1
|
Carvalho Cabral P, Richard VR, Borchers CH, Olivier M, Cermakian N. Circadian Control of the Response of Macrophages to Plasmodium Spp.-Infected Red Blood Cells. Immunohorizons 2024; 8:442-456. [PMID: 38916585 PMCID: PMC11220744 DOI: 10.4049/immunohorizons.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Malaria is a serious vector-borne disease characterized by periodic episodes of high fever and strong immune responses that are coordinated with the daily synchronized parasite replication cycle inside RBCs. As immune cells harbor an autonomous circadian clock that controls various aspects of the immune response, we sought to determine whether the intensity of the immune response to Plasmodium spp., the parasite causing malaria, depends on time of infection. To do this, we developed a culture model in which mouse bone marrow-derived macrophages are stimulated with RBCs infected with Plasmodium berghei ANKA (iRBCs). Lysed iRBCs, but not intact iRBCs or uninfected RBCs, triggered an inflammatory immune response in bone marrow-derived macrophages. By stimulating at four different circadian time points (16, 22, 28, or 34 h postsynchronization of the cells' clock), 24-h rhythms in reactive oxygen species and cytokines/chemokines were found. Furthermore, the analysis of the macrophage proteome and phosphoproteome revealed global changes in response to iRBCs that varied according to circadian time. This included many proteins and signaling pathways known to be involved in the response to Plasmodium infection. In summary, our findings show that the circadian clock within macrophages determines the magnitude of the inflammatory response upon stimulation with ruptured iRBCs, along with changes of the cell proteome and phosphoproteome.
Collapse
Affiliation(s)
| | - Vincent R. Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Christoph H. Borchers
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Martin Olivier
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Nguyen TT, Huy TXN, Aguilar CNT, Reyes AWB, Salad SA, Min WG, Lee HJ, Kim HJ, Lee JH, Kim S. Intracellular Growth Inhibition and Host Immune Modulation of 3-Amino-1,2,4-triazole in Murine Brucellosis. Int J Mol Sci 2023; 24:17352. [PMID: 38139181 PMCID: PMC10743636 DOI: 10.3390/ijms242417352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Catalase, an antioxidant enzyme widely produced in mammalian cells and bacteria, is crucial to mitigating oxidative stress in hostile environments. This function enhances the intracellular survivability of various intracellular growth pathogens, including Brucella (B.) abortus. In this study, to determine whether the suppression of catalase can inhibit the intracellular growth of B. abortus, we employed 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor, in both RAW 264.7 macrophage cells and an ICR mouse model during Brucella infection. The intracellular growth assay indicated that 3-AT exerts growth-inhibitory effects on B. abortus within macrophages. Moreover, it contributes to the accumulation of reactive oxygen species and the formation of nitric oxide. Notably, 3-AT diminishes the activation of the nucleus transcription factor (NF-κB) and modulates the cytokine secretion within infected cells. In our mouse model, the administration of 3-AT reduced the B. abortus proliferation within the spleens and livers of infected mice. This reduction was accompanied by a diminished immune response to infection, as indicated by the lowered levels of TNF-α, IL-6, and IL-10 and altered CD4+/CD8+ T-cell ratio. These results suggest the protective and immunomodulatory effects of 3-AT treatment against Brucella infection.
Collapse
Affiliation(s)
- Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City 72300, Vietnam
| | - Ched Nicole Turbela Aguilar
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Alisha Wehdnesday Bernardo Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines;
| | - Said Abdi Salad
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Won-Gi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Hu-Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - Hyun-Jin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| | - John-Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea;
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (T.T.N.); (T.X.N.H.); (C.N.T.A.); (S.A.S.); (W.-G.M.); (H.-J.L.); (H.-J.K.)
