminant isolates and another with an abundance of swine and poultry isolates. Surveillance of environmental waters and food animal production systems in this animal agriculture-dense region is needed to assess potential regional prevalence and temporal stability of the observed A. butzleri strains as well as their potential association with specific types of food animal production. IMPORTANCE Climate change and associated extreme weather events can have massive impacts on the prevalence of microbial pathogens in floodwaters. However, limited data are available on foodborne zoonotic pathogens such as Campylobacter or Arcobacter in hurricane-associated floodwaters in rural regions with intensive animal production. With a high density of intensive animal production as well as pronounced vulnerability to hurricanes, eastern North Carolina presents unique opportunities in this regard. Our findings revealed widespread incidence of the emerging zoonotic pathogen Arcobacter butzleri in floodwaters from Hurricane Florence. We encountered high and largely unexplored diversity while also noting the potential for regionally abundant and persistent clones. We noted pronounced partitioning of the floodwater genotypes into two source-associated clades. The data will contribute to elucidating the poorly understood ecology of this emerging pathogen and highlight the importance of surveillance of floodwaters associated with hurricanes and other extreme weather events for Arcobacter and other zoonotic pathogens.
Collapse
|
17
|
Improved culture enrichment broth for isolation of Arcobacter-like species from the marine environment. Sci Rep 2020; 10:14547. [PMID: 32884057 PMCID: PMC7471115 DOI: 10.1038/s41598-020-71442-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Arcobacter-like species are found associated with many matrices, including shellfish in marine environments. The culture media and conditions play a major role in the recovery of new Arcobacter-like species. This study was aimed to develop a culture media for isolation and enhanced growth of Arcobacter-like spp. from marine and shellfish matrices. For this purpose, 14 different Arcobacter-like spp. mostly isolated from shellfish, were grown in 24 different formulations of enrichment broths. The enrichment broths consisted of five main groups based on the organic contents (fresh oyster homogenate, lyophilized oyster either alone or in combination with other standard media), combined with artificial seawater (ASW) or 2.5% NaCl. Optical density (OD420nm) measurements after every 24 h were compared with the growth in control media (Arcobacter broth) in parallel. The mean and standard deviation were calculated for each species in each broth and statistical differences (p < 0.05) among broths were calculated by ANOVA. The results indicated that shellfish-associated Arcobacter-like species growth was significantly higher in Arcobacter broth + 50% ASW and the same media supplemented with lyophilized oysters. This is the first study to have used fresh or lyophilized oyster flesh in the enrichment broth for isolation of shellfish-associated Arcobacter-like spp.
Collapse
|
18
|
Kristensen JM, Nierychlo M, Albertsen M, Nielsen PH. Bacteria from the Genus Arcobacter Are Abundant in Effluent from Wastewater Treatment Plants. Appl Environ Microbiol 2020; 86:e03044-19. [PMID: 32111585 PMCID: PMC7170470 DOI: 10.1128/aem.03044-19] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogenic bacteria in wastewater are generally considered to be efficiently removed in biological wastewater treatment plants. This understanding is almost solely based on culture-based control measures, and here we show, by applying culture-independent methods, that the removal of species in the genus Arcobacter was less effective than for many other abundant genera in the influent wastewater. Arcobacter was one of the most abundant genera in influent wastewater at 14 municipal wastewater treatment plants and was also abundant in the "clean" effluent from all the plants, reaching up to 30% of all bacteria as analyzed by 16S rRNA gene amplicon sequencing. Metagenomic analyses, culturing, genome sequencing of Arcobacter isolates, and visualization by fluorescent in situ hybridization (FISH) confirmed the presence of the human-pathogenic Arcobacter cryaerophilus and A. butzleri in both influent and effluent. The main reason for the high relative abundance in the effluent was probably that Arcobacter cells, compared to those of other abundant genera in the influent, did not flocculate and attach well to the activated sludge flocs, leaving a relatively large fraction dispersed in the water phase. The study shows there is an urgent need for new standardized culture-independent measurements of pathogens in effluent wastewaters, e.g., amplicon sequencing, and an investigation of the problem on a global scale to quantify the risk for humans and livestock.IMPORTANCE The genus Arcobacter was unexpectedly abundant in the effluent from 14 Danish wastewater treatment plants treating municipal wastewater, and the species included the human-pathogenic A. cryaerophilus and A. butzleri Recent studies have shown that Arcobacter is common in wastewater worldwide, so the study indicates that discharge of members of the genus Arcobacter may be a global problem, and further studies are needed to quantify the risk and potentially minimize the discharge. The study also shows that culture-based analyses are insufficient for proper effluent quality control, and new standardized culture-independent measurements of effluent quality encompassing most pathogens should be considered.
