1
|
Vaidya RY, Aparna IN, Krishnamoorthy G, Chopra A. Effect of electrical grade glass fibres and silver nanoparticles on the mechanical properties of provisional PMMA material. Sci Rep 2025; 15:14098. [PMID: 40269182 PMCID: PMC12019535 DOI: 10.1038/s41598-025-98145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
The use of provisional crowns and bridges rendered the necessary care for the prepared teeth. The protection of the prepared tooth is one of the most important factors in the long-term success of fixed dental prosthesis. Temporary crowns and bridges for longer periods of use are most often made of acrylic material. Unfortunately, it does not have the appropriate mechanical properties or resistance to microbial colonization Therefore, the purpose is to modify it by adding glass fibers (2% w/w) and silver nanoparticles (0.5% w/w). A total of 160 samples were prepared which were segregated into 4 groups based on the test performed. Each group had 4 subgroups which consisted of samples containing silver nanoparticles (0.5% w/w) and E-glass fiber (2% w/w) mixed with PMMA in their respective concentrations. The samples were then tested for surface roughness, micro-hardness, flexural strength and SEM Analysis. The results of the study showed that there were no effect on the surface roughness values after incorporating silver nanoparticles and E-glass fibers. However, samples containing silver nanoparticles and E-Glass fibre individually had higher values of microhardness and flexural strength than those who had both together. The SEM images showed clumping of silver nanoparticles non-uniform orientation of E-glass fibers. Thus, it can be concluded that silver nanoparticles and E-glass fibre when added separately to PMMA, enhance its mechanical properties. However, better methods of mixing PMMA with silver particles and glass fibers is needed to attain a uniform distribution. Further, the orientation of E-glass fibers could also have an effect on the flexural properties of PMMA.
Collapse
Affiliation(s)
- Rohan Yatindra Vaidya
- Department of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - I N Aparna
- Department of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Gayathri Krishnamoorthy
- Department of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
2
|
Hashemzade Z, Alihemmati M, Hakimaneh SMR, Shayegh SS, Bafandeh MA, Mohammadi Z. Comparison of Color Stability and Surface Roughness of Interim Crowns Fabricated by Conventional, Milling and 3D Printing Methods. Clin Exp Dent Res 2025; 11:e70119. [PMID: 40260836 PMCID: PMC12012734 DOI: 10.1002/cre2.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 03/07/2025] [Accepted: 03/16/2025] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVES Manufacturing temporary restorations is part of the treatment process in fixed prostheses, which is accomplished by different methods. The aim of this study is to compare the color stability and surface roughness of provisional crowns made by 3D printing, conventional and milling methods. MATERIALS AND METHODS In this semi-experimental study, 60 provisional crowns were created by conventional, milling, and 3D printing methods (20 samples for each method). Half of the samples in each group were treated with BisCover surface sealant after construction. The surface roughness was checked using a laser profilometer. To determine the color stability, an evaluation was done using a spectrophotometer on the first day and the second and fourth weeks after exposure to the tea solution, and ∆E was calculated using L*a*b* values. Statistical analysis was performed at a significance level of 0.05. RESULTS The surface roughness in the conventional group was significantly higher than in the milling group (p < 0.05). The surface-treated samples had less surface roughness and more color stability than other samples (p < 0.05). ∆E in the 3D printing group was higher than other groups in all time intervals (p < 0.05). CONCLUSION The milling method can be considered the best method of making provisional crowns in terms of color stability and surface smoothness. Also, the use of sealing materials can have a significant effect on improving color stability and surface smoothness in provisional crowns made by any method.
Collapse
Affiliation(s)
- Zahra Hashemzade
- Department of Prosthodontics, Faculty of DentistryShahed UniversityTehranIran
| | - Mohammad Alihemmati
- Department of Prosthodontics, Faculty of DentistryShahed UniversityTehranIran
| | | | | | | | - Zahra Mohammadi
- Department of Prosthodontics, Faculty of DentistryShahed UniversityTehranIran
| |
Collapse
|
3
|
Chao CA, Khilnani TK, Jo S, Shenoy A, Bostrom MPG, Carli AV. Not All Antiseptic Solutions Are Equivalent in Removing Biofilm: A Comparison Across Different Orthopaedic Surfaces. J Bone Joint Surg Am 2025; 107:127-133. [PMID: 39812721 DOI: 10.2106/jbjs.23.01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
BACKGROUND Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA). METHODS MSSA and E. coli biofilms were grown on CC, OxZr, and PMMA discs for 24 and 72 hours. Biofilm-coated discs were treated with control or various antiseptic solutions for 3 minutes. Solutions included 10% povidone-iodine, a 1:1 mixture of 10% povidone-iodine plus 3% hydrogen peroxide, diluted povidone-iodine, 0.05% chlorhexidine gluconate, and a surfactant-based formulation of ethanol, acetic acid, sodium acetate, benzalkonium chloride, and water. Following treatment, discs were sonicated to quantify adherent bacteria or underwent imaging with scanning electron microscopy to identify biofilm. Antiseptic solutions were considered efficacious if they produced a 3-log (1,000-fold) reduction in colony-forming units compared with controls. RESULTS On both OxZr and CC, 10% povidone-iodine with hydrogen peroxide eradicated all MSSA, and it achieved clinical efficacy on PMMA at both 24-hour MSSA biofilm (p < 0.0002) and 72-hour MSSA biofilm (p = 0.002). On 72-hour MSSA biofilm, 10% povidone-iodine eradicated all bacteria on OxZr and CC, and it achieved clinical efficacy on PMMA (p = 0.04). On 24-hour MSSA biofilm, 10% povidone-iodine achieved efficacy on all surfaces (all p < 0.01). The surfactant-based formulation only achieved clinical efficacy on 72-hour MSSA biofilms on CC (p = 0.04) and OxZr (p = 0.07). On 72-hour E. coli biofilm, 10% povidone-iodine with or without hydrogen peroxide achieved clinical efficacy on all surfaces. No other solution achieved clinical efficacy on either MSSA or E. coli. CONCLUSIONS Antiseptic solutions vary considerably in efficacy against bacterial biofilm. The 10% povidone-iodine solution with or without hydrogen peroxide consistently removed MSSA and E. coli biofilms on multiple orthopaedic surfaces and should be considered for clinical use. CLINICAL RELEVANCE Clinicians should be aware of the differences in the efficacy of antiseptic solutions on different orthopaedic surfaces when treating MSSA or E. coli biofilms.
Collapse
Affiliation(s)
- Christina A Chao
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY
| | - Tyler K Khilnani
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Suenghwan Jo
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY
| | - Aarti Shenoy
- Department of Biomechanics, Hospital for Special Surgery, New York, NY
| | - Mathias P G Bostrom
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY
| | - Alberto V Carli
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY
| |
Collapse
|
4
|
Yacob N, Safii SH, Ahmad NA, Yunus N, Razak FA. Denture microbiome shift and changes of salivary inflammatory markers following insertion of 3D printed removable partial PMMA denture: a pilot study. BMC Oral Health 2024; 24:1216. [PMID: 39402561 PMCID: PMC11476878 DOI: 10.1186/s12903-024-05012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the microbiome shift of denture biofilm formation, the incidence of Candida and changes of salivary inflammatory markers following insertion of 3-dimensional printed PMMA denture. METHODS This was a pilot study of 6 patients provided with 3D printed (test group) or conventionally heat-cured (control group) removable partial acrylic dentures followed up for 6 weeks. 3 denture swabs were collected at week 1, 3 and 6; and saliva samples were collected at baseline, week 1, 3 and 6 following denture insertion. Microbial DNA was isolated, and the 16S rRNA gene was amplified and sequenced to assess the denture microbiota. The presence of Candida was determined using PCR assay. The levels of salivary biomarkers lactoferrin (LTF) and histatin (HTN) were determined using ELISA. RESULTS Denture microbiome of both groups exhibited similar microbial compositions at weeks 1, 3 and 6. However, the percentage of Streptococcus in the test group was significantly lower at week 1 (p < 0.05). Greater bacterial diversity was detected in the test group (p < 0.05; pairwise Wilcoxon) after 6 weeks. The presence of Candida was only detected in one sample of the 3D printed denture (test group) after 6 weeks. The level of LTF biomarkers increased in both groups after 6 weeks, however, the level of HTN increased only in the control group. CONCLUSIONS Denture microbiome of both groups demonstrated similar microbial compositions. After 6 weeks, 3D printed denture demonstrated higher diversity with delayed microbiome shift compared to conventional heat cure dentures. 3D printed denture may be a viable alternative to conventional denture and it has a potential to delay microbial dysbiosis. CLINICAL RELEVANCE Among wearers, 3D printed denture can potentially reduce the risk of denture stomatitis. A greater diversity may delay or slow the transition of denture microbiome to dysbiosis.