| |
Collapse
|
3
|
Dai X, Liu X, Li Y, Xu Q, Yang L, Gao F. Nitrogen-phosphorous co-doped carbonized chitosan nanoparticles for chemotherapy and ROS-mediated immunotherapy of intracellular Staphylococcus aureus infection. Carbohydr Polym 2023; 315:121013. [PMID: 37230629 DOI: 10.1016/j.carbpol.2023.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Staphylococcus aureus (S. aureus) residing in host macrophages is hard to clear because intracellular S. aureus has evolved mechanisms to hijack and subvert the immune response to favor intracellular infection. To overcome this challenge, nitrogen-phosphorous co-doped carbonized chitosan nanoparticles (NPCNs), which possess the polymer/carbon hybrid structures, were fabricated to clear intracellular S. aureus infection through chemotherapy and immunotherapy. Multi-heteroatom NPCNs were fabricated through the hydrothermal method, where chitosan and imidazole were used as the C and N sources and phosphoric acid as the P source. NPCNs can not only be used as a fluorescent probe for bacteria imaging but also kill extracellular and intracellular bacteria with low cytotoxicity. NPCNs could generate ROS and polarize macrophages into classically activated (M1) phenotypes to increase antibacterial immunity. Furthermore, NPCNs could accelerate intracellular S. aureus-infected wound healing in vivo. We envision that these carbonized chitosan nanoparticles may provide a new platform for clearing intracellular bacterial infection through chemotherapy and ROS-mediated immunotherapy.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
4
|
Zhang Z, Chen T, Liu W, Xiong J, Jiang L, Liu M. Paeonol accelerates skin wound healing by regulating macrophage polarization and inflammation in diabetic rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:437-448. [PMID: 37641806 PMCID: PMC10466073 DOI: 10.4196/kjpp.2023.27.5.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 08/31/2023]
Abstract
Diabetic ulcer is usually seen in people with uncontrolled blood sugar. Reportedly, many factors such as impaired glucose metabolism, and macrovascular and microvascular diseases caused angiogenesis disorders and delayed the healing of diabetic ulcers, thus affecting the body's metabolism, nutrition, and immune function. This study aimed to explore the effect of paeonol on skin wound healing in diabetic rats and the related mechanism. A rat model of diabetic ulcer was established. High glucose-treated mouse skin fibroblasts were co-cultured with M1 or M2-polarized macrophages treated with or without paeonol. H&E and Masson staining were used to reveal inflammatory cell infiltration and collagen deposition, respectively. Immunohistochemistry visualized the expression of Ki67, CD31, and vascular endothelial growth factor (VEGF). Western blot was used to detect interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-4, IL-10, CD31, VEGFA, and collagen I/III. The expression of iNOS and arginase 1 was revealed by immunofluorescence staining. Paeonol treatment augmented collagen deposition and the expression of Ki67, CD31, VEGF, and macrophage M2 polarization markers (IL-4 and IL-10) and reduced wound area, inflammatory cell infiltration, and macrophage M1 polarization markers (IL-1β and TNF-α) in the ulcerated area. In vitro, paeonol treatment promoted M2-polarization and repressed M1-polarization in macrophages, thereby improving the repair of cell damage induced by high glucose. Paeonol accelerates the healing of diabetic ulcers by promoting M2 macrophage polarization and inhibiting M1 macrophage polarization.
Collapse
Affiliation(s)
- Zuyang Zhang
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| | - Tianhua Chen
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| | - Wei Liu
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| | - Jiepeng Xiong
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| | - Liangdong Jiang
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| | - Mingjiang Liu
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410004, China
| |
Collapse
|
5
|
Liu P, Li D, Zhang J, He M, Gao D, Wang Y, Lin Y, Pan D, Li P, Wang T, Li J, Kong F, Zeng B, Lu L, Ma J, Long K, Li G, Tang Q, Jin L, Li M. Comparative three-dimensional genome architectures of adipose tissues provide insight into human-specific regulation of metabolic homeostasis. J Biol Chem 2023; 299:104757. [PMID: 37116707 PMCID: PMC10245122 DOI: 10.1016/j.jbc.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.
Collapse
Affiliation(s)
- Pengliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China.
| | - Jiaman Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Wildlife Conservation Research Department, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengke Pan
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine & Genetics, Chengdu Xi'nan Gynecology Hospital, Chengdu, Sichuan, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department & Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Li X, Ren Y, Chang K, Wu W, Griffiths HR, Lu S, Gao D. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front Immunol 2023; 14:1153915. [PMID: 37153549 PMCID: PMC10154623 DOI: 10.3389/fimmu.2023.1153915] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Macrophage infiltration into adipose tissue is a key pathological factor inducing adipose tissue dysfunction and contributing to obesity-induced inflammation and metabolic disorders. In this review, we aim to present the most recent research on macrophage heterogeneity in adipose tissue, with a focus on the molecular targets applied to macrophages as potential therapeutics for metabolic diseases. We begin by discussing the recruitment of macrophages and their roles in adipose tissue. While resident adipose tissue macrophages display an anti-inflammatory phenotype and promote the development of metabolically favorable beige adipose tissue, an increase in pro-inflammatory macrophages in adipose tissue has negative effects on adipose tissue function, including inhibition of adipogenesis, promotion of inflammation, insulin resistance, and fibrosis. Then, we presented the identities of the newly discovered adipose tissue macrophage subtypes (e.g. metabolically activated macrophages, CD9+ macrophages, lipid-associated macrophages, DARC+ macrophages, and MFehi macrophages), the majority of which are located in crown-like structures within adipose tissue during obesity. Finally, we discussed macrophage-targeting strategies to ameliorate obesity-related inflammation and metabolic abnormalities, with a focus on transcriptional factors such as PPARγ, KLF4, NFATc3, and HoxA5, which promote macrophage anti-inflammatory M2 polarization, as well as TLR4/NF-κB-mediated inflammatory pathways that activate pro-inflammatory M1 macrophages. In addition, a number of intracellular metabolic pathways closely associated with glucose metabolism, oxidative stress, nutrient sensing, and circadian clock regulation were examined. Understanding the complexities of macrophage plasticity and functionality may open up new avenues for the development of macrophage-based treatments for obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Xirong Li
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yakun Ren
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Kewei Chang
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| | - Wenlong Wu
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Dan Gao
- Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
| |
Collapse
|
7
|
Allogenic Adipose-Derived Stem Cells in Diabetic Foot Ulcer Treatment: Clinical Effectiveness, Safety, Survival in the Wound Site, and Proteomic Impact. Int J Mol Sci 2023; 24:ijms24021472. [PMID: 36674989 PMCID: PMC9864558 DOI: 10.3390/ijms24021472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Although encouraging results of adipose-derived stem cell (ADSC) use in wound healing are available, the mechanism of action has been studied mainly in vitro and in animals. This work aimed to examine the safety and efficacy of allogenic ADSCs in human diabetic foot ulcer treatment, in combination with the analyses of the wound. Equal groups of 23 participants each received fibrin gel with ADSCs or fibrin gel alone. The clinical effects were assessed at four time points: days 7, 14, 21 and 49. Material collected during debridement from a subset of each group was analyzed for the presence of ADSC donor DNA and proteomic changes. The reduction in wound size was greater at all subsequent visits, significantly on day 21 and 49, and the time to 50% reduction in the wound size was significantly shorter in patients who received ADSCs. Complete healing was achieved at the end of the study in seven patients treated with ADSCs vs. one treated without ADSCs. One week after ADSC application, 34 proteins significantly differentiated the material from both groups, seven of which, i.e., GAPDH, CAT, ACTN1, KRT1, KRT9, SCL4A1, and TPI, positively correlated with the healing rate. We detected ADSC donor DNA up to 21 days after administration. We confirmed ADSC-related improvement in wound healing that correlated with the molecular background, which provides insights into the role of ADSCs in wound healing-a step toward the development of cell-based therapies.
