1
|
Verma M, Rawat N, Rani R, Singh M, Choudhary A, Abbasi S, Kumar M, Kumar S, Tanwar A, Misir BR, Khanna S, Agrawal A, Faruq M, Rai S, Tripathi R, Kumar A, Pujani M, Bhojani M, Pandey AK, Nesari T, Prasher B. Adhatoda vasica and Tinospora cordifolia extracts ameliorate clinical and molecular markers in mild COVID-19 patients: a randomized open-label three-armed study. Eur J Med Res 2023; 28:556. [PMID: 38049897 PMCID: PMC10696694 DOI: 10.1186/s40001-023-01507-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/04/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND SARS-CoV-2 infections caused mild-to-moderate illness. However, a sizable portion of infected people experience a rapid progression of hyper-inflammatory and hypoxic respiratory illness that necessitates an effective and safer remedy to combat COVID-19. METHODS A total of 150 COVID-19-positive patients with no to mild symptoms, between the age groups 19-65 years were enrolled in this randomized, open-labeled three-armed clinical trial. Among them, 136 patients completed the study with RT-PCR negative reports. The patients received herbal drugs orally (Group A (Adhatoda vasica; AV; 500 mg; n = 50); Group B (Tinospora cordifolia; TC; 500 mg; n = 43), and Group C (AV + TC; 250 mg each; n = 43)) for 14 days. Clinical symptoms, vital parameters, and viral clearance were taken as primary outcomes, and biochemical, hematological parameters, cytokines, and biomarkers were evaluated at three time points as secondary outcomes. RESULTS We found that the mean viral clearance time was 13.92 days (95% confidence interval [CI] 12.85-14.99) in Group A, 13.44 days (95% confidence interval [CI] 12.14-14.74) in Group B, and 11.86 days (95% confidence interval [CI] 10.62-13.11) days in Group C. Over a period of 14 days, the mean temperature in Groups A, and B significantly decreased linearly. In Group A, during the trial period, eosinophils, and PT/INR increased significantly, while monocytes, SGOT, globulin, serum ferritin, and HIF-1α, a marker of hypoxia reduced significantly. On the other hand, in Group B hsCRP decreased at mid-treatment. Eosinophil levels increased in Group C during the treatment, while MCP-3 levels were significantly reduced. CONCLUSIONS All the patients of the three-armed interventions recovered from COVID-19 and none of them reported any adverse effects from the drugs. Group C patients (AV + TC) resulted in a quicker viral clearance as compared to the other two groups. We provide the first clinical report of AV herbal extract acting as a modifier of HIF-1α in COVID-19 patients along with a reduction in levels of ferritin, VEGF, and PT/INR as the markers of hypoxia, inflammation, and thrombosis highlighting the potential use in progression stages, whereas the TC group showed immunomodulatory effects. Trial registration Clinical Trials Database -India (ICMR-NIMS), CTRI/2020/09/028043. Registered 24th September 2020, https://www.ctri.nic.in/Clinicaltrials/pdf_generate.php?trialid=47443&EncHid=&modid=&compid=%27,%2747443det%27.
Collapse
Grants
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
- GAP-0183 Ministry of AYUSH, Government of India
Collapse
Affiliation(s)
- Mukta Verma
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- All India Institute of Ayurveda, New Delhi, India
| | - Neha Rawat
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- All India Institute of Ayurveda, New Delhi, India
| | - Ritu Rani
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Manju Singh
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Aditi Choudhary
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Sarfaraz Abbasi
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Manish Kumar
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Sachin Kumar
- ESIC Medical College and Hospital, Faridabad, Haryana, India
| | - Ankur Tanwar
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- All India Institute of Ayurveda, New Delhi, India
| | - Bishnu Raman Misir
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Sangeeta Khanna
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India
| | - Shalini Rai
- All India Institute of Ayurveda, New Delhi, India
| | | | - Anil Kumar
- All India Institute of Ayurveda, New Delhi, India
| | - Mukta Pujani
- ESIC Medical College and Hospital, Faridabad, Haryana, India
| | | | | | | | - Bhavana Prasher
- Centre of Excellence for Applied Development of Ayurveda Prakriti and Genomics, CSIR-Institute of Genomics & Integrative Biology, Delhi, India.
- CSIR-Institute of Genomics & Integrative Biology, Delhi, India.