Collapse
Affiliation(s)
- Jannie Munk Kristensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Reduction of Arcobacter at Two Conventional Wastewater Treatment Plants in Southern Arizona, USA. Pathogens 2019; 8:pathogens8040175. [PMID: 31581714 PMCID: PMC6963474 DOI: 10.3390/pathogens8040175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
This study aimed to identify the bacterial community in two wastewater treatment plants (WWTPs) and to determine the occurrence and reduction of Arcobacter, along with virulence genes (ciaB and pldA). A total of 48 samples (24 influent and 24 effluent) were collected at two WWTPs in southern Arizona in the United States, monthly from August 2011 to July 2012. Bacterial DNA extract was utilized for 16S rRNA metagenomic sequencing. Quantification of Arcobacter 16S rRNA gene was conducted using a recently developed SYBR Green-based quantitative PCR assay. Among 847 genera identified, 113 (13%) were identified as potentially pathogenic bacteria. Arcobacter 16S rRNA gene was detected in all influent samples and ten (83%) and nine (75%) effluent samples at each plant, respectively. Log reduction ratios of Arcobacter 16S rRNA gene in Plant A and Plant B were 1.7 ± 0.9 (n = 10) and 2.3 ± 1.5 (n = 9), respectively. The ciaB gene was detected by quantitative PCR in eleven (92%) and twelve (100%) of 12 influent samples from Plant A and Plant B, respectively, while the pldA gene was detected in eight (67%) and six (50%) influent samples from Plant A and Plant B, respectively. The prevalence of potentially pathogenic bacteria in WWTP effluent indicated the need for disinfection before discharge into the environment.
Collapse
|
20
|
Monitoring Opportunistic Pathogens in Domestic Wastewater from a Pilot-Scale Anaerobic Biofilm Reactor to Reuse in Agricultural Irrigation. WATER 2019. [DOI: 10.3390/w11061283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wastewater reuse for agricultural irrigation in many developing countries is an increasingly common practice. Regular monitoring of indicators can help to identify potential health risks; therefore, there is an urgent need to understand the presence and abundance of opportunistic pathogens in wastewater, as well as plant phyllosphere and rhizosphere. In this study, an anaerobic biofilm reactor (ABR) was developed to treat rural domestic wastewater; the performance of pollutants removal and pathogenic bacteria elimination were investigated. Additionally, we also assessed the physicochemical and microbiological profiles of soil and lettuces after wastewater irrigation. Aeromonas hydrophila, Arcobacter sp., Bacillus cereus, Bacteroides sp., Escherichia coli, Legionella sp., and Mycobacterium sp. were monitored in the irrigation water, as well as in the phyllosphere and rhizosphere of lettuces. Pathogens like B. cereus, Legionella sp. and Mycobacterium sp. were present in treated effluent with relatively high concentrations, and the levels of A. hydrophila, Arcobacter sp., and E. coli were higher in the phyllosphere. The physicochemical properties of soil and lettuce did not vary significantly. These data indicated that treated wastewater irrigation across a short time period may not alter the soil and crop properties, while the pathogens present in the wastewater may transfer to soil and plant, posing risks to human health.
Collapse
|
21
|
Newton RJ, McClary JS. The flux and impact of wastewater infrastructure microorganisms on human and ecosystem health. Curr Opin Biotechnol 2019; 57:145-150. [PMID: 31009920 DOI: 10.1016/j.copbio.2019.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 11/16/2022]
Abstract
Wastewater infrastructure is designed, in part, to remove microorganisms. However, many microorganisms are able to colonize infrastructure and resist treatment, resulting in an enormous flux of microorganisms to urban adjacent waters. These urban-associated microorganisms are discharged through three primary routes 1) failing infrastructure, 2) stormwater, and 3) treated wastewater effluent. Bacterial load estimates indicate failing infrastructure should be considered an equivalent source of microbial pollution as the other routes, but overall discharges are not well parameterized. More sophisticated methods, such as machine learning algorithms and microbiome characterization, are now used to track urban-derived microorganisms, including targets beyond fecal indicators, but development of methods to quantify the impact of these microbes/genes on human and ecosystem health is needed.