Collapse
|
8
|
Zhou T, Cheng B, Gao L, Ren F, Guo G, Wassie T, Wu X. Maternal catalase supplementation regulates fatty acid metabolism and antioxidant ability of lactating sows and their offspring. Front Vet Sci 2022; 9:1014313. [PMID: 36504852 PMCID: PMC9728587 DOI: 10.3389/fvets.2022.1014313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction and methods As a crucial antioxidant enzyme, catalase (CAT) could destroy the cellular hydrogen peroxide to mitigate oxidative stress. The current study aimed to investigate the effects of maternal CAT supplementation from late gestation to day 14 of lactation on antioxidant ability and fatty acids metabolism with regard to the sow-piglet-axis. On day 95 of gestation, forty sows were divided into control (CON) group (fed a basal diet) and CAT group (fed a basal diet supplemented with 660 mg/kg CAT), the feeding experiment ended on day 14 of lactation. Results The lactating sows in the CAT group produced more milk, and had higher antioxidant enzymes activity including POD and GSH-Px (P < 0.05), lower content of serum LDL as well as plasmic C18:3n3 content (P < 0.05). Additionally, maternal CAT supplementation improved offspring's body weight at day 14 of nursing period and ADG (P < 0.05), and regulated the antioxidant ability as evidenced by decreased related enzymes activity such as T-AOC and CAT and changed genes expression level. It significantly affected lipid metabolism of suckling piglets manifested by increasing the serum ALT, CHOL, and LDL (P < 0.05) level and modulating plasma medium- and long-chain fatty acids (MCFAs and LCFAs), as well as regulating the genes expression involved in lipid metabolism. Conclusion Maternal CAT supplementation could regulate the fatty acid composition and enhance the antioxidant ability of sows and offspring during the lactating period and further promote the growth of suckling piglets. These findings might provide a reference value for the utilization of CAT as supplement for mother from late pregnancy to lactation period to promote the fatty acid metabolism of offspring.
Collapse
Affiliation(s)
- Tiantian Zhou
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Bei Cheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Lumin Gao
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Fengyun Ren
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China,Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guanglun Guo
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Teketay Wassie
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China,Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,*Correspondence: Xin Wu
| |
Collapse
|
9
|
Santiago Santana JM, Vega-Torres JD, Ontiveros-Angel P, Bin Lee J, Arroyo Torres Y, Cruz Gonzalez AY, Aponte Boria E, Zabala Ortiz D, Alvarez Carmona C, Figueroa JD. Oxidative stress and neuroinflammation in a rat model of co-morbid obesity and psychogenic stress. Behav Brain Res 2021; 400:112995. [PMID: 33301815 PMCID: PMC8713435 DOI: 10.1016/j.bbr.2020.112995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is growing recognition for a reciprocal, bidirectional link between anxiety disorders and obesity. Although the mechanisms linking obesity and anxiety remain speculative, this bidirectionality suggests shared pathophysiological processes. Neuroinflammation and oxidative damage are implicated in both pathological anxiety and obesity. This study investigates the relative contribution of comorbid diet-induced obesity and stress-induced anxiety to neuroinflammation and oxidative stress. METHODS Thirty-six (36) male Lewis rats were divided into four groups based on diet type and stress exposure: 1) control diet unexposed (CDU) and 2) exposed (CDE), 3) Western-like high-saturated fat diet unexposed (WDU) and 4) exposed (WDE). Neurobehavioral tests were performed to assess anxiety-like behaviors. The catalytic concentrations of glutathione peroxidase and reductase were measured from plasma samples, and neuroinflammatory/oxidative stress biomarkers were measured from brain samples using Western blot. Correlations between behavioral phenotypes and biomarkers were assessed with Pearson's correlation procedures. RESULTS We found that WDE rats exhibited markedly increased levels of glial fibrillary acidic protein (185 %), catalase protein (215 %), and glutathione reductase (GSHR) enzymatic activity (418 %) relative to CDU rats. Interestingly, the brain protein levels of glutathione peroxidase (GPx) and catalase were positively associated with body weight and behavioral indices of anxiety. CONCLUSIONS Together, our results support a role for neuroinflammation and oxidative stress in heightened emotional reactivity to obesogenic environments and psychogenic stress. Uncovering adaptive responses to obesogenic environments characterized by high access to high-saturated fat/high-sugar diets and toxic stress has the potential to strongly impact how we treat psychiatric disorders in at-risk populations.