| |
Collapse
|
2
|
Tiwari P, Ali SA, Puri B, Kumar A, Datusalia AK. Tinospora cordifolia Miers enhances the immune response in mice immunized with JEV-vaccine: A network pharmacology and experimental approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154976. [PMID: 37573808 DOI: 10.1016/j.phymed.2023.154976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Tinospora cordifolia Miers. (TC) (Giloya/Guduchi) is a native Indian herb, reported for its wide array of medicinal activities including immunomodulatory activity. However, the exact pharmacological mechanism of TC as an immunomodulatory agent remains unclear. Central to this, to the best of our knowledge, no study has explored the immunoadjuvant potential of TC in response to the Japanese encephalitis (JE) vaccines. PURPOSE The study aims to explore the immunoadjuvant potential of TC ethanolic extract in response to the JE vaccine and illustrates its potential mechanism of immunomodulation using an integrated approach of network pharmacology and in-vivo experimental study. STUDY DESIGN AND METHODS Initially, the extract was prepared and the components of TC were identified through high-resolution liquid chromatography mass spectrometry (HR-LC/MS). The compounds were then screened for network pharmacology analysis. Next, the drug and disease targets were identified and the network was constructed using Cytoscape 3.7.2 to obtain different signalling pathways of TC in JEV. We then evaluated the immunoadjuvant potential of TC ethanolic extract in mice immunized with inactivated JE vaccine (SA-14-14-2 strain). BALB/c mice were supplemented with TC extract (30 and 100 mg/kg, i.g.), daily for 56 days, marked with immunization on 28th day of the study, by JE vaccine. Blood was collected for flow cytometry and haematological analysis (total and differential cell counts). The surface expression of immune-cell markers (CD3+, CD4+, CD19+, CD11c+, CD40+) were evaluated on day 0 (pre-immunization), day 14 and 28 post-immunization. Additionally, inflammatory cytokines (IFN-γ+/IL-17A+) were evaluated post-14 and 28 days of immunization. RESULTS The HR-LC/MS analysis identified the presence of glycosides, terpenoids, steroids and alkaloids in the TC extract. Through network analysis, 09 components and 166 targets were obtained, including pathways that involve toll-like receptor signalling, pattern-recognition receptor signalling, cytokine receptor and cytokine mediated signalling, etc. The in-vivo results showed that preconditioning with TC ethanolic extract significantly elevated the haematological variables (leucocyte count) as well as the surface expression of CD markers (B and T cell subsets) on day 0 (pre-immunization), day 14 and 28 post-immunization. Furthermore, preconditioning of TC demonstrated a dose-dependant augmentation of immune cells (CD3+, CD4+, CD19+, CD11c+) and inflammatory cytokines (IFN-γ+/IL-17A+) on day 14 and 28 post-immunization when compared to vaccine alone group. CONCLUSION Results showed that preconditioning with TC extract before immunization might play a potential role in enhancing the cell-mediated as well as humoral immunity. Altogether, the combinatorial approach of network pharmacology and in-vivo animal experimentation demonstrated the immunoadjuvant potential of TC in response to JEV vaccine.
Collapse
Affiliation(s)
- Priyanka Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India
| | - Bhupendra Puri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER)-Raebareli, Lucknow 226002, India.
| |
Collapse
|
3
|
Rawat K, Syeda S, Shrivastava A. A novel role of Tinospora cordifolia in amelioration of cancer-induced systemic deterioration by taming neutrophil infiltration and hyperactivation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154488. [PMID: 36240606 DOI: 10.1016/j.phymed.2022.154488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer has emerged as a systemic disease which targets various organs thus challenging the overall physiology of the host. Recently, we have shown that hyperactive neutrophils infiltrate various organs of tumor bearing host and contribute to gradual systemic deterioration. Therefore, taming neutrophils via potent immunomodulators could be an appropriate therapeutic approach in regulating systemic damage. Tinospora cordifolia (TC), an Ayurvedic panacea, is known for its immense medicinal values in traditional literature and recent reports have also documented its immunomodulatory potential. However, whether TC can regulate neutrophils to exert its therapeutic effectiveness has not been deciphered so far. METHODS For the in vivo study, we utilized murine model of Dalton's Lymphoma (DL). T. cordifolia extract (TCE) treatment was scheduled at early, mid and advanced stages of tumor growth at a dose of 400 mg/kg b.w for 30 consecutive days. Effect of TCE on neutrophil infiltration was examined by immunostaining. Neutrophil elastase (NE) level in serum, ascitic fluid and various tissues was monitored by ELISA. Further, qPCR was performed to assess transcripts levels of NE, myeloperoxidase (MPO), metalloproteinases (MMP-8, MMP-9) and cathepsin G (CSTG) in various tissues. ROS level in tissue was assessed by DHE staining and organ function was assessed by histology post TCE treatment. RESULTS Our findings showed that TC treatment significantly reduced neutrophil count in peripheral blood and their infiltration in vital organs of tumor-bearing host. Further, it ameliorated neutrophil hyperactivation by down regulating the expression of its key cargoes including NE, MPO, MMP-8, MMP-9 and CSTG at early and mid stage of tumor growth. In addition, TC treatment prevented histopathological alterations and restored the normal serum enzyme levels at different stages of tumor growth. Importantly, TC treatment also showed significant reduction in tumor burden which was accompanied by a remarkable increase in survival of the tumor-bearing mice. CONCLUSIONS We conclude that T. cordifolia could limit systemic damage via regulating neutrophil infiltration and hyperactivation which can further lead to cancer control at both prophylactic and therapeutic level.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
4
|
Arora S, Goyal A, Rawat DS, Samantha K. Giloy: a potential anti-COVID-19 herb with propitious pharmacological attributes: a short review. J Biomol Struct Dyn 2022:1-8. [PMID: 35950530 DOI: 10.1080/07391102.2022.2110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plant-based medicine actually restores the balance in the body instead of treating the source of the disease. The strain of coronavirus (SAR-CoV-2) going to be more serious due to the lack of a reliable treatment option. Holistic treatment for this disease is in the form of Ayurveda as traditional medicine. As the infection of coronavirus is spreading like a wildfire, so the one way to fight is 'immunity'. Building immunity is the only way to stay safe and healthy and prepared themselves for the ongoing pandemic. In the current scenario, good immunity safeguard us from disease progression and prevention from this deadly virus. Giloy herb came into the limelight after the start of the COVID-19 pandemic due to its immunomodulatory and antiviral activity. The genome sequencing of Giloy is proved to be a breakthrough for controlling the COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shefali Arora
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Anjali Goyal
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Devendra Singh Rawat
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Krishna Samantha
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
5
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
6
|