Collapse
Affiliation(s)
- Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI, 53204, USA.
| | - Jill S McClary
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI, 53204, USA
| |
Collapse
|
22
|
Ferreira S, Oleastro M, Domingues F. Current insights on Arcobacter butzleri in food chain. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Salas-Massó N, Linh QT, Chin WH, Wolff A, Andree KB, Furones MD, Figueras MJ, Bang DD. The Use of a DNA-Intercalating Dye for Quantitative Detection of Viable Arcobacter spp. Cells (v-qPCR) in Shellfish. Front Microbiol 2019; 10:368. [PMID: 30873146 PMCID: PMC6403187 DOI: 10.3389/fmicb.2019.00368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/12/2019] [Indexed: 11/13/2022] Open
Abstract
The genus Arcobacter (Vandamme et al., 1991), comprised of Campylobacter-related species, are considered zoonotic emergent pathogens. The presence of Arcobacter in food products like shellfish, has an elevated incidence worldwide. In this study, we developed a specific viable quantitative PCR (v-qPCR), using the dye propidium monoazide (PMA), for quantification of the viable Arcobacter spp. cells in raw oysters and mussels. The high selectivity of primers was demonstrated by using purified DNA from 38 different species, 20 of them from the genus Arcobacter. The optimization of PMA concentration showed that 20 μM was considered as an optimal concentration that inhibits the signal from dead cells at different concentrations (OD550 from 0.2 to 0.8) and at different ratios of live: dead cells (50:50 and 90:10). The v-qPCR results from shellfish samples were compared with those obtained in parallel using several culture isolation approaches (i.e., direct plating on marine and blood agar and by post-enrichment culturing in both media). The enrichment was performed in parallel in Arcobacter-CAT broth with and without adding NaCl. Additionally, the v-qPCR results were compared to those obtained with traditional quantitative (qPCR). The v-qPCR and the qPCR resulted in c.a. 94% of positive detection of Arcobacter vs. 41% obtained by culture approaches. When examining the reduction effect resulting from the use of v-qPCR, samples pre-enriched in Arcobacter-CAT broth supplemented with 2.5% NaCl showed a higher reduction (3.27 log copies) than that of samples obtained directly and those pre-enriched in Arcobacter-CAT broth isolation (1.05 and 1.04). When the v-qPCR was applied to detect arcobacter from real shellfish samples, 15/17 samples tested positive for viable Arcobacter with 3.41 to 8.70 log copies 1g-1. This study offers a new tool for Arcobacter surveillance in seafood.
Collapse
Affiliation(s)
- Nuria Salas-Massó
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
- IRTA-Sant Carles de la Ràpita, Sant Carles de la Ràpita, Spain
| | - Quyen Than Linh
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Anders Wolff
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Karl B. Andree
- IRTA-Sant Carles de la Ràpita, Sant Carles de la Ràpita, Spain
| | | | - María José Figueras
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Dang Duong Bang
- Division of Microbiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
24
|
McLellan SL, Roguet A. The unexpected habitat in sewer pipes for the propagation of microbial communities and their imprint on urban waters. Curr Opin Biotechnol 2019; 57:34-41. [PMID: 30682717 DOI: 10.1016/j.copbio.2018.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 12/22/2022]
Abstract
Modern urban sewer pipe infrastructure is a unique niche where microbes can thrive. Arcobacter, Acinetobacter, Aeromonas, and Trichococcus are among the organisms that dominate the microbial community of sewage influent, but are not major members of human fecal microbiome, drinking water, or groundwater. Pipe resident communities in untreated sewage are distinct from sewer biofilm communities. Because of their high biomass, these organisms likely have a role in biotransformation of waste during conveyance and could represent an important inoculum for treatment plants. Studies demonstrate stormwater systems act as direct conduits for sewage to surface waters, releasing organisms propagated in sewer pipes. Frequent occurrence of these pipe residents, in particular Arcobacter, demonstrates the extent that urban infrastructure impacts rivers, lakes, and urban coasts worldwide.