Collapse
Affiliation(s)
- Jose M Santiago Santana
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Julio D Vega-Torres
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Perla Ontiveros-Angel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jeong Bin Lee
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Yaria Arroyo Torres
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico; Universidad Metropolitana de Cupey Sciences and Technology School, Puerto Rico
| | - Alondra Y Cruz Gonzalez
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Esther Aponte Boria
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Deisha Zabala Ortiz
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Carolina Alvarez Carmona
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| |
Collapse
|
10
|
Park S, Park SY. Can antioxidants be effective therapeutics for type 2 diabetes? Yeungnam Univ J Med 2020; 38:83-94. [PMID: 33028055 PMCID: PMC8016622 DOI: 10.12701/yujm.2020.00563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The global obesity epidemic and the growing elderly population largely contribute to the increasing incidence of type 2 diabetes. Insulin resistance acts as a critical link between the present obesity pandemic and type 2 diabetes. Naturally occurring reactive oxygen species (ROS) regulate intracellular signaling and are kept in balance by the antioxidant system. However, the imbalance between ROS production and antioxidant capacity causes ROS accumulation and induces oxidative stress. Oxidative stress interrupts insulin-mediated intracellular signaling pathways, as supported by studies involving genetic modification of antioxidant enzymes in experimental rodents. In addition, a close association between oxidative stress and insulin resistance has been reported in numerous human studies. However, the controversial results with the use of antioxidants in type 2 diabetes raise the question of whether oxidative stress plays a critical role in insulin resistance. In this review article, we discuss the relevance of oxidative stress to insulin resistance based on genetically modified animal models and human trials.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Physiology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - So-Young Park
- Department of Physiology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
11
|
Atchan Nwakiban AP, Cicolari S, Piazza S, Gelmini F, Sangiovanni E, Martinelli G, Bossi L, Carpentier-Maguire E, Deutou Tchamgoue A, Agbor GA, Kuiaté JR, Beretta G, Dell’Agli M, Magni P. Oxidative Stress Modulation by Cameroonian Spice Extracts in HepG2 Cells: Involvement of Nrf2 and Improvement of Glucose Uptake. Metabolites 2020; 10:metabo10050182. [PMID: 32370041 PMCID: PMC7281205 DOI: 10.3390/metabo10050182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress plays a relevant role in the progression of chronic conditions, including cardiometabolic diseases. Several Cameroonian plants, including spices, are traditionally used as herbal medicines for the treatment of diseases where oxidative stress contributes to insulin resistance, like type 2 diabetes mellitus. This study evaluated the antioxidant capacity and the effects on oxidative-stress-induced impairment of glucose uptake of 11 Cameroonian spice extracts. H2O2-induced reactive oxygen species (ROS) production by human HepG2 cells was significantly reduced by 8/11 extracts. The most effective extracts, Xylopia parviflora, Echinops giganteus, and Dichrostachys glomerata, showed a concentration-dependent ROS-scavenging activity, which involved Nrf2 translocation into the nucleus. Xylopia parviflora, Tetrapleura tetraptera, Dichrostachys glomerata, Aframomum melegueta, and Aframomum citratum extracts showed the highest antioxidant capacity, according to oxygen radical absorbance capacity (ORAC) (2.52-88 μM Trolox Eq/g of extract), ferric-reducing antioxidant power (FRAP) (40.23-233.84 mg gallic acid Eq/g of extract), and total phenol (8.96-32.96% mg gallic acid Eq/g of extract) assays. In HepG2 cells, glucose uptake was stimulated by 4/11 extracts, similarly to insulin and metformin. H2O2-induced oxidative stress reduced glucose uptake, which was rescued by pretreatment with Xylopia aethiopica, Xylopia parviflora, Scorodophloeus zenkeri, Monodora myristica, and Dichrostachys glomerata extracts. The ROS-scavenging ability of the spice extracts may reside in some secondary metabolites observed by phytochemical profiling (reverse-phase high-performance liquid chromatography coupled to a diode array detector (HPLC-UV-DAD)). Further studies are needed to better clarify their biological activities and potential use to control oxidative stress and promote insulin sensitivity.
Collapse
Affiliation(s)
| | - Stefania Cicolari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; (S.C.); (S.P.); (E.S.); (G.M.); (L.B.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; (S.C.); (S.P.); (E.S.); (G.M.); (L.B.)
| | - Fabrizio Gelmini
- Department of Environmental Science and Policy, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy; (F.G.); (G.B.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; (S.C.); (S.P.); (E.S.); (G.M.); (L.B.)