Collapse
Affiliation(s)
- Norlela Yacob
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Conservative Dentistry & Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Syarida Hasnur Safii
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Norasmatul Akma Ahmad
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Norsiah Yunus
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- School of Dentistry, Management & Science University (MSU), Shah Alam, 40100, Malaysia
| | - Fathilah Abdul Razak
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- School of Dentistry, Management & Science University (MSU), Shah Alam, 40100, Malaysia
| |
Collapse
|
5
|
Koppaka R, Shah KK, Ahmed N, Echhpal UR. Evaluation of Surface Roughness of Acrylic Denture Bases Polished Using Algishine, a Novel Polishing Material: An In Vitro Study. Cureus 2024; 16:e63955. [PMID: 39104981 PMCID: PMC11299221 DOI: 10.7759/cureus.63955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Surface roughness (Ra) significantly impacts the aesthetic and functional qualities of dental prosthetics. Traditional polishing involves pumice, a material routinely used in dental practice. This study introduces Algishine as a potential cost-effective eco-friendly alternative. Materials and methods A 3D design software (Geomagic) created a Standard Tesselation Language (STL) file of 10 mm x 10 mm x 2 mm. 30 STL file outputs were generated. The output was milled in wax. This was then flasked and processed. 30 acrylic resin specimens were fabricated and divided into two groups. Group A was polished using traditional pumice, and Group B was polished using Algishine. The Ra of each sample was measured using surface profilometry, with three readings per sample averaged for each group. Results Kruskal-Wallis test was performed to compare the two groups with the pre-testing samples, which showed p<0.05; indicating that there was a significant difference between the two groups. The average Ra value for unpolished acrylic was 7.105, while the specimens polished with pumice showed an Ra value of 2.218; specimens polished with novel material Algishine showed an Ra value of 1.743. This illustrates that Algishine achieves surface smoothness significantly superior to commonly used polishing agent and pumice. Discussion The results of our study demonstrate that Algishine, a novel polishing material derived from recycled alginate, effectively reduces the Ra of acrylic resin. This finding has significant implications, both clinically and environmentally. The primary clinical benefit of a smoother acrylic resin surface is the enhanced aesthetic appearance and increased patient comfort. A polished surface reduces plaque accumulation, thereby decreasing the risk of oral infections and improving the longevity of the dental prosthesis. The results show that Algishine achieves surface smoothness comparable to or better than pumice indicating that it can maintain, if not enhance, these clinical outcomes. Dental professionals can confidently use Algishine, knowing it meets the high standards required for patient care. Conclusion Algishine effectively reduces the Ra of acrylic resin, suggesting it is a viable, eco-friendly alternative to traditional pumice for dental polishing procedures. This indicates potential benefits in maintaining clinical outcomes while promoting environmental sustainability.
Collapse
Affiliation(s)
- Rahul Koppaka
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Khushali K Shah
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Nabeel Ahmed
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Urvi R Echhpal
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
7
|
Alkhalidy H, Al-Nabulsi AA, Al-Taher M, Osaili T, Olaimat AN, Liu D. Date (Phoenix dactylifera L.) seed oil is an agro-industrial waste with biopreservative effects and antimicrobial activity. Sci Rep 2023; 13:17142. [PMID: 37816813 PMCID: PMC10564903 DOI: 10.1038/s41598-023-44251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Antimicrobial resistant (AMR) infections are a leading health threat globally. Previous literature has underscored the farm-to-fork continuum as a potential focal point for the emergence and spread of AMR. In the present study, date (Phoenix dactylifera L.) seed oil was investigated for its chemical composition and antimicrobial activity against common foodborne pathogens including Escherichia coli O157:H7, Salmonella enteritidis, Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus in vitro, and in ultra-high-temperature (UHT) milk as a food model at storage temperatures of 37 °C (24 h) and 10 °C (7 days). GC-MS analysis of the seed oil revealed 20 compounds, with octadecane (52.2-55.4%) as the major constituent, and the fatty acid analysis revealed 17 fatty acids, with oleic acid (42.3-43.1%) as the main constituent, followed by lauric acid (19.8-20.3%). The antimicrobial activity of date seed oil was determined using the microdilution method. A significant inhibition against gram-negative bacteria was noted in microbiological media and UHT milk, with a log reduction ranging from 4.3 to 6.7 (at 37 °C/24 h) and 5.7 to 7.2 (at 10 °C/7 days), respectively, at oil concentrations ranging between 10 and 15 µl/ml. The oil showed a similar significant inhibitory effect against St. aureus in the microbiological media (2.0-6.0 log reduction), whereas the inhibitory effect against L. monocytogenes was not statistically significant, with a maximum log reduction of 0.64 achieved at a concentration of 10 µl/ml. AFM imaging of the bacteria showed that oil treatment led to morphological changes in the bacteria including the formation of distorted shapes, surface blebs, indentations, stiffness, and swelling. Present findings suggest that date seed oil can be a promising by-product with potential antimicrobial activity and a food preservative.
Collapse
Affiliation(s)
- Hana Alkhalidy
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Marah Al-Taher
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
8
|
Papa S, Maalouf M, Claudel P, Sedao X, Di Maio Y, Hamzeh-Cognasse H, Thomas M, Guignandon A, Dumas V. Key topographic parameters driving surface adhesion of Porphyromonas gingivalis. Sci Rep 2023; 13:15893. [PMID: 37741851 PMCID: PMC10518006 DOI: 10.1038/s41598-023-42387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023] Open
Abstract
Dental implant failure is primarily due to peri-implantitis, a consequence of bacterial biofilm formation. Bacterial adhesion is strongly linked to micro-/nano-topographies of a surface; thus an assessment of surface texture parameters is essential to understand bacterial adhesion. In this study, mirror polished titanium samples (Ti6Al4V) were irradiated with a femtosecond laser (fs-L) at a wavelength of 1030 nm (infrared) with variable laser parameters (laser beam polarization, number, spacing and organization of the impacts). Images of 3-D topographies were obtained by focal variation microscopy and analyzed with MountainsMap software to measure surface parameters. From bacteria associated with peri-implantitis, we selected Porphyromonas gingivalis to evaluate its adhesion on Ti6Al4V surfaces in an in vitro study. Correlations between various surface parameters and P. gingivalis adhesion were investigated. We discovered that Sa value, a common measure of surface roughness, was not sufficient in describing the complexity of these fs-L treated surfaces and their bacterial interaction. We found that Sku, density and mean depths of the furrows, were the most accurate parameters for this purpose. These results provide important information that could help anticipate the bacterial adhesive properties of a surface based on its topographic parameters, thus the development of promising laser designed biofunctional implants.
Collapse
Affiliation(s)
- Steve Papa
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France.
| | - Mathieu Maalouf
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Pierre Claudel
- GIE Manutech-USD, 20 Rue Benoît Lauras, 42000, Saint-Étienne, France
| | - Xxx Sedao
- GIE Manutech-USD, 20 Rue Benoît Lauras, 42000, Saint-Étienne, France
- Laboratory Hubert Curien, UMR 5516 CNRS, Jean Monnet University, University of Lyon, 42000, Saint-Étienne, France
| | - Yoan Di Maio
- GIE Manutech-USD, 20 Rue Benoît Lauras, 42000, Saint-Étienne, France
| | - Hind Hamzeh-Cognasse
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Mireille Thomas
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Alain Guignandon
- INSERM, SAINBIOSE U1059, Mines Saint-Etienne, Université Jean Monnet Saint-Étienne, 42023, Saint-Étienne, France
| | - Virginie Dumas
- Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, UMR5513, ENISE, Univ Lyon, 42023, Saint-Étienne, France
| |
Collapse
|
9
|
Preparation of a fluorinated dental resin system and its anti-adhesive properties against S. mutans. Dent Mater 2023; 39:402-409. [PMID: 36894413 DOI: 10.1016/j.dental.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES The purpose of this study was to characterize physicochemical properties and investigate anti-bacterial adhesion effect of dental resins containing fluorinated monomers. METHOD Fluorinated dimethacrylate FDMA was mixed with commonly used reactive diluent triethylene- glycol dimethacrylate (TEGDMA) and fluorinated diluent 1 H,1 H-heptafluorobutyl methacrylate (FBMA) separately at a mass ratio of 60 wt./40 wt. to prepare fluorinated resin systems. Double bond conversion (DC), flexural strength (FS) and modulus (FM), water sorption (WS) and solubility (SL), contact angle and surface free energy, surface element concentration, and anti-adhesion effect against Streptococcus mutans (S. mutans) were investigated according to standard or referenced methods. 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl)-phenyl]propane (Bis-GMA)/TEGDMA (60/40, wt./wt.) was used as control. RESULTS Both fluorinated resin systems had higher DC than Bis-GMA based resin (p < 0.05); compared with Bis-GMA based resin (FS, FDMA/TEGDMA resin system had higher FS (p < 0.05) and comparable FM (p > 0.05), while FDMA/FBMA resins system had lower FS and FM (p < 0.05). Both fluorinated resin systems had lower WS and SL than Bis-GMA based resin (p < 0.05), and FDMA/TEGDMA resin system had the lowest WS (p < 0.05) in all experimental resin systems. Only FDMA/FBMA resin system showed lower surface free energy than Bis-GMA based resin (p < 0.05). When the surface was smooth, FDMA/FBMA resin system had lower amount of adherent S. mutans than Bis-GMA based resin (p < 0.05), while after the surface became roughness, FDMA/FBMA resin system had comparable amount of adherent S. mutans as Bis-GMA based resin (p > 0.05). SIGNIFICANCE Resin system prepared exclusively with fluorinated methacrylate monomers reduced the S. mutans adhesion due to their increased hydrophobicity and decreased surface energy., while flexural properties of it should be improved.
