1
|
Mitani K, Ito Y, Takene Y, Inaba T. Evaluation of the quality of life-enhancing effect of allogeneic feline adipose mesenchymal stem cells in cats with osteoarthritis: A pilot study. Res Vet Sci 2025; 182:105470. [PMID: 39612738 DOI: 10.1016/j.rvsc.2024.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease in older cats, and often leads to decreased quality of life (QOL). Mesenchymal stem cells (MSCs) have been used in novel therapies for inflammatory diseases. We aimed to evaluate quantitatively allogeneic adipose-derived MSC (ADSC) therapy in cats with naturally occurring OA, based on QOL assessment resources. To characterize the in vitro properties of ADSCs, we estimated ADSCs from four healthy cats with respect to morphology, differentiation potential, and immunomodulatory potential. Six cats with OA were administered a single intravenous injection of allogeneic ADSCs. Based on the feline musculoskeletal pain index (FMPI), the outcome measure was QOL. The cultured cells were adherent, exhibited a spindle shape without becoming flattened or large, and maintained doubling time until passage 5. After induction, the cells had osteogenic, adipogenic, and chondrogenic phenotypes. These cells expressed CD44 and CD90 and lacked expression of CD14 and CD45, had significantly suppressed the production of interferon -ɤ released from mitogen-stimulated lymphocytes (P < 0.05). The FMPI of all cats with OA significantly increased one month after ADSC therapy (P < 0.05). No adverse effects associated with ADSC administration were observed during follow-up in any of the cats. In conclusion, ADSC therapy with immunomodulatory potential could have beneficial effects on the QOL in cats with OA. Further research is necessary to carry out larger studies of the effectiveness of ADSC therapy.
Collapse
Affiliation(s)
- Kosuke Mitani
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yuki Ito
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yukio Takene
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Toshio Inaba
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan.
| |
Collapse
|
2
|
Ferreira-Baptista C, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Influence of the Anatomical Site on Adipose Tissue-Derived Stromal Cells' Biological Profile and Osteogenic Potential in Companion Animals. Vet Sci 2023; 10:673. [PMID: 38133224 PMCID: PMC10747344 DOI: 10.3390/vetsci10120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) have generated considerable interest in the field of veterinary medicine, particularly for their potential in therapeutic strategies focused on bone regeneration. These cells possess unique biological characteristics, including their regenerative capacity and their ability to produce bioactive molecules. However, it is crucial to recognize that the characteristics of ADSCs can vary depending on the animal species and the site from which they are derived, such as the subcutaneous and visceral regions (SCAT and VAT, respectively). Thus, the present work aimed to comprehensively review the different traits of ADSCs isolated from diverse anatomical sites in companion animals, i.e., dogs, cats, and horses, in terms of immunophenotype, morphology, proliferation, and osteogenic differentiation potential. The findings indicate that the immunophenotype, proliferation, and osteogenic potential of ADSCs differ according to tissue origin and species. Generally, the proliferation rate is higher in VAT-derived ADSCs in dogs and horses, whereas in cats, the proliferation rate appears to be similar in both cells isolated from SCAT and VAT regions. In terms of osteogenic differentiation potential, VAT-derived ADSCs demonstrate the highest capability in cats, whereas SCAT-derived ADSCs exhibit superior potential in horses. Interestingly, in dogs, VAT-derived cells appear to have greater potential than those isolated from SCAT. Within the VAT, ADSCs derived from the falciform ligament and omentum show increased osteogenic potential, compared to cells isolated from other anatomical locations. Consequently, considering these disparities, optimizing isolation protocols becomes pivotal, tailoring them to the specific target species and therapeutic aims, and judiciously selecting the anatomical site for ADSC isolation. This approach holds promise to enhance the efficacy of ADSCs-based bone regenerative therapies.
Collapse
Affiliation(s)
- Carla Ferreira-Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rita Ferreira
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- CECAV—Animal and Veterinary Research Centre UTAD, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Li H, Yu S, Chen L, Liu H, Shen C. Immunomodulatory Role of Mesenchymal Stem Cells in Liver Transplantation: Status and Prospects. Dig Dis 2023; 42:41-52. [PMID: 37729883 DOI: 10.1159/000534003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/03/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Liver transplantation (LT) is the only effective therapy for end-stage liver diseases, but some patients usually present with serious infection and immune rejection. Those with immune rejection require long-term administration of immunosuppressants, leading to serious adverse effects. Mesenchymal stem cells (MSCs) have various advantages in immune regulation and are promising drugs most likely to replace immunosuppressants. SUMMARY This study summarized the application of MSCs monotherapy, its combination with immunosuppressants, MSCs genetic modification, and MSCs derivative therapy (cell-free therapy) in LT. This may deepen the understanding of immunomodulatory role of MSCs and promote the application of MSCs in immune rejection treatment after LT. KEY MESSAGES MSCs could attenuate ischemia-reperfusion injury and immune rejection. There is no consensus on the effects of types and concentrations of immunosuppressants on MSCs. Although genetically modified MSCs have contributed to better outcomes to some extent, the best modification is still unclear. Besides, multiple clinical complications developed frequently after LT. Unfortunately, there are still few studies on the polygenic modification of MSCs for the simultaneous treatment of these complications. Therefore, more studies should be performed to investigate the potency of multi-gene modified MSCs in treating complications after LT. Additionally, MSC derivatives mainly include exosomes, extracellular vesicles, and conditioned medium. Despite therapeutic effects, these three therapies still have some limitations such as heterogeneity between generations and that they cannot be quantified accurately.