Arunachalam K, Yang X, San TT. Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114540. [PMID: 34509604 DOI: 10.1016/j.jep.2021.114540] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (Willd.) Miers (Menispermaceae) is a Mediterranean herb, used in Ayurvedic, Siddha, Unani, and folk medicines. The herb is also used in conventional medicine to treat oxidative stress-related diseases and conditions, including inflammation, pain, diarrhea, asthma, respiratory infections, cancer, diabetes, and gastrointestinal disorders. AIM OF THE REVIEW The taxonomy, botanical classification, geographical distribution, and ethnobotanical uses of T. cordifolia, as well as the phytochemical compounds found in the herb, the toxicology of and pharmacological and clinical studies on the effects of T. cordifolia are all covered in this study. MATERIALS AND METHODS To gather information on T. cordifolia, we used a variety of scientific databases, including Scopus, Google Scholar, PubMed, and Science Direct. The information discussed focuses on biologically active compounds found in T. cordifolia, and common applications and pharmacological activity of the herb, as well as toxicological and clinical studies on its properties. RESULTS The findings of this study reveal a connection between the use of T. cordifolia in conventional medicine and its antioxidant, anti-inflammatory, antihypertensive, antidiabetic, anticancer, immunomodulatory, and other biological effects. The entire plant, stem, leaves, root, and extracts of T. cordifolia have been shown to have a variety of biological activities, including antioxidant, antimicrobial, antiviral, antiparasitic, antidiabetic, anticancer, anti-inflammatory, analgesic and antipyretic, hepatoprotective, and cardioprotective impact. Toxicological testing demonstrated that this plant may have medicinal applications. T. cordifolia contains a variety of biologically active compounds from various chemical classes, including alkaloids, terpenoids, sitosterols, flavonoids, and phenolic acids. Based on the reports researched for this review, we believe that chemicals in T. cordifolia may activate Nrf2, which leads to the overexpression of antioxidant enzymes such as CAT, GPx, GST, and GR, and thereby induces the adaptive response to oxidative stress. T. cordifolia is also able to reduce NF-κB signalling by inhibiting PI3K/Akt, activating AMPK and sirtuins, and downregulating PI3K/Akt. CONCLUSIONS Our findings indicate that the pharmacological properties displayed by T. cordifolia back up its conventional uses. Antimicrobial, antiviral, antioxidant, anticancer, anti-inflammatory, antimutagenic, antidiabetic, nephroprotective, gastroprotective, hepatoprotective, and cardioprotective activities were all demonstrated in T. cordifolia stem extracts. To validate pharmacodynamic targets, further research is needed to evaluate the molecular mechanisms of the known compounds against gastrointestinal diseases, inflammatory processes, and microbial infections, as immunostimulants, and in chemotherapy. The T. cordifolia safety profile was confirmed in a toxicological analysis, which prompted pharmacokinetic assessment testing to confirm its bioavailability.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Thae Thae San
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| |
Collapse
|
7
|
Zahiruddin S, Parveen A, Khan W, Ibrahim M, Want MY, Parveen R, Ahmad S. Metabolomic Profiling and Immunomodulatory Activity of a Polyherbal Combination in Cyclophosphamide-Induced Immunosuppressed Mice. Front Pharmacol 2022; 12:647244. [PMID: 35046795 PMCID: PMC8762268 DOI: 10.3389/fphar.2021.647244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
The study was aimed to develop a characterized polyherbal combination as an immunomodulator containing Phyllanthus emblica L., Piper nigrum L., Withania somnifera (L.) Dunal, and Tinospora cordifolia (Willd.) Miers. Through response surface methodology (RSM), the ratio of aqueous extracts of four plant materials was optimized and comprised 49.76% of P. emblica, 1.35% of P. nigrum, 5.41% of W. somnifera, and 43.43% of T. cordifolia for optimum immunomodulatory activity. The optimized combination showed antioxidant potential and contains more than 180 metabolites, out of which gallic acid, quercetin, ellagic acid, caffeic acid, kaempferitrin, and p-coumaric acid are some common and significant metabolites found in plant extracts and in polyherbal combination. Treatment with the polyherbal combination of different doses in cyclophosphamide-induced immunosuppressed mice significantly (p < 0.01) enhanced the subsets of immune cells such as natural killer (NK) cells (60%), B cells (18%), CD4 cells (14%), and CD8 cells (7%). The characterized polyherbal combination exhibited potent immunomodulatory activity, which can be further explored clinically for its therapeutic applicability.
Collapse
Affiliation(s)
- Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abida Parveen
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Department of Clinical Research, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, India
| | - Washim Khan
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Mohammad Ibrahim
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Muzamil Y Want
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Rabea Parveen
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Malve H, More D, More A. Effects of two formulations containing Phyllanthus emblica and Tinospora cordifolia with and without Ocimum sanctum in immunocompromised mice. J Ayurveda Integr Med 2021; 12:682-688. [PMID: 34799208 PMCID: PMC8642715 DOI: 10.1016/j.jaim.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 06/26/2021] [Indexed: 11/06/2022] Open
Abstract
Background Current pandemic has led us to explore the role of traditional system of medicine to look for formulations that enhance immunity. Objective The obejctive of this experimental study was to evaluate the immunomodulatory effects of two formulations, Tinospora cordifolia (Tc) and Phyllanthus emblica (Pe) with and without coating of Ocimum sanctum (Os). Materials and methods After obtaining Institutional Animal Ethics Committee approval, present experimental study was conducted to evaluate the immunomodulatory effects of plant drug formulations against infection induced in mice subjected to major surgical stress. Hemisplenectomy was selected to induce major stress and the procedure for hemisplenectomy was standardized. A model of secondary fungal infection after hemisplenectomy was established followed by the treatment of mice with plant drugs and controls. They were subjected to hemisplenectomy or sham operation and 105 C. albicans were injected intravenously. The therapy continued for next 14 days. Kidneys were isolated to estimate fungal load. Fungal load of the kidneys was estimated on post-operative Day 15. Results The test formulations Tc + Pe and Tc + Pe + Os showed significant reduction in the fungal burden of kidneys as compared to hemisplenectomized control group. However, Tc alone exerted better degree of protection as compared to Tc + Pe and Tc + Pe + Os. Conclusion The formulations, Tc + Pe and Tc + Pe + Os that were developed on the basis of theoretical concepts were not found to be superior to Tc. Though the individual ingredients have been shown to possess immunnostimulant activities, in combination, Pe and Os blunted the effects of Tc. The basis for this drug interaction needs further exploration. Thus, the current experimental study validates immunomodulatory role of Tc. However, the addition of Pe with bhavana of Os does not lead to any augmentation of immunomodulatory activity of Tc. This study also underlines the need to generate data on Ayurveda formulations to understand the rationality of the multi-ingredient Ayurvedic formulations.