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; (S.C.); (S.P.); (E.S.); (G.M.); (L.B.)
| | - Lorenzo Bossi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; (S.C.); (S.P.); (E.S.); (G.M.); (L.B.)
| | | | - Armelle Deutou Tchamgoue
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé 4124, Cameroon; (A.D.T.); (G.A.A.)
| | - Gabriel A. Agbor
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé 4124, Cameroon; (A.D.T.); (G.A.A.)
| | - Jules-Roger Kuiaté
- Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 96 Dschang, Cameroon; (A.P.A.N.); (J.-R.K.)
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy; (F.G.); (G.B.)
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; (S.C.); (S.P.); (E.S.); (G.M.); (L.B.)
- Correspondence: (M.D.); (P.M.); Tel.: +39-0250318398 (M.D.); +39-0250318229 (P.M.)
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; (S.C.); (S.P.); (E.S.); (G.M.); (L.B.)
- IRCCS MultiMedica, Sesto San Giovanni, Via Milanese, 300, 20099 Sesto San Giovanni Milan, Italy
- Correspondence: (M.D.); (P.M.); Tel.: +39-0250318398 (M.D.); +39-0250318229 (P.M.)
| |
Collapse
|
12
|
Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med Oncol 2020; 37:49. [PMID: 32303850 DOI: 10.1007/s12032-020-01367-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Studies indicate that inhibiting a single signaling pathway or one single product of a gene is insufficient for the prevention and treatment of cancer. This is due to the fact that dysregulation must occur in more than 500 genes in order to produce a cancerous phenotype. Despite this evidence, available drugs used for cancer treatment focus on a single target. Meanwhile, berberine as a nutraceutical is capable of targeting various processes involved in tumor development including proliferation, invasion, angiogenesis, and metastasis. In comparison with synthetic agents, berberine is cheaper, safer, and more available. Berberine has shown anti-inflammatory properties which make it an ideal option in order to prevent inflammation-associated cancers. Colorectal cancer is one of the most common cancers all over the world and its incidence is increasing each day. Therefore, further investigations about berberine could be helpful in the discovery of novel agents for preventing and/or treating colorectal cancer. This review emphasizes the studies investigating the roles of berberine in colorectal cancer such as controlling cell signaling pathways, inducing apoptosis, regulating microRNAs, attenuating oxidative stress, and affecting inflammation.
Collapse
|
13
|
Nunes-Souza V, Dias-Júnior NM, Eleutério-Silva MA, Ferreira-Neves VP, Moura FA, Alenina N, Bader M, Rabelo LA. 3-Amino-1,2,4-Triazole Induces Quick and Strong Fat Loss in Mice with High Fat-Induced Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3025361. [PMID: 32351670 PMCID: PMC7174953 DOI: 10.1155/2020/3025361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Obesity is a growing epidemic with limited effective treatments and an important risk factor for several diseases such as metabolic syndrome (MetS). In this study, we aimed to investigate the effect of 3-amino-1,2,4-triazole (ATZ), an inhibitor of catalase and heme synthesis, in a murine model for MetS. METHODS Male C57BL/6 mice with high-fat diet-induced MetS received ATZ (500 mg·kg-1·24 h-1) for 12 weeks. RESULTS The HFD group showed increased blood pressure and body weight, enhanced fat deposition accompanied by an increase in adipocyte diameter, and decreased lipolysis in white adipose tissue (WAT). The expression of genes related to inflammation was increased in WAT of the HFD group. Concurrently, these mice exhibited an increase in leptin, nonesterified fatty acid (NEFA), insulin, and glucose in plasma, coupled with glucose intolerance and insulin resistance. Strikingly, ATZ prevented the increase in blood pressure and the HFD-induced obesity as observed by lower body weight, WAT index, triglycerides, NEFA, and leptin in plasma. ATZ treatment also prevented the HFD-induced increase in adipocyte diameter and even induced marked atrophy and the accumulation of macrophages in this tissue. ATZ treatment also improved glucose metabolism by increasing glucose tolerance and insulin sensitivity, GLUT4 mRNA expression in WAT in parallel to decreased insulin levels. CONCLUSIONS In the context of HFD-induced obesity and metabolic syndrome, the fat loss induced by ATZ is probably due to heme synthesis inhibition, which blocks adipogenesis by probably decreased RevErbα activity, leading to apoptosis of adipocytes and the recruitment of macrophages. As a consequence of fat loss, ATZ elicits a beneficial systemic antiobesity effect and improves the metabolic status.