Collapse
|
10
|
Hadidi N, Mohebbi M. Anti-Infective and Toxicity Properties of Carbon Based Materials: Graphene and Functionalized Carbon Nanotubes. Microorganisms 2022; 10:microorganisms10122439. [PMID: 36557692 PMCID: PMC9784703 DOI: 10.3390/microorganisms10122439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Recently, antimicrobial activities of various carbon-based nanomaterials against specific pathogens have become one of the most significant research interests in this field. Carbon nanotubes (CNTs) are promising multidisciplinary nanostructures in biomedicine, drug delivery, genetic engineering, biosensors, and artificial implants. However, the biomedical administration of CNTs is dependent on their solubility, toxicity, and biocompatibility, as well as novel drug-delivery applications through optimization of the drug's loading capacity, cellular absorption, and continuous release within the target cell. The usage of CNTs and Graphene materials as antimicrobial agents and nanocarriers for antibiotics delivery would possibly improve their bioavailability and facilitate better anti-infective therapy. However, it is worth mentioning that CNTs' antimicrobial activity and toxicity are highly dependent on their preparation and synthesis method. Various types of research have confirmed that diameter, length, residual catalyst, metal content, surface coating, electronic structure, and dispersibility would affect CNTs' toxicity toward bacteria and human cells. In this review article, a general study was performed on the antimicrobial properties of carbon-based nanomaterials, as well as their toxicity and applications in confronting different microorganisms. This study could be useful for researchers who are looking for new and effective drug delivery methods in the field of microbial resistance.
Collapse
|
11
|
Mechanical Properties and In Vitro Biocompatibility of Hybrid Polymer-HA/BAG Ceramic Dental Materials. Polymers (Basel) 2022; 14:polym14183774. [PMID: 36145918 PMCID: PMC9505225 DOI: 10.3390/polym14183774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study is to prepare hybrid polymer-ceramic dental materials for chairside computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The hybrid polymer-ceramic materials were fabricated via infiltrating polymerizable monomer mixtures into sintered hydroxyapatite/bioactive glass (HA/BAG) ceramic blocks and thermo-curing. The microstructure was observed by scanning electron microscopy and an energy-dispersive spectrometer. The phase structure was analyzed by X-ray diffraction. The composition ratio was analyzed by a thermogravimetric analyzer. The hardness was measured by a Vickers hardness tester. The flexural strength, flexural modulus, and compressive strength were measured and calculated by a universal testing machine. The growth of human gingival fibroblasts was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and immunofluorescence staining. The results showed that the sintering temperature and BAG content affected the mechanical properties of the hybrid polymer-ceramic materials. The X-ray diffraction analysis showed that high-temperature sintering promoted the partial conversion of HA to β-tricalcium phosphate. The values of the hardness, flexural strength, flexural modulus, and compressive strength of all the hybrid polymer-ceramic materials were 0.89-3.51 GPa, 57.61-118.05 MPa, 20.26-39.77 GPa, and 60.36-390.46 MPa, respectively. The mechanical properties of the hybrid polymer-ceramic materials were similar to natural teeth. As a trade-off between flexural strength and hardness, hybrid polymer-ceramic material with 20 wt.% BAG sintered at 1000 °C was the best material. In vitro experiments confirmed the biocompatibility of the hybrid polymer-ceramic material. Therefore, the hybrid polymer-ceramic material is expected to become a new type of dental restoration material.
Collapse
|
12
|
Bioactive Silicon Nitride Implant Surfaces with Maintained Antibacterial Properties. J Funct Biomater 2022; 13:jfb13030129. [PMID: 36135564 PMCID: PMC9500919 DOI: 10.3390/jfb13030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Silicon nitride (Si3N4) is a promising biomaterial, currently used in spinal fusion implants. Such implants should result in high vertebral union rates without major complications. However, pseudarthrosis remains an important complication that could lead to a need for implant replacement. Making silicon nitride implants more bioactive could lead to higher fusion rates, and reduce the incidence of pseudarthrosis. In this study, it was hypothesized that creating a highly negatively charged Si3N4 surface would enhance its bioactivity without affecting the antibacterial nature of the material. To this end, samples were thermally, chemically, and thermochemically treated. Apatite formation was examined for a 21-day immersion period as an in-vitro estimate of bioactivity. Staphylococcus aureus bacteria were inoculated on the surface of the samples, and their viability was investigated. It was found that the thermochemically and chemically treated samples exhibited enhanced bioactivity, as demonstrated by the increased spontaneous formation of apatite on their surface. All modified samples showed a reduction in the bacterial population; however, no statistically significant differences were noticed between groups. This study successfully demonstrated a simple method to improve the in vitro bioactivity of Si3N4 implants while maintaining the bacteriostatic properties.
Collapse
|
13
|
Biagini F, Calvigioni M, De Maria C, Magliaro C, Montemurro F, Mazzantini D, Celandroni F, Mattioli-Belmonte M, Ghelardi E, Vozzi G. Study of the Adhesion of the Human Gut Microbiota on Electrospun Structures. Bioengineering (Basel) 2022; 9:bioengineering9030096. [PMID: 35324785 PMCID: PMC8945341 DOI: 10.3390/bioengineering9030096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Although the adhesion of bacteria on surfaces is a widely studied process, to date, most of the works focus on a single species of microorganisms and are aimed at evaluating the antimicrobial properties of biomaterials. Here, we describe how a complex microbial community, i.e., the human gut microbiota, adheres to a surface to form stable biofilms. Two electrospun structures made of natural, i.e., gelatin, and synthetic, i.e., polycaprolactone, polymers were used to study their ability to both promote the adhesion of the human gut microbiota and support microbial growth in vitro. Due to the different wettabilities of the two surfaces, a mucin coating was also added to the structures to decouple the effect of bulk and surface properties on microbial adhesion. The developed biofilm was quantified and monitored using live/dead imaging and scanning electron microscopy. The results indicated that the electrospun gelatin structure without the mucin coating was the optimal choice for developing a 3D in vitro model of the human gut microbiota.
Collapse
Affiliation(s)
- Francesco Biagini
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Carmelo De Maria
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Chiara Magliaro
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Francesca Montemurro
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Science—DISCLIMO Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy; (M.C.); (D.M.); (F.C.); (E.G.)
| | - Giovanni Vozzi
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 55122 Pisa, Italy; (F.B.); (C.D.M.); (C.M.); (F.M.)
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
- Correspondence:
| |
Collapse
|
14
|
Di Cerbo A, Mescola A, Rosace G, Trovato V, Canton R, Iseppi R, Stocchi R, Ghazanfar S, Rea S, Loschi AR, Sabia C. A Time-Course Study on a Food Contact Material (FCM)-Certified Coating Based on Titanium Oxide Deposited onto Aluminum. BIOLOGY 2022; 11:97. [PMID: 35053094 PMCID: PMC8772801 DOI: 10.3390/biology11010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/16/2022]
Abstract
Aluminum is the second most widely used metal worldwide. It is present as an additive in cosmetics, pharmaceuticals, food, and food contact materials (FCM). In this study, we confirm the bactericidal effect of a special anodizing method, based on TiO2 nanoparticles (DURALTI®) deposited on aluminum disks with different roughness and subjected to two sanitizing treatments: UV and alcohol 70%. Consequently, we perform a time-course evaluation against both Gram-negative and Gram-positive bacteria to better frame the time required to achieve the best result. Approximately 106 CFU/mL of Escherichia coli ATCC 25922; Salmonella Typhimurium ATCC 1402; Yersinia enterocolitica ATCC 9610; Pseudomonas aeruginosa ATCC 27588; Staphylococcus aureus ATCC 6538; Enterococcus faecalis ATCC 29212; Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888 were inoculated onto each aluminum surface and challenged with UV and alcohol 70% at 0, 15", 30", 1', 5', 15', 30', 1, 2, 4 and 6 h. DURALTI® coating already confirmed its ability to induce a 4-logarithmic decrease (from 106 to 102 CFU/mL) after 6 h. Once each sanitizing treatment was applied, an overall bacterial inhibition occurred in a time ranging from 15'' to 1'. The results are innovative in terms of preventing microbial adhesion and growth in the food industry.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (R.S.); (S.R.); (A.R.L.)
| | | | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, Italy; (G.R.); (V.T.)
| | - Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, 24044 Dalmine, Italy; (G.R.); (V.T.)
| | | | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.S.)
| | - Roberta Stocchi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (R.S.); (S.R.); (A.R.L.)
| | - Shakira Ghazanfar
- National Agricultural Research Centre, National Institute of Genomics and Agriculture Biotechnology (NIGAB), Park Road, Islamabad 45500, Pakistan;
| | - Stefano Rea
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (R.S.); (S.R.); (A.R.L.)
| | - Anna Rita Loschi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (R.S.); (S.R.); (A.R.L.)