Collapse
Affiliation(s)
- Harshad Malve
- Department of Pharmacology, Vedanta Institute of Medical Sciences, Dahanu, India.
| | - Dipti More
- Department of Pediatrics, Lokmanya Tilak Municipal General Hospital and Medical College, Sion, Mumbai, India
| | - Ashwini More
- Department of Medicine, Vedanta Institute of Medical Sciences, Dahanu, India
| |
Collapse
|
9
|
Singh B, Nathawat S, Sharma RA. Ethnopharmacological and phytochemical attributes of Indian Tinospora species: A comprehensive review. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
10
|
Alam MA, Gani MA, Shama G, Sofi G, Quamri MA. Possible role of Unani Pharmacology in COVID-19 - a narrative review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:391-396. [PMID: 33155997 DOI: 10.1515/reveh-2020-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
According to the World Health Organization (WHO), viral diseases continue to rise, and pose a significant public health problem. Novel coronavirus disease (COVID-19) is an infectious disease caused by SARS-CoV-2. The pathogenesis and clinical manifestations of COVID-19 is close to Amraz-e-Wabai (epidemic diseases) which was described by Hippocrates, Galen, Aristotle, Razes, Haly Abbas, Avicenna, Jurjani etc. Presently, there is no specific or challenging treatment available for COVID-19. Renowned Unani Scholars recommended during epidemic situation to stay at home, and fumigate the shelters with aromatics herbs like Ood kham (Aquilaria agallocha Roxb.), Kundur (Boswellia serrata Roxb), Kafoor (Cinnamomum camphora L.), Sandal (Santalum album L), Hing (Ferula foetida L.) etc. Use of specific Unani formulations are claimed effective for the management of such epidemic or pandemic situation like antidotes (Tiryaqe Wabai, Tiryaqe Arba, Tiryaqe Azam, Gile Armani), Herbal Decoction (Joshandah), along with Sharbate Khaksi, Habbe Bukhar, Sharbate Zanjabeel, Khamira Marwareed, Jawarish Jalinus, and Sirka (vinegar). Such drugs are claimed for use as antioxidant, immunomodulatory, cardiotonic, and general tonic actions. The study enumerates the literature regarding management of epidemics in Unani medicine and attempts to look the same in the perspective of COVID-19 prevention and management.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Medicine, National Institute of Unani Medicine, Bangalore, India
| | - Mohd Abdul Gani
- Department of Pharmacology, National Institute of Unani Medicine, Bangalore, India
| | - G Shama
- Department of Preventive and Social Medicine, Government Unani Medical College, Bangalore, India
| | - Ghulamuddin Sofi
- Department of Pharmacology, National Institute of Unani Medicine, Bangalore, India
| | | |
Collapse
|
11
|
Herbal plants as immunity modulators against COVID-19: A primary preventive measure during home quarantine. J Herb Med 2021; 32:100501. [PMID: 34377631 PMCID: PMC8340568 DOI: 10.1016/j.hermed.2021.100501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
The novel coronavirus or severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a deadly virus which has spread globally and claimed millions of lives. This novel virus transmits mainly through droplets and close human contact. It’s impact in different countries varies depending on geographical location, climatic conditions, food habits, and cultural activities. Several precautionary measures, as well as many medicines, are applied in different combinations to limit the spread of infection. This results in a preliminary relief of people infected in the first stage of infection. An alternative approach has been introduced which proposes natural herbs, which have minimal or no side effects, and improve overall immunity. Some essential herbs with their immunomodulatory effects are mentioned in this article along with suggestions for improved immunity and protection.
Collapse
|
12
|
Pandey M, Kajaria D, Sharma C, Kadam S. Ayurvedic management of pregnant woman infected with coronavirus disease 2019 ((SARS-CoV-2) - A Case Report. J Ayurveda Integr Med 2021; 13:100423. [PMID: 34149234 PMCID: PMC8205256 DOI: 10.1016/j.jaim.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
Since 2020, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally and is the most threatening health crisis of our time. In this scenario, pregnant women represent a frail category of patients, as they are systematically excluded from trials and thus, a candidate for focused evidence-based care. The Ayurvedic management of second trimester pregnant woman having diagnosed with COVID-19 is reported in this paper. The serologically confirmed COVID–19 pregnant woman was symptomatic and was managed in a tertiary COVID health centre of Ayurveda. The patient became asymptomatic on the 5th day of treatment and on the 7th day, nasopharyngeal swab sample was taken for RT-PCR, which was negative. The patient was followed up to assess the obstetric and neonatal outcomes. The findings of this case report can be useful for understanding the possible clinical pathology of COVID-19 infection in pregnant woman and the holistic care protocol for the management of similar cases.