Collapse
Affiliation(s)
- Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA.
| | - Adélaïde Roguet
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| |
Collapse
|
25
|
Tong J, Tang A, Wang H, Liu X, Huang Z, Wang Z, Zhang J, Wei Y, Su Y, Zhang Y. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes. BIORESOURCE TECHNOLOGY 2019; 272:489-500. [PMID: 30391842 DOI: 10.1016/j.biortech.2018.10.079] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 05/08/2023]
Abstract
The evolution of microbial community and the fate of ARGs along different full-scale wastewater treatment processes (i.e., Anaerobic-Anoxic-Oxic, Oxidation Ditch, and Cyclic Activated Sludge System) were investigated in this study. We found that the sludges of bioreactors treating similar influent showed the similar microbial communities, independent of the treatment technologies. The horizontal gene transfer (HGT) mainly occurred in aeration tank rather that anaerobic/anoxic tank. More co-occurrence of potential pathogens and ARGs was found in wastewater than in sludge. Microbial biomass was the key driver for the fate of ARGs in wastewater, while mobile genetic elements (MGEs) was the key factor for the fate of ARGs in sludge. Combination of wastewater characteristics, microbial diversity, microbial biomass, and MGEs contributed to the variation of ARGs. Finally, it was found that enhanced nutrients removal process and tertiary treatment would benefit ARGs removal.
Collapse
Affiliation(s)
- Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anping Tang
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyan Wang
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingxin Liu
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhaohua Huang
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziyue Wang
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yanyan Su
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, Copenhagen Lyngby 2800, Denmark
| |
Collapse
|
26
|
Miller WG, Yee E, Bono JL. Complete Genome Sequence of the Arcobacter ellisii Type Strain LMG 26155. Microbiol Resour Announc 2018; 7:e01268-18. [PMID: 30533751 PMCID: PMC6256587 DOI: 10.1128/mra.01268-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/30/2018] [Indexed: 01/05/2023] Open
Abstract
Arcobacter spp. are highly prevalent in contaminated environmental waters and have been recovered from both freshwater and seawater, with several species isolated from shellfish. Arcobacter ellisii was recovered from mussels collected in Catalonia, Spain. This study describes the whole-genome sequence of the A. ellisii type strain LMG 26155 (=F79-6T =CECT 7837T).
Collapse
Affiliation(s)
- William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Emma Yee
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - James L. Bono
- Meat Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, Nebraska, USA
| |
Collapse
|
27
|
Pérez-Cataluña A, Salas-Massó N, Diéguez AL, Balboa S, Lema A, Romalde JL, Figueras MJ. Revisiting the Taxonomy of the Genus Arcobacter: Getting Order From the Chaos. Front Microbiol 2018; 9:2077. [PMID: 30233547 PMCID: PMC6131481 DOI: 10.3389/fmicb.2018.02077] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022] Open
Abstract
Since the description of the genus Arcobacter in 1991, a total of 27 species have been described, although some species have shown 16S rRNA similarities below 95%, which is the cut-off that usually separates species that belong to different genera. The objective of the present study was to reassess the taxonomy of the genus Arcobacter using information derived from the core genome (286 genes), a Multilocus Sequence Analysis (MLSA) with 13 housekeeping genes, as well as different genomic indexes like Average Nucleotide Identity (ANI), in silico DNA–DNA hybridization (isDDH), Average Amino-acid Identity (AAI), Percentage of Conserved Proteins (POCPs), and Relative Synonymous Codon Usage (RSCU). The study included a total of 39 strains that represent all the 27 species included in the genus Arcobacter together with 13 strains that are potentially new species, and the analysis of 57 genomes. The different phylogenetic analyses showed that the Arcobacter species grouped into four clusters. In addition, A. lekithochrous and the candidatus species ‘A. aquaticus’ appeared, as did A. nitrofigilis, the type species of the genus, in separate branches. Furthermore, the genomic indices ANI and isDDH not only confirmed that all the species were well-defined, but also the coherence of the clusters. The AAI and POCP values showed intra-cluster ranges above the respective cut-off values of 60% and 50% described for species belonging to the same genus. Phenotypic analysis showed that certain test combinations could allow the differentiation of the four clusters and the three orphan species established by the phylogenetic and genomic analyses. The origin of the strains showed that each of the clusters embraced species recovered from a common or related environment. The results obtained enable the division of the current genus Arcobacter in at least seven different genera, for which the names Arcobacter, Aliiarcobacter gen. nov., Pseudoarcobacter gen. nov., Haloarcobacter gen. nov., Malacobacter gen. nov., Poseidonibacter gen. nov., and Candidate ‘Arcomarinus’ gen. nov. are proposed.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana L Diéguez
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sabela Balboa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Lema
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria J Figueras
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