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.S.)
| |
Collapse
|
15
|
Hage M, Khelissa S, Akoum H, Chihib NE, Jama C. Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Appl Microbiol Biotechnol 2022; 106:81-100. [PMID: 34889984 PMCID: PMC8661349 DOI: 10.1007/s00253-021-11715-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/28/2022]
Abstract
Environmental conditions in food and medical fields enable the bacteria to attach and grow on surfaces leading to resistant bacterial biofilm formation. Indeed, the first step in biofilm formation is the bacterial irreversible adhesion. Controlling and inhibiting this adhesion is a passive approach to fight against biofilm development. This strategy is an interesting path in the inhibition of biofilm formation since it targets the first step of biofilm development. Those pathogenic structures are responsible for several foodborne diseases and nosocomial infections. Therefore, to face this public health threat, researchers employed cold plasma technologies in coating development. In this review, the different factors influencing the bacterial adhesion to a substrate are outlined. The goal is to present the passive coating strategies aiming to prevent biofilm formation via cold plasma treatments, highlighting antiadhesive elaborated surfaces. General aspects of surface treatment, including physico-chemical modification and application of cold plasma technologies, were also presented. KEY POINTS: • Factors surrounding pathogenic bacteria influence biofilm development. • Controlling bacterial adhesion prevents biofilm formation. • Materials can be coated via cold plasma to inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Mayssane Hage
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Simon Khelissa
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Hikmat Akoum
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Nour-Eddine Chihib
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Charafeddine Jama
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France.
| |
Collapse
|
16
|
Sonnleitner D, Sommer C, Scheibel T, Lang G. Approaches to inhibit biofilm formation applying natural and artificial silk-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112458. [PMID: 34857315 DOI: 10.1016/j.msec.2021.112458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The discovery of penicillin started a new era of health care since it allowed the effective treatment of formerly deadly infections. As a drawback, its overuse led to a growing number of multi-drug resistant pathogens. Challenging this arising threat, material research focuses on the development of microbe-killing or microbe repellent agents implementing such functions directly into materials. Due to their biocompatibility, non-immunogenicity and mechanical strength, silk-based materials are attractive candidates for applications in the biomedical field. Furthermore, it has been observed that silks display high persistency in their natural environment giving reason to suspect that they might be attractive candidates to prevent microbial infestation. The current review describes the process of biofilm formation on medical devices and the most common strategies to prevent it, divided into effects of surface topography, material modification and integrated additives. In this context, recent state of the art developments in the field of natural and artificial silk-based materials with microbe-repellant or antimicrobial properties are addressed. These silk properties are controversially discussed and conclusions are drawn as to which parameters will be decisive for the successful design of new bio-functional materials based on the blueprint of silk proteins.
Collapse
Affiliation(s)
- David Sonnleitner
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Christoph Sommer
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany.
| |
Collapse
|
17
|
Bannwart LC, de Moraes Melo Neto CL, Dos Santos DM, Moreno ALDM, Pesqueira AA, Goiato MC, de Magalhães Bertoz AP. Dentistry and Intensive Care Unit: A Brief Report. Eur J Dent 2021; 16:449-453. [PMID: 34852392 PMCID: PMC9339926 DOI: 10.1055/s-0041-1735797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE The aim of this study is to verify whether removable dentures of patients admitted to an intensive care unit (ICU) are niches of microorganisms that can cause pathologies (Staphylococcus aureus, Candida spp., and enterobacteria). MATERIALS AND METHODS Fifteen patients who were denture wearers (removable partial denture and complete denture) were included in this study. Patients must wear their dentures daily, and these dentures must have acrylic parts. Microbial biofilm was collected from the acrylic part of one denture of each patient. Then, the biofilm was seeded on different culture media: Sabouraud agar, blood agar, MacConkey agar, and mannitol salt agar. In this study, biochemical evaluations of microorganisms were performed. STATISTICAL ANALYSIS The percentage of dentures with the microorganism identified by each culture medium was calculated. RESULTS In total, 100% of the dentures were positive for Staphylococcus spp. (blood agar) and Candida spp. (Sabouraud agar); 33.3% of the dentures were positive for S. aureus (Mannitol salt agar); and 13.3% of the dentures were positive for Shigella spp. (MacConkey agar). CONCLUSION Removable dentures of patients (removable partial dentures and complete dentures) admitted to an ICU are niches of microorganisms that can cause pathologies.
Collapse
Affiliation(s)
- Lisiane Cristina Bannwart
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Aracatuba, São Paulo, Brazil
| | | | - Daniela Micheline Dos Santos
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Aracatuba, São Paulo, Brazil.,Oral Oncology Center, School of Dentistry, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - André Luiz de Melo Moreno
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Aracatuba, São Paulo, Brazil
| | - Aldiéris Alves Pesqueira
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Aracatuba, São Paulo, Brazil
| | - Marcelo Coelho Goiato
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Aracatuba, São Paulo, Brazil.,Oral Oncology Center, School of Dentistry, São Paulo State University, Araçatuba, São Paulo, Brazil
| | | |
Collapse
|
18
|
Tonprasong W, Inokoshi M, Tamura M, Uo M, Wada T, Takahashi R, Hatano K, Shimizubata M, Minakuchi S. Tissue Conditioner Incorporating a Nano-Sized Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler. MATERIALS 2021; 14:ma14216648. [PMID: 34772173 PMCID: PMC8588282 DOI: 10.3390/ma14216648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
We aimed to evaluate the properties of a novel tissue conditioner containing a surface pre-reacted glass-ionomer (S-PRG) nanofiller. Tissue conditioners containing 0 (control), 2.5, 5, 10, 20, or 30 wt% S-PRG nanofiller or 10 or 20 wt% S-PRG microfiller were prepared. The S-PRG nanofillers and microfillers were observed using scanning electron microscopy. The ion release, acid buffering capacity, detail reproduction, consistency, Shore A0 hardness, surface roughness, and Candida albicans adhesion of the tissue conditioners were examined. The results indicated that the nanofiller particles were smaller and more homogeneous in size than the microfiller particles. In addition, Al, B, F, and Sr ions eluted from S-PRG were generally found to decrease after 1 day. Acid neutralization was confirmed in a concentration-dependent manner. The mechanical properties of tissue conditioners containing S-PRG nanofiller were clinically acceptable according to ISO standard 10139-1:2018, although the surface roughness increased with increasing filler content. Conditioners with 5-30 wt% nanofiller had a sublethal effect on C. albicans and reduced fungal adhesion in vitro. In summary, tissue conditioner containing at least 5 wt% S-PRG nanofiller can reduce C. albicans adhesion and has potential as an alternative soft lining material.
Collapse
Affiliation(s)
- Watcharapong Tonprasong
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (W.T.); (K.H.); (M.S.); (S.M.)
| | - Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (W.T.); (K.H.); (M.S.); (S.M.)