Collapse
Affiliation(s)
- Meenakshi Pandey
- Dept. of Prasuti Tantra & Stri Roga All India Institute of Ayurveda
| | - Divya Kajaria
- Dept. of Kayachikitsa, All India Institute of Ayurveda
| | - Charu Sharma
- Dept. of Prasuti Tantra & Stri Roga All India Institute of Ayurveda
| | - Sujata Kadam
- Dept. of Prasuti Tantra & Stri Roga All India Institute of Ayurveda
| |
Collapse
|
13
|
Allemailem KS. Antimicrobial Potential of Naturally Occurring Bioactive Secondary Metabolites. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:155-162. [PMID: 34349474 PMCID: PMC8291113 DOI: 10.4103/jpbs.jpbs_753_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 11/04/2022] Open
Abstract
The use of traditional medicines of natural origin has been prevalent since ancient times globally as the plants produce a great diversity in their secondary metabolites. The naturally occurring bioactive constituents in food and other plant materials have shown widespread attention for their use as alternative medicine to prevent and cure microbial growth with the least toxic manifestations. The inclusion of these contents revealed their crucial role to improve the therapeutic efficacy of the classical drugs against various pathogenic microorganisms. Furthermore, several metabolites have also been explored in combination with antimicrobial agents to overcome the problems associated with drug resistance. This current review discusses the antimicrobial activities of secondary metabolites as well as their role in drug sensitivity against multiple-drug resistant pathogenic microbes.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
14
|
Computationally approached inhibition potential of Tinospora cordifolia towards COVID-19 targets. Virusdisease 2021; 32:65-77. [PMID: 33778129 PMCID: PMC7980128 DOI: 10.1007/s13337-021-00666-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
The recent emergence of novel coronavirus (SARS-CoV-2) has been a major threat to human society, as the challenge of finding suitable drug or vaccine is not met till date. With increasing morbidity and mortality, the need for novel drug candidates is under great demand. The investigations are progressing towards COVID-19 therapeutics. Among the various strategies employed, the use of repurposed drugs is competing along with novel drug inventions. Based on the therapeutic significance, the chemical constituents from the extract of Tinospora cordifolia belonging to various classes like alkaloids, lignans, steroids and terpenoids are investigated as potential drug candidates for COVID-19. The inhibition potential of the proposed compounds against viral spike protein and human receptor ACE2 were evaluated by computational molecular modeling (Auto dock), along with their ADME/T properties. Prior to docking, the initial geometry of the compounds were optimized by Density functional theory (DFT) method employing B3LYP hybrid functional and 6-311 + + G (d,p) basis set. The results of molecular docking and ADME/T studies have revealed 6 constituents as potential drug candidates that can inhibit the binding of SARS-CoV-2 spike protein with the human receptor ACE2 protein. The narrowed down list of constituents from Tinospora cordifolia paved way for further tuning their ability to inhibit COVID-19 by modifying the chemical structures and by employing computational geometry optimization and docking methods. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00666-7.
Collapse
|
15
|
Ahmad S, Zahiruddin S, Parveen B, Basist P, Parveen A, Gaurav, Parveen R, Ahmad M. Indian Medicinal Plants and Formulations and Their Potential Against COVID-19-Preclinical and Clinical Research. Front Pharmacol 2021; 11:578970. [PMID: 33737875 PMCID: PMC7962606 DOI: 10.3389/fphar.2020.578970] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The cases of COVID-19 are still increasing day-by-day worldwide, even after a year of its first occurrence in Wuhan city of China. The spreading of SARS-CoV-2 infection is very fast and different from other SARS-CoV infections possibly due to structural differences in S proteins. The patients with severe diseases may die due to acute respiratory distress syndrome (ARDS) caused by systemic inflammatory reactions due to the excessive release of pro-inflammatory cytokines and chemokines by the immune effector cells. In India too, it is spreading very rapidly, although the case fatality rate is below 1.50% (https://www.statista.com), which is markedly less than in other countries, despite the dense population and minimal health infrastructure in rural areas. This may be due to the routine use of many immunomodulator medicinal plants and traditional AYUSH formulations by the Indian people. This communication reviews the AYUSH recommended formulations and their ingredients, routinely used medicinal plants and formulations by Indian population as well as other promising Indian medicinal plants, which can be tested against COVID-19. Special emphasis is placed on Indian medicinal plants reported for antiviral, immunomodulatory and anti-allergic/anti-inflammatory activities and they are categorized for prioritization in research on the basis of earlier reports. The traditional AYUSH medicines currently under clinical trials against COVID-19 are also discussed as well as furtherance of pre-clinical and clinical testing of the potential traditional medicines against COVID-19 and SARS-CoV-2. The results of the clinical studies on AYUSH drugs will guide the policymakers from the AYUSH systems of medicines to maneuver their policies for public health, provide information to the global scientific community and could form a platform for collaborative studies at national and global levels. It is thereby suggested that promising AYUSH formulations and Indian medicinal plants must be investigated on a priority basis to solve the current crisis.