28
|
Vicente-Martins S, Oleastro M, Domingues FC, Ferreira S. Arcobacter spp. at retail food from Portugal: Prevalence, genotyping and antibiotics resistance. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Milan M, Carraro L, Fariselli P, Martino ME, Cavalieri D, Vitali F, Boffo L, Patarnello T, Bargelloni L, Cardazzo B. Microbiota and environmental stress: how pollution affects microbial communities in Manila clams. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:195-207. [PMID: 29202271 DOI: 10.1016/j.aquatox.2017.11.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Given the crucial role of microbiota in host development, health, and environmental interactions, genomic analyses focusing on host-microbiota interactions should certainly be considered in the investigation of the adaptive mechanisms to environmental stress. Recently, several studies suggested that microbiota associated to digestive tract is a key, although still not fully understood, player that must be considered to assess the toxicity of environmental contaminants. Bacteria-dependent metabolism of xenobiotics may indeed modulate the host toxicity. Conversely, environmental variables (including pollution) may alter the microbial community and/or its metabolic activity leading to host physiological alterations that may contribute to their toxicity. Here, 16s rRNA gene amplicon sequencing has been applied to characterize the hepatopancreas microbiota composition of the Manila clam, Ruditapes philippinarum. The animals were collected in the Venice lagoon area, which is subject to different anthropogenic pressures, mainly represented by the industrial activities of Porto Marghera (PM). Seasonal and geographic differences in clam microbiotas were explored and linked to host response to chemical stress identified in a previous study at the transcriptome level, establishing potential interactions among hosts, microbes, and environmental parameters. The obtained results showed the recurrent presence of putatively detoxifying bacterial taxa in PM clams during winter and over-representation of several metabolic pathways involved in xenobiotic degradation, which suggested the potential for host-microbial synergistic detoxifying actions. Strong interaction between seasonal and chemically-induced responses was also observed, which partially obscured such potentially synergistic actions. Seasonal variables and exposure to toxicants were therefore shown to interact and substantially affect clam microbiota, which appeared to mirror host response to environmental variation. It is clear that understanding how animals respond to chemical stress cannot ignore a key component of such response, the microbiota.
Collapse
Affiliation(s)
- M Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy; CONISMA - Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - L Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| | - P Fariselli
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| | - M E Martino
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon, Lyon, France
| | - D Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - F Vitali
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - L Boffo
- Associazione "Vongola Verace di Chioggia", Italy
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy; CONISMA - Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - B Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Italy
| |
Collapse
|
30
|
Ramees TP, Dhama K, Karthik K, Rathore RS, Kumar A, Saminathan M, Tiwari R, Malik YS, Singh RK. Arcobacter: an emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control - a comprehensive review. Vet Q 2017; 37:136-161. [PMID: 28438095 DOI: 10.1080/01652176.2017.1323355] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Arcobacter has emerged as an important food-borne zoonotic pathogen, causing sometimes serious infections in humans and animals. Newer species of Arcobacter are being incessantly emerging (presently 25 species have been identified) with novel information on the evolutionary mechanisms and genetic diversity among different Arcobacter species. These have been reported from chickens, domestic animals (cattle, pigs, sheep, horses, dogs), reptiles (lizards, snakes and chelonians), meat (poultry, pork, goat, lamb, beef, rabbit), vegetables and from humans in different countries. Arcobacters are implicated as causative agents of diarrhea, mastitis and abortion in animals, while causing bacteremia, endocarditis, peritonitis, gastroenteritis and diarrhea in humans. Three species including A. butzleri, A. cryaerophilus and A. skirrowii are predominantly associated with clinical conditions. Arcobacters are primarily transmitted through contaminated food and water sources. Identification of Arcobacter by biochemical tests is difficult and isolation remains the gold standard method. Current diagnostic advances have provided various molecular methods for efficient detection and differentiation of the Arcobacters at genus and species level. To overcome the emerging antibiotic resistance problem there is an essential need to explore the potential of novel and alternative therapies. Strengthening of the diagnostic aspects is also suggested as in most cases Arcobacters goes unnoticed and hence the exact epidemiological status remains uncertain. This review updates the current knowledge and many aspects of this important food-borne pathogen, namely etiology, evolution and emergence, genetic diversity, epidemiology, the disease in animals and humans, public health concerns, and advances in its diagnosis, prevention and control.