Collapse
Affiliation(s)
- Valéria Nunes-Souza
- Laboratório de Reatividade Cardiovascular, Setor de Fisiologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
- Núcleo de Síndrome Metabólica, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Departamento de Fisiologia e Farmacologia, Centro de Biociências (CB), Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Nelson Miguel Dias-Júnior
- Laboratório de Reatividade Cardiovascular, Setor de Fisiologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
- Núcleo de Síndrome Metabólica, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Antônio Eleutério-Silva
- Laboratório de Reatividade Cardiovascular, Setor de Fisiologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
- Núcleo de Síndrome Metabólica, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
- Faculdade de Medicina, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Vanessa P Ferreira-Neves
- Laboratório de Reatividade Cardiovascular, Setor de Fisiologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
- Núcleo de Síndrome Metabólica, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Fabiana Andréa Moura
- Faculdade de Nutrição (FANUT), Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité University Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Germany
| | - Luíza A Rabelo
- Laboratório de Reatividade Cardiovascular, Setor de Fisiologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
- Núcleo de Síndrome Metabólica, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
14
|
Amos D, Cook C, Santanam N. Omega 3 rich diet modulates energy metabolism via GPR120-Nrf2 crosstalk in a novel antioxidant mouse model. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:466-488. [PMID: 30658097 DOI: 10.1016/j.bbalip.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
Abstract
With obesity rates reaching epidemic proportions, more studies concentrated on reducing the risk and treating this epidemic are vital. Redox stress is an important metabolic regulator involved in the pathophysiology of cardiovascular disease, Type 2 diabetes, and obesity. Oxygen and nitrogen-derived free radicals alter glucose and lipid homeostasis in key metabolic tissues, leading to increases in risk of developing metabolic syndrome. Oxidants derived from dietary fat differ in their metabolic regulation, with numerous studies showing benefits from a high omega 3 rich diet compared to the frequently consumed "western diet" rich in saturated fat. Omega 3 (OM3) fatty acids improve lipid profile, lower inflammation, and ameliorate insulin resistance, possibly through maintaining redox homeostasis. This study is based on the hypothesis that altering endogenous antioxidant production and/or increasing OM3 rich diet consumption will improve energy metabolism and maintain insulin sensitivity. We tested the comparative metabolic effects of a diet rich in saturated fat (HFD) and an omega 3-enriched diet (OM3) in the newly developed 'stress-less' mice model that overexpresses the endogenous antioxidant catalase. Eight weeks of dietary intervention showed that mice overexpressing endogenous catalase compared to their wild-type controls when fed an OM3 enriched diet, in contrast to HFD, activated GPR120-Nrf2 cross-talk to maintain balanced energy metabolism, normal circadian rhythm, and insulin sensitivity. These findings suggest that redox regulation of GPR120/FFAR4 might be an important target in reducing risk of metabolic syndrome and associated diseases.
Collapse
Affiliation(s)
- Deborah Amos
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States
| | - Carla Cook
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States.
| |
Collapse
|
15
|
The Crosstalk between Fat Homeostasis and Liver Regional Immunity in NAFLD. J Immunol Res 2019; 2019:3954890. [PMID: 30719457 PMCID: PMC6335683 DOI: 10.1155/2019/3954890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/11/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
The liver is well known as the center of glucose and lipid metabolism in the human body. It also functions as an immune organ. Previous studies have suggested that liver nonparenchymal cells are crucial in the progression of NAFLD. In recent years, NAFLD's threat to human health has been becoming a global issue. And by far, there is no effective treatment for NAFLD. Liver nonparenchymal cells are stimulated by lipid antigens, adipokines, or other factors, and secreted immune factors can alter the expression of key proteins such as SREBP-1c, ChREBP, and PPARγ to regulate lipid metabolism, thus affecting the pathological process of NAFLD. Interestingly, some ncRNAs (including miRNAs and lncRNAs) participate in the pathological process of NAFLD by changing body fat homeostasis. And even some ncRNAs could regulate the activity of HSCs, thereby affecting the progression of inflammation and fibrosis in the course of NAFLD. In conclusion, immunotherapy could be an effective way to treat NAFLD.
Collapse
|
16
|
Ghobadi R, Divsalar A, Harifi-Mood AR, Saboury AA, Eslami-Moghadam M. How a promising anti-cancer derivative of palladium consisting phen-imidazole ligand affects bovine liver catalase functionality. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Amos DL, Robinson T, Massie MB, Cook C, Hoffsted A, Crain C, Santanam N. Catalase overexpression modulates metabolic parameters in a new 'stress-less' leptin-deficient mouse model. Biochim Biophys Acta Mol Basis Dis 2017. [PMID: 28645653 DOI: 10.1016/j.bbadis.2017.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress plays a key role in obesity by modifying the function of important biological molecules, thus altering obesogenic pathways such as glucose and lipid signaling. Catalase, is an important endogenous antioxidant enzyme that catabolizes hydrogen peroxide produced by the dismutation of superoxide. Recent studies have shown knockdown of catalase exacerbates insulin resistance and leads to obesity. We hypothesized that overexpressing catalase in an obese mouse will modulate obesogenic pathways and protect against obesity. Therefore, we bred catalase transgenic ([Tg(CAT)+/-] mice with Ob/Ob mice to generate the hybrid "Bob-Cat" mice. This newly generated "stress-less" mouse model had decreased oxidative stress (oxidized carbonylated proteins). ECHO-MRI showed lower fat mass but higher lean mass in "Bob-Cat" mice. Comprehensive Lab Animal Monitoring System (CLAMS) showed light and dark cycle increase in energy expenditure in Bob-Cat mice compared to wild type controls. Circulating levels of leptin and resistin showed no change. Catalase mRNA expression was increased in key metabolic tissues (adipose, liver, intestinal mucosa, and brain) of the Bob-Cat mice. Catalase activity, mRNA and protein expression was increased in adipose tissue. Expression of the major adipokines leptin and adiponectin was increased while pro-inflammatory genes, MCP-1/JE and IL-1β were lowered. Interestingly, sexual dimorphism was seen in body composition, energy expenditure, and metabolic parameters in the Bob-Cat mice. Overall, the characteristics of the newly generated "Bob-Cat" mice make it an ideal model for studying the effect of redox modulators (diet/exercise) in obesity.