Collapse
Affiliation(s)
- Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Parakh Basist
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Abida Parveen
- Centre for Translational and Clinical Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Gaurav
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Rabea Parveen
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, India
| | - Minhaj Ahmad
- Department of Surgery, School of Unani Medical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| |
Collapse
|
16
|
Alam MA, Quamri MA, Ayman U, Sofi G, Renuka BN. Understanding Humma-e-Wabai (epidemic fever) and Amraz-e-Wabai (epidemic disease) in the light of Unani medicine. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:469-476. [PMID: 33544515 DOI: 10.1515/jcim-2020-0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/03/2020] [Indexed: 01/05/2023]
Abstract
The pathogenesis and clinical characteristics of Humma-e-Wabai were described several years ago in the Unani System of Medicine close to the clinical manifestation associated with epidemic or pandemic situations. In the Unani System of Medicine, Humma-e-Wabai described under the legend of epidemic disease (Amraz-e-Wabai). Amraz-e-Wabai is an umbrella term which is applied for all types of epidemic or pandemic situation. Renowned Unani Scientists like; Zakariya Rhazi (865-925 AD), Ali Ibn Abbas Majusi (930-994 AD), Ibn Sina (980-1037 AD), Ismail Jorjani (1,042-1,137 AD), Ibn Rushd etc., explained that Humma-e-Waba is an extremely rigorous, lethal fever, that is caused due to morbid air (fasid hawa) and it frequently spreads among the larger population in the society. There are four etiological factors responsible for Amraz-e-Wabai viz; change in the quality of air, water, earth, and celestial bodies, which was described by Ibn Sina in Canon of Medicine. He also advised that movements should be limited during epidemic situations. Shelters should be fumigated with loban (Styrax benzoin W. G. Craib ex Hartwich.), Kafoor (Cinnamomum camphora L.), Oodkham (Aquilaria agallocha Roxb.), Hing (Ferula foetida L.), myrtle (Myrtus communis L.), and sandalwood (Santalum album L.), etc. The use of vinegar (sirka) and rose water (arque gulab) has been advocated to prevent the infection by spray. Avoid consumption of flesh, oil, milk, sweets, alcohol. Food prepared with vinegar. Specific antidotes (e.g. Tiryaq-e-Wabai, Tiryaq-e-Farooque), should be used as prophylaxis. This review attempts to explain the concept, prevention, and management of epidemic or pandemic situations.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Moalajat, National Institute of Unani Medicine, Bangalore, India
| | | | - Umme Ayman
- Department of Regimenal Therapy, National Institute of Unani Medicine, Bangalore, India
| | - Ghulamuddin Sofi
- Department of Ilmul Advia, National Institute of Unani Medicine, Bangalore, India
| | | |
Collapse
|
17
|
Yates CR, Bruno EJ, Yates MED. Tinospora Cordifolia: A review of its immunomodulatory properties. J Diet Suppl 2021; 19:271-285. [PMID: 33480818 DOI: 10.1080/19390211.2021.1873214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Emergent health threats have heightened human awareness of the need for health and wellness measures that promote resilience to disease. In addition to proper nutrition and exercise, health-conscious consumers are seeking natural-based modalities, e.g. botanical preparations, that positively impact the immune system. In Ayurvedic ethnomedicine, Tinospora cordifolia (T. cordifolia), a deciduous climbing shrub indigenous to India, has been used to historically to combat acute and chronic inflammation as well as to promote a balanced immune response. As a dietary supplement, T. cordifolia has been administered most often as a decoction either alone or in compositions containing other medicinal plant extracts of the Terminalia and Phyllanthus species. Extensive phytochemical characterization of aqueous and alcoholic extracts of different Tinospora species has identified over two hundred different phytochemicals from non-overlapping chemical classes with the most abundant being diterpenoids containing the clerodane-type skeleton. Numerous pharmacology studies have demonstrated that T. cordifolia modulates key signaling pathways related to cell proliferation, inflammation, and immunomodulation. However, rigorous dereplication studies to identify active constituents in various T. cordifolia extracts and their fractions are lacking. In this review, we will summarize the current information regarding T. cordifolia's ethnomedicinal uses, phytochemistry, pharmacological activities, and safety in order to highlight its potential as an immunomodulatory dietary supplement.
Collapse
Affiliation(s)
- Charles R Yates
- Center for Nutraceutical and Dietary Supplement Research, School of Health Studies, University of Memphis, Memphis, TN, USA
| | - Eugene J Bruno
- Administration Department, Huntington University of Health Sciences, Knoxville, TN, USA
| | - Mary E D Yates
- Pharmacy Department, Methodist Germantown Hospital, Germantown, TN, USA
| |
Collapse
|
18
|
Ambalavanan R, John AD, Selvaraj AD. Nano-encapsulated Tinospora cordifolia (Willd.) using poly (D, L-lactide) nanoparticles educe effective control in streptozotocin-induced type 2 diabetic rats. IET Nanobiotechnol 2020; 14:803-808. [PMID: 33399111 PMCID: PMC8676304 DOI: 10.1049/iet-nbt.2020.0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 04/05/2024] Open
Abstract
The therapeutics for type 2 diabetes mellitus has emerged in the current century towards nanomedicine incorporated with plant active compounds. In this study, Tinospora cordifolia loaded poly (D, L-lactide) (PLA) nanoparticles (NPs) were evaluated in vivo for their anti-hyperglycemic potency towards streptozotocin-induced type 2 diabetic rats. T. cordifolia loaded PLA NPs were synthesised by the double solvent evaporation method using PLA polymer. The NPs were then characterised and administrated orally for 28 successive days to streptozotocin-induced diabetic rats. The PLA NPs had significant anti-diabetic effects which were equal to the existing anti-diabetic drug glibenclamide. The antidiabetic activity is due to the synergism of compounds present in stem extract of the plant which reduced the side effects and anti-diabetic.