- Correspondence:
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda, Tokyo 101-8310, Japan;
| | - Motohiro Uo
- Department of Advanced Biomaterials, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.U.); (T.W.)
| | - Takahiro Wada
- Department of Advanced Biomaterials, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.U.); (T.W.)
| | - Rena Takahashi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan;
| | - Keita Hatano
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (W.T.); (K.H.); (M.S.); (S.M.)
| | - Makoto Shimizubata
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (W.T.); (K.H.); (M.S.); (S.M.)
| | - Shunsuke Minakuchi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (W.T.); (K.H.); (M.S.); (S.M.)
| |
Collapse
|
19
|
Dantas T, Padrão J, da Silva MR, Pinto P, Madeira S, Vaz P, Zille A, Silva F. Bacteria co-culture adhesion on different texturized zirconia surfaces. J Mech Behav Biomed Mater 2021; 123:104786. [PMID: 34428693 DOI: 10.1016/j.jmbbm.2021.104786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Zirconia is becoming reckoned as a promising solution for different applications, in particular those within the dental implant investigation field. It has been proved to successfully overcome important limitations of the commonly used titanium implants. The adhesion of microorganisms to the implants, in particular of bacteria, may govern the success or the failure of a dental implant, as the accumulation of bacteria on the peri-implant bone may rapidly evolve into periodontitis. However, bacterial adhesion on different zirconia architectures is still considerably unknown. Therefore, the adhesion of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa to zirconia surfaces with different finishings was evaluated and compared to a titanium surface. The adhesion interaction between S. aureus and P. aeruginosa was also evaluated using a co-culture since these bacteria are infamous due to their common presence in chronic wound infections. Results showed that different bacterium species possess different properties which influence their propensity to adhere to different roughness levels and architectures. E. coli revealed a higher propensity to adhere to zirconia channelled surfaces (7.15 × 106 CFU/mL), whereas S. aureus and P. aeruginosa adhered more to the titanium control group (1.07 × 105 CFU/mL and 8.43 × 106 CFU/mL, respectively). Moreover, the co-culture denoted significant differences on the adhesion behaviour of bacteria. Despite not having shown an especially better behaviour regarding bacterial adhesion, zirconia surfaces with micro-channels are expected to improve the vascularization around the implants and ultimately enhance osseointegration, thus being a promising solution for dental implants.
Collapse
Affiliation(s)
- Telma Dantas
- CMEMS - Center for MicroElectroMechanical Systems, University of Minho, Portugal; MIT Portugal Program - School of Engineering, University of Minho, Portugal.
| | - Jorge Padrão
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | | | - Paulo Pinto
- CMEMS - Center for MicroElectroMechanical Systems, University of Minho, Portugal
| | - Sara Madeira
- CMEMS - Center for MicroElectroMechanical Systems, University of Minho, Portugal
| | - Paula Vaz
- Fixed Prosthodontics, Genetics- Faculty of Dental Medicine, University of Porto, Portugal
| | - Andrea Zille
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | - Filipe Silva
- CMEMS - Center for MicroElectroMechanical Systems, University of Minho, Portugal
| |
Collapse
|
20
|
A Novel Polishing Paste (Mollusk Shells) for Poly (Methylmethacrylate). Int J Dent 2021; 2021:5511797. [PMID: 34306082 PMCID: PMC8272669 DOI: 10.1155/2021/5511797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Objective The aim of this study was to evaluate the effectiveness of a mollusk shells polishing paste (Donax obesulus) on the surface roughness of acrylic resin poly (methylmethacrylate) (PMMA). Methods This study was an in vitro experimental design. A sample size of 72 was divided into 4 groups of n = 18 each. PMMA specimens were prepared and polished with the evaluated pastes using mollusk shells (experimental paste) and pumice stone. Surface roughness (μm) was measured using a profilometer after polishing the PMMA samples. The paired Wilcoxon test was used to evaluate the roughness values at 24 and 48 hours. Then, the Mann-Whitney U test was used to identify the differences between the effects of the two groups evaluated with a significance level of α = 0.05. Results The roughness difference between the pastes under study was compared, and mean values of 0.50 ± 0.07 μm (mollusk shell paste group) and 0.45 ± 0.12 μm (pumice group) were obtained. No statistically significant differences were found between the experimental paste and pumice stone paste (p=0.309). The specimens polished with pumice stone paste showed higher roughness values, while those polished with the experimental paste exhibited the lowest values. Conclusion. In summary, mollusk shells polishing paste had a decrease in roughness values compared to pumice, although these differences were not statistically significant.
Collapse
|
21
|
Abstract
Increasing discharge of plastic debris into aquatic ecosystems and the worsening ecological risks have received growing attention. Once released, plastic debris could serve as a new substrate for microbes in waters. The complex relationship between plastics and biofilms has aroused great interest. To confirm the hypothesis that the presence of plastic in water affects the composition of biofilm in natural state, in situ biofilm culture experiments were conducted in a lake for 40 days. The diversity of biofilm attached on natural (cobble stones (CS) and wood) and plastic substrates (Polyethylene terephthalate (PET) and Polymethyl methacrylate (PMMA)) were compared, and the community structure and composition were also analyzed. Results from high-throughput sequencing of 16S rRNA showed that the diversity and species richness of biofilm bacterial communities on natural substrate (observed species of 1353~1945, Simpson index of 0.977~0.989 and Shannon–Wiener diversity index of 7.42~8.60) were much higher than those on plastic substrates (observed species of 900~1146, Simpson index of 0.914~0.975 and Shannon–Wiener diversity index of 5.47~6.99). The NMDS analyses were used to confirm the taxonomic significance between different samples, and Anosim (p = 0.001, R = 0.892) and Adonis (p = 0.001, R = 808, F = 11.19) demonstrated that this classification was statistically rigorous. Different dominant bacterial communities were found on plastic and natural substrates. Alphaproteobacterial, Betaproteobacteria and Synechococcophycideae dominated on the plastic substrate, while Gammaproteobacteria, Phycisphaerae and Planctomycetia played the main role on the natural substrates. The bacterial community structure of the two substrates also showed significant difference which is consistent with previous studies using other polymer types. Our results shed light on the fact that plastic debris can serve as a new habitat for biofilm colonization, unlike natural substrates, pathogens and plastic-degrading microorganisms selectively attached to plastic substrates, which affected the bacterial community structure and composition in aquatic environment. This study provided a new insight into understanding the potential impacts of plastics serving as a new habitat for microbial communities in freshwater environments. Future research should focus on the potential impacts of plastic-attached biofilms in various aquatic environments and the whole life cycle of plastics (i.e., from plastic fragments to microplastics) and also microbial flock characteristics using microbial plastics in the natural environment should also be addressed.
Collapse
|
22
|
Unveiling the Antifouling Performance of Different Marine Surfaces and Their Effect on the Development and Structure of Cyanobacterial Biofilms. Microorganisms 2021; 9:microorganisms9051102. [PMID: 34065462 PMCID: PMC8161073 DOI: 10.3390/microorganisms9051102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Since biofilm formation by microfoulers significantly contributes to the fouling process, it is important to evaluate the performance of marine surfaces to prevent biofilm formation, as well as understand their interactions with microfoulers and how these affect biofilm development and structure. In this study, the long-term performance of five surface materials—glass, perspex, polystyrene, epoxy-coated glass, and a silicone hydrogel coating—in inhibiting biofilm formation by cyanobacteria was evaluated. For this purpose, cyanobacterial biofilms were developed under controlled hydrodynamic conditions typically found in marine environments, and the biofilm cell number, wet weight, chlorophyll a content, and biofilm thickness and structure were assessed after 49 days. In order to obtain more insight into the effect of surface properties on biofilm formation, they were characterized concerning their hydrophobicity and roughness. Results demonstrated that silicone hydrogel surfaces were effective in inhibiting cyanobacterial biofilm formation. In fact, biofilms formed on these surfaces showed a lower number of biofilm cells, chlorophyll a content, biofilm thickness, and percentage and size of biofilm empty spaces compared to remaining surfaces. Additionally, our results demonstrated that the surface properties, together with the features of the fouling microorganisms, have a considerable impact on marine biofouling potential.
Collapse
|
23
|
Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY. Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1046. [PMID: 33921904 PMCID: PMC8073257 DOI: 10.3390/nano11041046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Biofilm formation represents a significant cause of concern as it has been associated with increased morbidity and mortality, thereby imposing a huge burden on public healthcare system throughout the world. As biofilms are usually resistant to various conventional antimicrobial interventions, they may result in severe and persistent infections, which necessitates the development of novel therapeutic strategies to combat biofilm-based infections. Physicochemical modification of the biomaterials utilized in medical devices to mitigate initial microbial attachment has been proposed as a promising strategy in combating polymicrobial infections, as the adhesion of microorganisms is typically the first step for the formation of biofilms. For instance, superhydrophobic surfaces have been shown to possess substantial anti-biofilm properties attributed to the presence of nanostructures. In this article, we provide an insight into the mechanisms underlying biofilm formation and their composition, as well as the applications of nanomaterials as superhydrophobic nanocoatings for the development of novel anti-biofilm therapies.