Collapse
Affiliation(s)
- Thadiyam Puram Ramees
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Kumaragurubaran Karthik
- c Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Ramswaroop Singh Rathore
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Ashok Kumar
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Mani Saminathan
- b Division of Pathology , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Ruchi Tiwari
- d Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Yashpal Singh Malik
- e Division of Biological Standardization , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Raj Kumar Singh
- f ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| |
Collapse
|
31
|
Rathlavath S, Kumar S, Nayak BB. Comparative isolation and genetic diversity of Arcobacter sp. from fish and the coastal environment. Lett Appl Microbiol 2017; 65:42-49. [PMID: 28394467 DOI: 10.1111/lam.12743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/05/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Arcobacter species are emerging food-borne and water-borne human pathogens associated mostly with food animals and their environment. The present study was aimed to isolate Arcobacter species from fish, shellfish and coastal water samples using two methods and to determine their genetic diversity. Of 201 samples of fish, shellfish and water samples analysed, 66 (32·8%) samples showed the presence of Arcobacter DNA from both Arcobacter enrichment broth and Bolton broth. Arcobacters were isolated from 58 (87·8%) and 38 (57·5%) of Arcobacter DNA-positive samples using Arcobacter blood agar and Preston blood agar, respectively. Arcobacter sp. identified by biochemical tests were further analysed by a genus-specific PCR, followed by a multiplex-PCR and 16S rRNA-RFLP. From both the methods, four different Arcobacter species namely Arcobacter butzleri, Arcobacter skirrowii, Arcobacter mytili and Arcobacter defluvii were isolated, of which A. butzleri was the predominant species. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint analysis revealed that the arcobacters isolated in this study were genetically very diverse and no specific genotype was found associated with a specific source (seafood or water). Since pathogenic arcobacters are not known to be natural inhabitants of coastal marine environment, identifying the sources of contamination will be crucial for effective management of this problem. SIGNIFICANCE AND IMPACT OF THE STUDY Arcobacter sp. are emerging food- and water-borne human pathogens. In this study, comparison of two selective media suggested Arcobacter blood agar to be more efficient in yielding Arcobacter sp. from seafood. Furthermore, the isolation of Arcobacter sp. such as Arcobacter butzleri, A. skirrowii, A. mytili and A. defluvii from seafood suggests diverse sources of contamination of seafood by Arcobacter sp. Analysis of enterobacterial repetitive intergenic consensus sequence-PCR patterns of A. butzleri showed high genetic diversity and lack of clonality among the isolates. Arcobacter contamination of seafood is an emerging issue both from seafood safety and seafood trade point of view.
Collapse
Affiliation(s)
- S Rathlavath
- Quality Control Laboratory, Post-Harvest Technology Department, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, India
| | - S Kumar
- Quality Control Laboratory, Post-Harvest Technology Department, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, India
| | - B B Nayak
- Quality Control Laboratory, Post-Harvest Technology Department, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, India
| |
Collapse
|
32
|
Figueras MJ, Pérez-Cataluña A, Salas-Massó N, Levican A, Collado L. ' Arcobacter porcinus' sp. nov., a novel Arcobacter species uncovered by Arcobacter thereius. New Microbes New Infect 2016; 15:104-106. [PMID: 28070334 PMCID: PMC5219630 DOI: 10.1016/j.nmni.2016.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 10/26/2016] [Accepted: 11/04/2016] [Indexed: 11/11/2022] Open
Abstract
Arcobacter thereius is a species associated with human disease. A group of A. thereius pork strains (represented by strain LMG 24487) clustered separately from the type strain (LMG 24486T) in the 16S rRNA and multilocus phylogenetic trees. In silico DNA-DNA hybridization and average nucleotide identity results between their genomes (93.3 and 51.1%) confirmed ‘Arcobacter porcinus’ (LMG 24487T) as a new species.
Collapse
Affiliation(s)
- M J Figueras
- Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain
| | - A Pérez-Cataluña
- Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain
| | - N Salas-Massó
- Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain
| | - A Levican
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - L Collado
- Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|