Collapse
Affiliation(s)
- Ragavee Ambalavanan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Arul Daniel John
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Asha Devi Selvaraj
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
19
|
Fatima S, Haider N, Alam MA, Gani MA, Ahmad R. Herbal approach for the management of C0VID-19: an overview. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0150/dmdi-2020-0150.xml. [PMID: 33128525 DOI: 10.1515/dmdi-2020-0150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
COVID-19 is the most recently discovered coronavirus infectious disease and leads to pandemic all over the world. The clinical continuum of COVID-19 varies from mild illness with non-specific signs and symptoms of acute respiratory disease to extreme respiratory pneumonia and septic shock. It can transmit from animal to human in the form of touch, through the air, water, utensils, fomite and feco-oral route blood. The pathogenesis and clinical features of COVID-19 be the same as the clinical manifestation associated epidemic Fever. In Unani medicine, various herbal drugs are described under the caption of epidemic disease. Great Unani scholar also Avicenna (980-1037 AD) recommended that during epidemic condition movement should be restricted, self-isolation, fumigation around the habitant with perfumed herbs (Ood, Kafoor, Sumbuluttib, Saad Kofi, Loban, etc.), and use of appropriate antidotes (Tiryaqe Wabai) and vinegar (Sirka) as prophylaxis. Herbal approach is based on single (Unnab-Ziziphus jujuba, Sapistan-Cordia myxa, Bahidana-Cydonia oblonga, Khatmi-Althea officinalis, Khubazi-Malva sylvestris, Zafran-Crocus sativus, Sibr-Aloe barbedensis, Murmuki-Commiphora myrrha, Darchini-Cinnamomum zeylanicum, Qaranfal-Syzygium aromaticum, Rihan-Oscimum sanctum, Habtus Sauda-Nigella sativa, Aslus Sus-Glycyrrhiza glabra, Maghze Amaltas-Cassia fistula and Adusa-Adhatoda vasica) and compound drugs (Habbe Bukhar, Sharbat Khaksi, Sharbat Zanjabeel, Naqu Nazla, Majoon Chobchini, Jawrish Jalinus and Khamira Marvareed) most of them are claimed for anti-viral, anti-pyretic, blood purifier, cardioprotective and expectorant activities. Traditionally most of the herbal practitioners are using it.
Collapse
Affiliation(s)
- Sana Fatima
- Department of Unani Pharmacy, National Institute of Unani Medicine, Bangalore, India
| | - Nafis Haider
- Department of Basic Medical Sciences, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Md Anzar Alam
- Department of Medicine, National Institute of Unani Medicine, Bangalore, India
| | - Mohd Abdul Gani
- Department of Pharmacology, National Institute of Unani Medicine, Bangalore, India
| | - Rafeeque Ahmad
- The New York School of Medical and Dental Assistants, Long Island City, NY, USA
| |
Collapse
|
20
|
Alam MA, Quamri MA, Sofi G, Ayman U, Ansari S, Ahad M. Understanding COVID-19 in the light of epidemic disease described in Unani medicine. Drug Metab Pers Ther 2020; 35:dmpt-2020-0136. [PMID: 34704695 DOI: 10.1515/dmpt-2020-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 11/15/2022]
Abstract
Unani system of medicine is based on the humoral theory postulated by Hippocrates, according to him the state of body health and disease are regulated by qualitative and quantitative equilibrium of four humours. Amraz-e-Waba is an umbrella term which is used in Unani medicine for all types of epidemics (smallpox, measles, plague, Hameer Saifi, influenza, Nipaha, Ebola, Zika, and 2019 novel coronavirus, etc.) mostly fatal in nature. The coronavirus disease 2019 (COVID-19) is a severe acute respiratory infection, and the pathogenesis and clinical features resemble with those of Nazla-e-Wabaiya (influenza) and Zatul Riya (pneumonia) which were well described many years ago in Unani text such as high-grade fever, headache, nausea and vomiting, running nose, dry cough, respiratory distress, alternate and small pulse, asthenia, foul smell from breath, insomnia, frothy stool, syncope, coldness in both upper and lower extremities, etc. The World Health Organization declared COVID-19 as a global emergency pandemic. Unani scholars like Hippocrates (370-460 BC), Galen (130-200 AD), Rhazes (865-925 AD), and Avicenna (980-1037 AD) had described four etiological factors for Amraz-e-Waba viz., change in quality of air, water, Earth, and celestial bodies, accordingly mentioned various preventive measures to be adopted during epidemics such as restriction of movement, isolation or "quarantena", and fumigation with loban (Styrax benzoin W. G. Craib ex Hartwich.), sandalwood (Santalum album L.), Zafran (Crocus sativus L.), myrtle (Myrtus communis L.), and roses (Rosa damascena Mill.) and use of vinegar (sirka) and antidotes (Tiryaq) as prophylaxis, and avoiding consumption of milk, oil, sweet, meat, and alcohol. This review focuses and elaborates on the concept, prevention, and probable management of COVID-19 in the light of Amraz-e-Waba.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Mohd Aleemuddin Quamri
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Ghulamuddin Sofi
- Department of IlmulAdvia (Pharmacology), National Institute of Unani Medicine, Bangalore, India
| | - Umme Ayman
- Department of Regimenal Therapy, National Institute of Unani Medicine, Bangalore, India
| | - Shabnam Ansari
- Department of Biotechnology, Natural Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Mariyam Ahad
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| |
Collapse
|
21
|