Collapse
Affiliation(s)
- Yinghan Chan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Xun Hui Wu
- School of Postgraduate Studies, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Buong Woei Chieng
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (B.W.C.); (N.A.I.)
| | - Nor Azowa Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (B.W.C.); (N.A.I.)
| | - Yoon Yee Then
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
24
|
Giti R, Dabiri S, Motamedifar M, Derafshi R. Surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by different methods. PLoS One 2021; 16:e0249551. [PMID: 33819292 PMCID: PMC8021148 DOI: 10.1371/journal.pone.0249551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/21/2021] [Indexed: 11/18/2022] Open
Abstract
Fabricating method may affect the surface properties and biological characteristics of provisional restorations. This study aimed to evaluate the surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by the conventional, digital subtractive and additive methods. Sixty-six bar-shaped specimens (2×4×10 mm) were fabricated by using provisional restorative materials through the conventional, digital subtractive and additive methods (n = 22 per group). Ten specimens of each group were used for surface roughness and plaque accumulation tests, 10 specimens for cytotoxicity assay, and 2 specimens of each group were used for qualitative assessment by scanning electron microscopy. The Ra (roughness average) and Rz (roughness height) values (μm) were measured via profilometer, and visual inspection was performed through scanning electron microscopy. Plaque accumulation of Streptococcus mutans and cytotoxicity on human gingival fibroblast-like cells were evaluated. The data were analyzed with one-way ANOVA and Tukey's post hoc test (α = 0.05). Surface roughness, biofilm accumulation and cytotoxicity were significantly different among the groups (P<0.05). Surface roughness was significantly higher in the conventional group (P<0.05); however, the two other groups were not significantly different (P>0.05). Significantly higher bacterial attachment was observed in the additive group than the subtractive (P<0.001) and conventional group (P = 0.025); while, the conventional and subtractive groups were statistically similar (P = 0.111). Regarding the cytotoxicity, the additive group had significantly higher cell viability than the subtractive group (P = 0.006); yet, the conventional group was not significantly different from the additive (P = 0.354) and subtractive group (P = 0.101). Surface roughness was the highest in conventionally cured group; but, the additive group had the most plaque accumulation and lowest cytotoxicity.
Collapse
Affiliation(s)
- Rashin Giti
- Department of Prosthodontics, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Shima Dabiri
- Department of Prosthodontics, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, Shiraz HIV/AIDS Research Center, Institute of Health, Medical School, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Reza Derafshi
- Department of Prosthodontics, Biomaterials Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- * E-mail:
| |
Collapse
|
25
|
Ecological drivers switch from bottom-up to top-down during model microbial community successions. THE ISME JOURNAL 2021; 15:1085-1097. [PMID: 33230267 PMCID: PMC8115227 DOI: 10.1038/s41396-020-00833-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023]
Abstract
Bottom-up selection has an important role in microbial community assembly but is unable to account for all observed variance. Other processes like top-down selection (e.g., predation) may be partially responsible for the unexplained variance. However, top-down processes and their interaction with bottom-up selective pressures often remain unexplored. We utilised an in situ marine biofilm model system to test the effects of bottom-up (i.e., substrate properties) and top-down (i.e., large predator exclusion via 100 µm mesh) selective pressures on community assembly over time (56 days). Prokaryotic and eukaryotic community compositions were monitored using 16 S and 18 S rRNA gene amplicon sequencing. Higher compositional variance was explained by growth substrate in early successional stages, but as biofilms mature, top-down predation becomes progressively more important. Wooden substrates promoted heterotrophic growth, whereas inert substrates' (i.e., plastic, glass, tile) lack of degradable material selected for autotrophs. Early wood communities contained more mixotrophs and heterotrophs (e.g., the total abundance of Proteobacteria and Euglenozoa was 34% and 41% greater within wood compared to inert substrates). Inert substrates instead showed twice the autotrophic abundance (e.g., cyanobacteria and ochrophyta made up 37% and 10% more of the total abundance within inert substrates than in wood). Late native (non-enclosed) communities were mostly dominated by autotrophs across all substrates, whereas high heterotrophic abundance characterised enclosed communities. Late communities were primarily under top-down control, where large predators successively pruned heterotrophs. Integrating a top-down control increased explainable variance by 7-52%, leading to increased understanding of the underlying ecological processes guiding multitrophic community assembly and successional dynamics.
Collapse
|
26
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
27
|
Teixeira-Santos R, Gomes M, Gomes LC, Mergulhão FJ. Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: a systematic review. iScience 2021; 24:102001. [PMID: 33490909 PMCID: PMC7809508 DOI: 10.1016/j.isci.2020.102001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although high-performance carbon materials are widely used in surface engineering, with emphasis on carbon nanotubes (CNTs), the application of CNT nanocomposites on medical surfaces is poorly documented. In this study, we aimed to evaluate the antimicrobial and anti-adhesive properties of CNT-based surfaces. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria and 59 studies were selected for the qualitative analysis. Results from the analyzed studies suggest that surfaces containing modified CNTs, and specially CNTs conjugated with different polymers, exhibited strong antimicrobial and anti-adhesive activities. These composites seem to preserve the CNT toxicity to microorganisms and promote CNT-cell interactions, as well as to protect them from nonspecific protein adsorption. However, CNTs cannot yet compete with the conventional strategies to fight biofilms as their toxicity profile on the human body has not been thoroughly addressed. This review can be helpful for the development of new engineered medical surfaces.
Collapse
Affiliation(s)
- Rita Teixeira-Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marisa Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
28
|
Antimicrobial Capacity and Surface Alterations Using Photodynamic Therapy and Light Activated Disinfection on Polymer-Infiltrated Ceramic Material Contaminated with Periodontal Bacteria. Pharmaceuticals (Basel) 2020; 13:ph13110350. [PMID: 33137995 PMCID: PMC7693966 DOI: 10.3390/ph13110350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
This study determined the antimicrobial efficiency of light-activated disinfection (LAD) and photodynamic therapy (PDT) on polymer-infiltrated ceramic network (PICN) material contaminated with three periodontal bacteria and explored if PDT and LAD cause PICN surface alterations. Sixty PICN discs were contaminated with Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola and randomly divided into five groups (n = 12 samples/each) according to the treatment groups: Group PDT-PDT (630 ± 10 nm diode laser) with methylene blue; Group DL-808 nm diode laser in contact mode without photosensitizer; Group MB-methylene blue without light application; Group CHX-0.12% chlorhexidine digluconate solution and; Group NT-no treatment. Each disc was then placed in tubes containing phosphate buffered saline (PBS) and vortexed for 30 s to remove the remaining bacteria from the discs. A total of 10× serial dilutions were performed followed by plating of 30 μL of suspension on Brucella agar plates. The colony forming units (CFU) were calculated after 72 h. PICN discs with the attached biofilms were used for confocal microscopy investigation for live/dead bacterial viability. A random single sample from each group was selected to study the bacterial adherence and topographical alterations on PICN discs under scanning electron microscope (SEM). The PDT group showed higher reduction for each bacterial species and total counts of bacteria assessed followed by the DL group (p < 0.05). When compared with MB group, the two laser groups were significantly superior (p < 0.05). The MB group did not show significant differences for any bacteria when compared to NT. The bacteria with the CHX group and DL groups appeared dead with few areas of surviving green stained bacteria. The PDT group showed the highest dead cell count (p < 0.05). PDT and DL groups indicate no significant changes on the surface compared to the sterile PICN discs on visual assessment. Photodynamic therapy produced superior periodontal bacteria reduction over the surface of PICN surface. PDT group showed higher reduction for each bacterial species and total counts of bacteria assessed followed by the DL group. Both PDT and DL treatment strategies are effective without producing surface alterations on PICN.
Collapse
|
29
|
Yang SY, Kang MK. Surface Characterization, Antimicrobial Activity, and Biocompatibility of Autopolymerizing Acrylic Resins Coated with Reynoutria elliptica Extract. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1292. [PMID: 33003649 PMCID: PMC7600974 DOI: 10.3390/plants9101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022]
Abstract
We conducted surface characterization to assess the biocompatibility and investigate the antimicrobial activity against oral pathogens in autopolymerizing acrylic resins, coated with light-curable coating resin, containing various concentrations of Reynoutria elliptica extract (0, 200, 400, and 600 µg/mL). The R. elliptica extract powder was prepared using a freeze-drying technique. Further, a goniometer and microhardness tester were used to determine the water contact angle, and Vickers hardness, respectively; color measurements were performed on the uncoated and coated acrylic resin disks. The polyphenol content of the extracts from the coated acrylic resin disk was analyzed using UV-VIS spectroscopy. The antimicrobial activity of the coated acrylic resin disk against Streptococcus mutans and Candida albicans was observed for 24 and 48 h by measuring the optical density using spectrophotometry. In addition, biocompatibility was confirmed by testing the cell viability according to ISO 10993-5. The water contact angle, Vickers hardness, and color change values of the coated acrylic resin disks were not significantly different from the control. Polyphenol was detected in all experimental groups, with no significant differences between the experimental groups. The experimental groups exhibited significant antimicrobial activity against S. mutans and C. albicans compared to the control group, after 48 h of incubation. The cell viability between the control and experimental groups was not significantly different. The proposed coating resin containing R. elliptica extract is applicable on dental acrylic resins, due to their antimicrobial properties and excellent biocompatibility, with no deterioration of surface characteristics.