Collapse
Affiliation(s)
- Deborah L Amos
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Tanner Robinson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Melissa B Massie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Carla Cook
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Alexis Hoffsted
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Courtney Crain
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| |
Collapse
|
18
|
Akl MG, Fawzy E, Deif M, Farouk A, Elshorbagy AK. Perturbed adipose tissue hydrogen peroxide metabolism in centrally obese men: Association with insulin resistance. PLoS One 2017; 12:e0177268. [PMID: 28545081 PMCID: PMC5436683 DOI: 10.1371/journal.pone.0177268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Objective Although adipose tissue hydrogen peroxide (H2O2) and its metabolizing enzymes have been linked to obesity and insulin resistance in animal studies, this relation remains to be evaluated in humans. Methods Non-diabetic men (N = 43, median age, 49 (37, 54 y)) undergoing abdominal surgeries were studied. Participants were classified by body mass index (BMI) into normal-weight (N = 19), or overweight/obese (Ow/Ob; BMI ≥25; N = 24). Centrally obese men were identified by waist-height ratio ≥0.5. H2O2 and activities of superoxide dismutase, catalase and glutathione peroxidase enzymes were assayed in subcutaneous fat samples, and visceral fat (available from N = 33), and their associations with anthropometric parameters, fasting serum lipids, and the homeostasis model of insulin resistance (HOMA-IR) were tested using correlations and multivariate linear regression. Results H2O2 concentrations and catalase activity were increased in visceral fat from Ow/Ob men, compared to normal-weight subjects (+32%, P = 0.038 and +51%, P = 0.043 respectively). Centrally obese subjects had >2-fold higher superoxide dismutase activity (P = 0.005), 46% higher H2O2 (P = 0.028), and 89% higher catalase activity (P = 0.009) in visceral fat, compared to lean subjects. Central obesity did not alter these markers in subcutaneous fat, apart from a 50% increase in catalase, and did not affect glutathione peroxidase in either fat depot. H2O2 in visceral fat positively correlated with insulin resistance (r = 0.40, P = 0.032). Catalase activity in visceral fat was an independent determinant of HOMA-IR, explaining ~18% of the variance (ß = 0.42, P = 0.016), after adjustment for age and BMI. Conclusion These findings suggest that adipose tissue catalase shows compensatory up-regulation in response to obesity-induced H2O2 accumulation, and that perturbed H2O2 metabolism in visceral fat is linked to insulin resistance in obese humans.
Collapse
Affiliation(s)
- May G. Akl
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Eman Fawzy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Maha Deif
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Ayman Farouk
- Department of Clinical and Experimental Surgery, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Amany K. Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- * E-mail:
| |
Collapse
|
19
|
Vida C, de Toda IM, Cruces J, Garrido A, Gonzalez-Sanchez M, De la Fuente M. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice. Redox Biol 2017; 12:423-437. [PMID: 28319893 PMCID: PMC5357673 DOI: 10.1016/j.redox.2017.03.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/09/2017] [Accepted: 03/06/2017] [Indexed: 01/21/2023] Open
Abstract
The age-related changes in the immune functions (immunosenescence) may be mediated by an increase of oxidative stress and damage affecting leukocytes. Although the “oxidation-inflammation” theory of aging proposes that phagocytes are the main immune cells contributing to “oxi-inflamm-aging”, this idea has not been corroborated. The aim of this work was to characterize the age-related changes in several parameters of oxidative stress and immune function, as well as in lipofuscin accumulation (“a hallmark of aging”), in both total peritoneal leukocyte population and isolated peritoneal macrophages. Adult, mature, old and long-lived mice (7, 13, 18 and 30 months of age, respectively) were used. The xanthine oxidase (XO) activity-expression, basal levels of superoxide anion and ROS, catalase activity, oxidized (GSSG) and reduced (GSH) glutathione content and lipofuscin levels, as well as both phagocytosis and digestion capacity were evaluated. The results showed an age-related increase of oxidative stress and lipofuscin accumulation in murine peritoneal leukocytes, but especially in macrophages. Macrophages from old mice showed lower antioxidant defenses (catalase activity and GSH levels), higher oxidizing compounds (XO activity/expression and superoxide, ROS and GSSG levels) and lipofuscin levels, together with an impaired macrophage functions, in comparison to adults. In contrast, long-lived mice showed in their peritoneal leukocytes, and especially in macrophages, a well-preserved redox state and maintenance of their immune functions, all which could account for their high longevity. Interestingly, macrophages showed higher XO activity and lipofuscin accumulation than lymphocytes in all the ages analyzed. Our results support that macrophages play a central role in the chronic oxidative stress associated with aging, and the fact that phagocytes are key cells contributing to immunosenescence and “oxi-inflamm-aging”. Moreover, the determination of oxidative stress and immune function parameters, together with the lipofuscin quantification, in macrophages, can be used as useful markers of the rate of aging and longevity. Peritoneal macrophages from old mice have higher oxidant levels than lymphocytes. Long-lived mice have a well-preserved redox state in both macrophages and lymphocytes. Peritoneal macrophages have higher lipofuscin levels than lymphocytes along aging.