Alam MA, Quamri MA, Sofi G, Ayman U, Ansari S, Ahad M. Understanding COVID-19 in the light of epidemic disease described in Unani medicine. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0136/dmdi-2020-0136.xml. [PMID: 32966232 DOI: 10.1515/dmdi-2020-0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Unani system of medicine is based on the humoral theory postulated by Hippocrates, according to him the state of body health and disease are regulated by qualitative and quantitative equilibrium of four humours. Amraz-e-Waba is an umbrella term which is used in Unani medicine for all types of epidemics (smallpox, measles, plague, Hameer Saifi, influenza, Nipaha, Ebola, Zika, and 2019 novel coronavirus, etc.) mostly fatal in nature. The coronavirus disease 2019 (COVID-19) is a severe acute respiratory infection, and the pathogenesis and clinical features resemble with those of Nazla-e-Wabaiya (influenza) and Zatul Riya (pneumonia) which were well described many years ago in Unani text such as high-grade fever, headache, nausea and vomiting, running nose, dry cough, respiratory distress, alternate and small pulse, asthenia, foul smell from breath, insomnia, frothy stool, syncope, coldness in both upper and lower extremities, etc. The World Health Organization declared COVID-19 as a global emergency pandemic. Unani scholars like Hippocrates (370-460 BC), Galen (130-200 AD), Rhazes (865-925 AD), and Avicenna (980-1037 AD) had described four etiological factors for Amraz-e-Waba viz., change in quality of air, water, Earth, and celestial bodies, accordingly mentioned various preventive measures to be adopted during epidemics such as restriction of movement, isolation or "quarantena", and fumigation with loban (Styrax benzoin W. G. Craib ex Hartwich.), sandalwood (Santalum album L.), Zafran (Crocus sativus L.), myrtle (Myrtus communis L.), and roses (Rosa damascena Mill.) and use of vinegar (sirka) and antidotes (Tiryaq) as prophylaxis, and avoiding consumption of milk, oil, sweet, meat, and alcohol. This review focuses and elaborates on the concept, prevention, and probable management of COVID-19 in the light of Amraz-e-Waba.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Mohd Aleemuddin Quamri
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Ghulamuddin Sofi
- Department of IlmulAdvia (Pharmacology), National Institute of Unani Medicine, Bangalore, India
| | - Umme Ayman
- Department of Regimenal Therapy, National Institute of Unani Medicine, Bangalore, India
| | - Shabnam Ansari
- Department of Biotechnology, Natural Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Mariyam Ahad
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| |
Collapse
|
22
|
Khan MA, Khan A, Khan SH, Azam M, Khan MMU, Khalilullah H, Younus H. Coadministration of liposomal methylglyoxal increases the activity of amphotericin B against Candida albicans in leukopoenic mice. J Drug Target 2020; 29:78-87. [PMID: 32723117 DOI: 10.1080/1061186x.2020.1803333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the therapeutic efficacy of a combination of liposomal amphotericin B (Lip-Amp B) and Methylglyoxal (Lip-MG) against Candida albicans in the leukopoenic mice. The antifungal efficacy of Lip-Amp B or Lip-MG or a combination of Lip-Amp B and Lip-MG was evaluated by the analysis of the survival rate and the fungal load in the treated mice. The immune-stimulatory effect of Lip-MG on macrophages was evaluated by analysing the secretion of proinflammatory cytokines. C. albicans infected mice treated at the doses of 1 and 2 mg/kg of Lip-Amp B showed 20% and 50% survival rates, respectively. Whereas the mice treated with free Amp B at the same doses died within 40 days of treatment. Interestingly, C. albicans infected mice treated with a combination of Lip-Amp B and Lip-MG had 70% survival rate on day 40 postinfection. Moreover, treatment of macrophages with Lip-MG increased their fungicidal activity and the secretion of proinflammatory cytokines, including TNF-α and IL-1β. These findings suggested that co-treatment with Lip-Amp B and Lip-MG had a synergistic effect and could be effective against C. albicans in immunocompromised subjects.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Shaheer Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Azam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
23
|
Alrumaihi F, Allemailem KS, Almatroudi A, Alsahli MA, Khan A, Khan MA. Tinospora cordifolia Aqueous Extract Alleviates Cyclophosphamide- Induced Immune Suppression, Toxicity and Systemic Candidiasis in Immunosuppressed Mice: In vivo Study in Comparison to Antifungal Drug Fluconazole. Curr Pharm Biotechnol 2019; 20:1055-1063. [PMID: 31333126 DOI: 10.2174/1389201019666190722151126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/29/2019] [Accepted: 07/04/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The present study was aimed to evaluate the effect of the aqueous extract of Tinospora cordifolia (AETC) against cyclophosphamide-induced immunosuppression and systemic Candida albicans infection in a murine model. METHODS The protective effect of AETC against cyclophosphamide-induced leukopenia was evaluated by quantitative and qualitative analysis of the leukocytes. The immune-stimulating potential of AETC on macrophages was assessed by determining the levels of secreted cytokines. To determine the direct antifungal activity, AETC or fluconazole was administered to C. albicans infected mice. The efficacy of treatment was assessed by determining the survival rate, kidney fungal burden, the organ index and liver inflammation parameters. RESULTS Cyclophosphamide administration resulted in substantial depletion of leukocytes, whereas AETC treatment induced the recovery of leukocytes in cyclophosphamide-injected mice. Moreover, AETC treatment of macrophages resulted in enhanced secretion of IFN-γ, TNF-α and IL-1β. C. albicans infected mice treated with AETC at the doses of 50 and 100 mg/kg exhibited 40% and 60% survival rate, whereas the mice treated with fluconazole at a dose of 50 mg/kg showed 20% survival rate. Like survival data, the fungal load was found to be the lowest in the kidney tissues of mice treated with AETC at a dose of 100 mg/kg. Interestingly, mice infected with C. albicans demonstrated improvement in the organ indices and liver functioning after AETC treatment. CONCLUSION These results suggest that AETC may potentially be used to rejuvenate the weakened immune system and eliminate systemic candidiasis in mice.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|