Collapse
Affiliation(s)
- Song-Yi Yang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Min-Kyung Kang
- Department of Dental Hygiene, Hanseo University, Chungcheongnam-do 31962, Korea
| |
Collapse
|
30
|
Hsu KL, Balhaddad AA, Garcia IM, Collares FM, DePaola L, Melo MA. Assessment of surface roughness changes on orthodontic acrylic resins by all-in-one spray disinfectant solutions. J Dent Res Dent Clin Dent Prospects 2020; 14:77-82. [PMID: 32908647 PMCID: PMC7464227 DOI: 10.34172/joddd.2020.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022] Open
Abstract
Background. The disinfection of orthodontic acrylic resins might change the physical and mechanical properties of these materials. We aimed to investigate the impact of four different commercially available disinfectants on the surface roughness of acrylic resins used for orthodontic appliances. Methods. Four disinfectant solutions (BirexSE, Opti-Cide3, COEfect MinuteSpray, and CaviCide Spray) were used to disinfect orthodontic acrylic resins using the spraying method. The resins were subjected to repeated disinfection protocols. Distilled water, also applied via spraying method, was used as a control. Surface roughness was scrutinized to examine the extent of surface topography changes by stylus profilometry. Data normality was evaluated via the Shapiro–Wilk test, followed by the Wilcoxon Signed-Rank test for non-parametric data or paired Student’s t-test for parametric data to compare intra-group differences in roughness before and after the use of the disinfectant solutions. Results. Some of the disinfectants (BirexSE and CaviCide) resulted in significant changes in surface roughness values before and after the disinfection compared to the controls (P<0.05). The groups that were in contact with distilled water, Opti-Cide, and Coeffect did not exhibit significant differences in surface roughness before and after the intervention (P>0.05). However, from a clinical perspective, the resulting variations in surface roughness (<%0.15) induced by these solutions might not reflect clinically significant differences. Conclusion. The use of disinfectant solutions is unlikely to harm the surface of orthodontic acrylic resins. Oral care providers need to be attentive to the interpretation and implementation of clinically significant changes in their evidence-based approach regarding potential material damages by disinfection sprays.
Collapse
Affiliation(s)
- Kuei-Ling Hsu
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Abdulrahman A Balhaddad
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.,Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam, Saudi Arabia
| | - Isadora Martini Garcia
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.,Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, RS, Brazil
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, RS, Brazil
| | - Louis DePaola
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mary Anne Melo
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
The Role of Poly(Methyl Methacrylate) in Management of Bone Loss and Infection in Revision Total Knee Arthroplasty: A Review. J Funct Biomater 2020; 11:jfb11020025. [PMID: 32290191 PMCID: PMC7353497 DOI: 10.3390/jfb11020025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in joint arthroplasty to secure an implant to the host bone. Complications including fracture, bone loss and infection might cause failure of total knee arthroplasty (TKA), resulting in the need for revision total knee arthroplasty (rTKA). The goals of this paper are: (1) to identify the most common complications, outside of sepsis, arising from the application of PMMA following rTKA, (2) to discuss the current applications and drawbacks of employing PMMA in managing bone loss, (3) to review the role of PMMA in addressing bone infection following complications in rTKA. Papers published between 1970 to 2018 have been considered through searching in Springer, Google Scholar, IEEE Xplore, Engineering village, PubMed and weblinks. This review considers the use of PMMA as both a bone void filler and as a spacer material in two-stage revision. To manage bone loss, PMMA is widely used to fill peripheral bone defects whose depth is less than 5 mm and covers less than 50% of the bone surface. Treatment of bone infections with PMMA is mainly for two-stage rTKA where antibiotic-loaded PMMA is inserted as a spacer. This review also shows that using antibiotic-loaded PMMA might cause complications such as toxicity to surrounding tissue, incomplete antibiotic agent release from the PMMA, roughness and bacterial colonization on the surface of PMMA. Although PMMA is the only commercial bone cement used in rTKA, there are concerns associated with using PMMA following rTKA. More research and clinical studies are needed to address these complications.
Collapse
|
32
|
Buxadera-Palomero J, Godoy-Gallardo M, Molmeneu M, Punset M, Gil FJ. Antibacterial Properties of Triethoxysilylpropyl Succinic Anhydride Silane (TESPSA) on Titanium Dental Implants. Polymers (Basel) 2020; 12:E773. [PMID: 32244655 PMCID: PMC7240528 DOI: 10.3390/polym12040773] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
Infections related to dental implants are a common complication that can ultimately lead to implant failure, and thereby carries significant health and economic costs. In order to ward off these infections, this paper explores the immobilization of triethoxysilylpropyl succinic anhydride (TESPSA, TSP) silane onto dental implants, and the interaction of two distinct monospecies biofilms and an oral plaque with the coated titanium samples. To this end, titanium disks from prior machining were first activated by a NaOH treatment and further functionalized with TESPSA silane. A porous sodium titanate surface was observed by scanning electron microscopy and X-ray photoelectron spectroscopy analyses confirmed the presence of TESPSA on the titanium samples (8.4% for Ti-N-TSP). Furthermore, a lactate dehydrogenase assay concluded that TESPSA did not have a negative effect on the viability of human fibroblasts. Importantly, the in vitro effect of modified surfaces against Streptococcus sanguinis, Lactobacillus salivarius and oral plaque were studied using a viable bacterial adhesion assay. A significant reduction was achieved in all cases but, as expected, with different effectiveness against simple mono-species biofilm (ratio dead/live of 0.4) and complete oral biofilm (ratio dead/live of 0.6). Nevertheless, this approach holds a great potential to provide dental implants with antimicrobial properties.
Collapse
Affiliation(s)
- Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain; (J.B.-P.); (M.M.); (M.P.)
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Maria Godoy-Gallardo
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), C. Josep Trueta s/n, 08195 Sant Cugat del Vallès, Spain;
- Basic Science Department, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya (UIC), C. Josep Trueta s/n, 08195 Sant Cugat del Vallès, Spain
| | - Meritxell Molmeneu
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain; (J.B.-P.); (M.M.); (M.P.)
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain; (J.B.-P.); (M.M.); (M.P.)
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
- UPC Innovation and Technology Center (CIT-UPC), Technical University of Catalonia (UPC), C. Jordi Girona 3-1, 08034 Barcelona, Spain
| | - Francisco Javier Gil
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), C. Josep Trueta s/n, 08195 Sant Cugat del Vallès, Spain;
- School of Dentistry, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya (UIC), C. Josep Trueta s/n, 08195 Sant Cugat del Vallès, Spain
| |
Collapse
|
33
|
Stadnyk I, Sabadosh G, Hushtan T, Yevchuk Y. Formation of microbial biofilms on stainless steel with different surface roughness. POTRAVINARSTVO 2019. [DOI: 10.5219/1190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The physical essence of the formation and influence of bacteria on the surface of technological equipment in the dairy industry is considered as an essential factor leading to contamination of dairy products and is a major hygienic problem. The ability of microorganisms on the surfaces of technological equipment to form biofilm forms and requirements for steel grade, relief, and its roughness were analysed. The effect of surface roughness on promoting or preventing adhesion and reproduction of biofilm forms of bacteria, which reduce the efficiency of sanitary processing of dairy equipment and thereby increase the microbial contamination of dairy products with shortened shelf life, is substantiated. Research about the process of bacterial adhesion to the surface of metals with different roughness depending on the size and shape is presented. It is found that on the surface of stainless steel with roughness 2.687 ±0.014 micron film formation process in Escherichia coli and Staphylococcus aureus are similar from 3 to 24 hours and does not depend on the size of the bacteria, and accordingly allows us to argue that rod-shaped and coccid bacteria attach freely in the hollows of the roughness are the beginning of the process of the first stage of biofilm formation. It is found that on the surface of stainless steel with roughness 0.95 ±0.092 micron film formation process in S. aureus is more intense than in E. coli. Thus, within 3 hours of incubation, the density of biofilms formed S. aureus was 1.2 times bigger than biofilms E. coli, by the next 15 hours of incubation formed biofilms S. aureus were, on average, 1.3 times denser. It is established that S. aureus due to its spherical shape is able to fit in the hollows of the roughness 0.95 ±0.092 μm and faster to adhere to the surface at the same time. E. coli, due to its rod-like shape, with such surface roughness, can adhere to the cavities only over its entire length. It is proved that by surface roughness 0.63 ±0.087 μm film intensity S. aureus was, on average, 1.4 times faster than E. coli, for roughness 0.16 ±0.018 micron film formation process took place equally for S. aureus and E. coli, but biofilms were lower in density than those formed on roughness 0.63 ±0.087 micron. Studies suggest that the use of equipment in the dairy industry with a roughness of less than 0.5 microns will reduce the attachment of microorganisms to the surface and reduce the contamination of dairy products.