Collapse
Affiliation(s)
- Carmen Vida
- Department of Animal Physiology II, Faculty of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (i+12), Madrid, Spain
| | - Irene Martínez de Toda
- Department of Animal Physiology II, Faculty of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (i+12), Madrid, Spain
| | - Julia Cruces
- Department of Animal Physiology II, Faculty of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (i+12), Madrid, Spain
| | - Antonio Garrido
- Department of Animal Physiology II, Faculty of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (i+12), Madrid, Spain
| | | | - Mónica De la Fuente
- Department of Animal Physiology II, Faculty of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (i+12), Madrid, Spain.
| |
Collapse
|
20
|
Heit C, Marshall S, Singh S, Yu X, Charkoftaki G, Zhao H, Orlicky DJ, Fritz KS, Thompson DC, Vasiliou V. Catalase deletion promotes prediabetic phenotype in mice. Free Radic Biol Med 2017; 103:48-56. [PMID: 27939935 PMCID: PMC5513671 DOI: 10.1016/j.freeradbiomed.2016.12.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/02/2016] [Accepted: 12/07/2016] [Indexed: 01/22/2023]
Abstract
Hydrogen peroxide is produced endogenously and can be toxic to living organisms by inducing oxidative stress and cell damage. However, it has also been identified as a signal transduction molecule. By metabolizing hydrogen peroxide, catalase protects cells and tissues against oxidative damage and may also influence signal transduction mechanisms. Studies suggest that acatalasemic individuals (i.e., those with very low catalase activity) have a higher risk for the development of diabetes. We now report catalase knockout (Cat-/-) mice, when fed a normal (6.5% lipid) chow, exhibit an obese phenotype that manifests as an increase in body weight that becomes more pronounced with age. The mice demonstrate altered hepatic and muscle lipid deposition, as well as increases in serum and hepatic triglycerides (TGs), and increased hepatic transcription and protein expression of PPARγ. Liver morphology revealed steatosis with inflammation. Cat-/- mice also exhibited pancreatic morphological changes that correlated with impaired glucose tolerance and increased fasting serum insulin levels, conditions consistent with pre-diabetic status. RNA-seq analyses revealed a differential expression of pathways and genes in Cat-/- mice, many of which are related to metabolic syndrome, diabetes, and obesity, such as Pparg and Cidec. In conclusion, the results of the present study show mice devoid of catalase develop an obese, pre-diabetic phenotype and provide compelling evidence for catalase (or its products) being integral in metabolic regulation.
Collapse
Affiliation(s)
- Claire Heit
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Stephanie Marshall
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA
| | - Surrendra Singh
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA
| | - Xiaoqing Yu
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven CT 06520, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven CT 06520, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - David C Thompson
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA.
| |
Collapse
|
21
|
Pérez-Matute P, Pichel JG, Iñiguez M, Recio-Fernández E, Pérez-Martínez L, Torrens R, Blanco JR, Oteo JA. Maraviroc ameliorates the increased adipose tissue macrophage recruitment induced by a high-fat diet in a mouse model of obesity. Antivir Ther 2016; 22:163-168. [PMID: 27725337 DOI: 10.3851/imp3099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Any strategy designed to decrease the macrophage content in adipose tissue (AT) is of great value as a way to decrease inflammation in this fat depot and also as a way to prevent or treat obesity and associated disorders. Maraviroc (MVC), a CCR5 antagonist approved for the treatment of HIV-infected patients, has beneficial effects on metabolism. The objective of this study was to investigate the effects of MVC on AT macrophage recruitment in a mouse model of obesity. The plausible underlying mechanisms of action were also investigated. METHODS 32 male C57BL/6 mice were randomly assigned to the following groups: control, MVC (300 mg/l MVC in drinking water), high-fat diet (HFD) or HFD+MVC. After 16 weeks of treatment, histopathological and molecular analyses were performed on epididymal fat. RESULTS Our results demonstrated that MVC reduced the presence of macrophages in epididymal fat despite the ingestion of an HFD. The inhibition of MCP-1 gene expression and JNK signalling pathway along with the upregulation of protective cytokines such as cardiotrophin-1 could contribute to these actions. MVC effects on AT macrophage recruitment were associated with a lower body weight gain and a partial improvement in insulin resistance despite an HFD. CONCLUSIONS We have demonstrated the ability of MVC to ameliorate the increased AT macrophage recruitment induced by an HFD in a mouse model of obesity. These actions could be of interest when designing antiretroviral treatments in HIV-patients.
Collapse
Affiliation(s)
- Patricia Pérez-Matute
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| | - José G Pichel
- Lung Cancer Unit, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - María Iñiguez
- Genomics Core Facility, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Emma Recio-Fernández
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| | - Laura Pérez-Martínez
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| | - Raquel Torrens
- Lung Cancer Unit, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - José Ramón Blanco
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| | - José Antonio Oteo
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| |
Collapse
|