Collapse
|
34
|
Gvetadze RS, Dmitrieva NA, Voronin AN. [Adhesion of microorganisms to various dental materials used to form a gum contour in implant-retained restorations]. STOMATOLOGII︠A︡ 2019; 98:118-123. [PMID: 31701941 DOI: 10.17116/stomat201998051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article the literature review on dental materials for the manufacture of gum formers used in dental implantology. Adhesion of microorganisms to titanium, PMMA and PEEK resins is discussed. According to published studies PEEK polymer is characterized by a similar bacterial contamination compared to titanium but shows lower degree of contamination when compared to acrylic resins in equal conditions.
Collapse
Affiliation(s)
- R Sh Gvetadze
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - N A Dmitrieva
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - A N Voronin
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
35
|
Abstract
Food and beverage industries operate their production units under stringent hygiene standards to verify high-quality products. However, the presence of biofilms can cause hygienic problems in the industries in the case of pathogenic organisms. Microorganisms can form biofilms, which are resistant to cleaning and disinfection. Microorganisms in biofilms are closely packed in a matrix that acts as a barrier to cleaning and disinfection. Biofilms are observed in processing equipment and open surfaces, resulting in food safety problems or weakening of production efficiency. This review provides a recap of the biofouling process, including the production mechanisms and control techniques of microbial adhesion. Microbial adhesion and colonization are the sine qua non of the establishment of bacterial pathogenesis and this report focuses on their prevention.
Collapse
|
36
|
Riau AK, Aung TT, Setiawan M, Yang L, Yam GHF, Beuerman RW, Venkatraman SS, Mehta JS. Surface Immobilization of Nano-Silver on Polymeric Medical Devices to Prevent Bacterial Biofilm Formation. Pathogens 2019; 8:E93. [PMID: 31261752 PMCID: PMC6789847 DOI: 10.3390/pathogens8030093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023] Open
Abstract
: Bacterial biofilm on medical devices is difficult to eradicate. Many have capitalized the anti-infective capability of silver ions (Ag+) by incorporating nano-silver (nAg) in a biodegradable coating, which is then laid on polymeric medical devices. However, such coating can be subjected to premature dissolution, particularly in harsh diseased tissue microenvironment, leading to rapid nAg clearance. It stands to reason that impregnating nAg directly onto the device, at the surface, is a more ideal solution. We tested this concept for a corneal prosthesis by immobilizing nAg and nano-hydroxyapatite (nHAp) on poly(methyl methacrylate), and tested its biocompatibility with human stromal cells and antimicrobial performance against biofilm-forming pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Three different dual-functionalized substrates-high Ag (referred to as 75:25 HAp:Ag); intermediate Ag (95:5 HAp:Ag); and low Ag (99:1 HAp:Ag) were studied. The 75:25 HAp:Ag was effective in inhibiting biofilm formation, but was cytotoxic. The 95:5 HAp:Ag showed the best selectivity among the three substrates; it prevented biofilm formation of both pathogens and had excellent biocompatibility. The coating was also effective in eliminating non-adherent bacteria in the culture media. However, a 28-day incubation in artificial tear fluid revealed a ~40% reduction in Ag+ release, compared to freshly-coated substrates. The reduction affected the inhibition of S. aureus growth, but not the P. aeruginosa. Our findings suggest that Ag+ released from surface-immobilized nAg diminishes over time and becomes less effective in suppressing biofilm formation of Gram-positive bacteria, such as S. aureus. This advocates the coating, more as a protection against perioperative and early postoperative infections, and less as a long-term preventive solution.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Thet T Aung
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
| | - Melina Setiawan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gary H F Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences ACP, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences ACP, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- SRP Neuroscience and Emerging Infectious Disease, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | - Subbu S Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
- Ophthalmology and Visual Sciences ACP, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- Corneal and External Eye Disease Service, Singapore National Eye Centre, Singapore 168751, Singapore.
| |
Collapse
|
37
|
Rahmati M, Mozafari M. A critical review on the cellular and molecular interactions at the interface of zirconia-based biomaterials. CERAMICS INTERNATIONAL 2018; 44:16137-16149. [DOI: 10.1016/j.ceramint.2018.06.196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
38
|
Liu Y, Zhang L, Niu LN, Yu T, Xu HH, Weir MD, Oates TW, Tay FR, Chen JH. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J Dent 2018. [DOI: 10.1016/j.jdent.2018.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
39
|
Picosecond laser treatment production of hierarchical structured stainless steel to reduce bacterial fouling. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Gillet G, Azemar F, Faÿ F, Réhel K, Linossier I. Non-Leachable Hydrophilic Additives for Amphiphilic Coatings. Polymers (Basel) 2018; 10:E445. [PMID: 30966480 PMCID: PMC6415241 DOI: 10.3390/polym10040445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/16/2022] Open
Abstract
Amphiphilic surfaces are particularly effective at inhibiting the adhesion of microorganisms (bacteria, cells, microalgae, etc.) in liquid media. The aim of this study is to determine the best hydrophilic linker to promote bonding between poly(ethylene glycol) (PEG) as a hydrophilic additive and poly(dimethyl siloxane) (PDMS) as the hydrophobic matrix. Various parameters have been studied (molecular weight, linker type, and polymer end-group), as well as the efficiency of the linking, the capacity of PEG to access to the surface of the film, and overall film homogeneity. According to the results, a PDMS linker paired with a PEG moiety allows for compatibilization of the compounds during cross-linking. This compatibilization seems to provide a good bonding with the matrix and a good surface access to the hydrophilic moiety. Therefore, this structure comprising a linking function attached to the PDMS⁻PEG copolymer has high potential as a non-releasable additive for amphiphilic coating applications.
Collapse
Affiliation(s)
- Guillaume Gillet
- University of Southern Brittany, EA 3884, Laboratoire de Biotechnologie et Chimie Marines (LBCM), Institut Universitaire Européen de la Mer IUEM, F-56100 Lorient, France.
| | - Fabrice Azemar
- University of Southern Brittany, EA 3884, Laboratoire de Biotechnologie et Chimie Marines (LBCM), Institut Universitaire Européen de la Mer IUEM, F-56100 Lorient, France.
| | - Fabienne Faÿ
- University of Southern Brittany, EA 3884, Laboratoire de Biotechnologie et Chimie Marines (LBCM), Institut Universitaire Européen de la Mer IUEM, F-56100 Lorient, France.
| | - Karine Réhel
- University of Southern Brittany, EA 3884, Laboratoire de Biotechnologie et Chimie Marines (LBCM), Institut Universitaire Européen de la Mer IUEM, F-56100 Lorient, France.
| | - Isabelle Linossier
- University of Southern Brittany, EA 3884, Laboratoire de Biotechnologie et Chimie Marines (LBCM), Institut Universitaire Européen de la Mer IUEM, F-56100 Lorient, France.
| |
Collapse
|
41
|
A sterilization method for decellularized xenogeneic cardiovascular scaffolds. Acta Biomater 2018; 67:282-294. [PMID: 29183849 DOI: 10.1016/j.actbio.2017.11.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Decellularized xenogeneic scaffolds have shown promise to be employed as compatible and functional cardiovascular biomaterials. However, one of the main barriers to their clinical exploitation is the lack of appropriate sterilization procedures. This study investigated the efficiency of a two-step sterilization method, antibiotics/antimycotic (AA) cocktail and peracetic acid (PAA), on porcine and bovine decellularized pericardium. In order to assess the efficiency of the method, a sterilization assessment protocol was specifically designed, comprising: i) controlled contamination with a known amount of bacteria; ii) sterility test; iii) identification of contaminants through MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry and iv) quantification by the Most Probable Number (MPN) method. This sterilization assessment protocol proved to be a successful tool to monitor and optimize the proposed sterilization method. The treatment with AA + PAA method provided sterile scaffolds while preserving the structural integrity and biocompatibility of the decellularized porcine and bovine tissues. However, surface properties and cellular adhesion resulted slightly impaired on porcine pericardium. This work developed a sterilization method suitable for decellularized pericardial scaffolds that could be adopted for in vivo tissue engineering. Together with the proposed sterilization assessment protocol, this decontamination method will foster the clinical translation of decellularized xenogeneic substitutes. STATEMENT OF SIGNIFICANCE Clinical application of functional and compatible xenogeneic decellularized scaffolds has been delayed due to the lack of appropriate sterilization methodologies. In this study, it was investigated an effective sterilization method optimized for porcine and bovine decellularized pericardia, based on the use of antibiotics/antimycotics followed by peracetic acid treatment. This treatment effectively sterilizes both species scaffolds, proves to maintain tissue overall structure and components, preserves biocompatibility and biomechanical properties. Furthermore, it was also developed a sterilization assessment protocol used to monitor and validate the previous method, consisting in three main parts: i) controlled contamination; ii) sterility test, and iii) identification and quantification of contaminants. Both methodologies were optimized for the tissues in study but can be applied to other scaffolds and accelerate their clinical translation.
Collapse
|