Collapse
Affiliation(s)
- Haitao Li
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Saihua Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hongzhi Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Conglong Shen
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Wang YH, Chen EQ. Mesenchymal Stem Cell Therapy in Acute Liver Failure. Gut Liver 2023; 17:674-683. [PMID: 36843422 PMCID: PMC10502502 DOI: 10.5009/gnl220417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 02/28/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease syndrome with rapid deterioration and high mortality. Liver transplantation is the most effective treatment, but the lack of donor livers and the high cost of transplantation limit its broad application. In recent years, there has been no breakthrough in the treatment of ALF, and the application of stem cells in the treatment of ALF is a crucial research field. Mesenchymal stem cells (MSCs) are widely used in disease treatment research due to their abundant sources, low immunogenicity, and no ethical restrictions. Although MSCs are effective for treating ALF, the application of MSCs to ALF needs to be further studied and optimized. In this review, we discuss the potential mechanisms of MSCs therapy for ALF, summarize some methods to enhance the efficacy of MSCs, and explore optimal approaches for MSC transplantation.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Herrera D, Lodoso-Torrecilla I, Ginebra MP, Rappe K, Franch J. Osteogenic differentiation of adipose-derived canine mesenchymal stem cells seeded in porous calcium-phosphate scaffolds. Front Vet Sci 2023; 10:1149413. [PMID: 37332740 PMCID: PMC10272761 DOI: 10.3389/fvets.2023.1149413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Engineered bone graft substitutes are a promising alternative and supplement to autologous bone grafts as treatments for bone healing impairment. Advances in human medicine extend an invitation to pursue these biomimetic strategies in animal patients, substantiated by the theory that specialized scaffolds, multipotent cells, and biological cues may be combined into a bioactive implant intended for the enhancement of tissue regeneration. Methods This proof-of-concept study was designed to evaluate and validate the feasibility of beta-tricalcium phosphate foam scaffolds seeded with canine mesenchymal stem cells derived from adipose tissue. Cell-inoculated samples and sham controls were cultured statically for 72 hours in complete growth medium to evaluate seeding capacity, while a subset of loaded scaffolds was further induced with osteogenic culture medium for 21 days. Produced implants were characterized and validated with a combination of immunofluorescence and reflection confocal microscopy, scanning electron microscopy, and polymerase chain reaction to confirm osteogenic differentiation in tridimensional-induced samples. Results After 72 hours of culture, all inoculated scaffolds presented widespread yet heterogeneous surface seeding, distinctively congregating stem cells around pore openings. Furthermore, at 21 days of osteogenic culture conditions, robust osteoblastic differentiation of the seeded cells was confirmed by the change of cell morphology and evident deposition of extra-cellular matrix, accompanied by mineralization and scaffold remodeling; furthermore, all induced cell-loaded implants lost specific stemness immunophenotype expression and simultaneously upregulated genomic expression of osteogenic genes Osterix and Ostecalcin. Conclusions β-TCP bio-ceramic foam scaffolds proved to be suitable carriers and hosts of canine adipose-derived MSCs, promoting not only surface attachment and proliferation, but also demonstrating strong in-vitro osteogenic potential. Although this research provides satisfactory in-vitro validation for the conceptualization and feasibility of a canine bio-active bone implant, further testing such as patient safety, large-scale reproducibility, and quality assessment are needed for regulatory compliance in future commercial clinical applications.
Collapse
Affiliation(s)
- David Herrera
- Bone Regeneration Research Group, Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Irene Lodoso-Torrecilla
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Katrin Rappe
- Bone Regeneration Research Group, Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Jordi Franch
- Bone Regeneration Research Group, Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Petrova V, Vachkova E. Outlook of Adipose-Derived Stem Cells: Challenges to Their Clinical Application in Horses. Vet Sci 2023; 10:vetsci10050348. [PMID: 37235430 DOI: 10.3390/vetsci10050348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Adipose tissue is recognized as the major endocrine organ, potentially acting as a source of mesenchymal stem cells for various applications in regenerative medicine. Athletic horses are often exposed to traumatic injuries, resulting in severe financial losses. The development of adipose-derived stem cells' regenerative potential depends on many factors. The extraction of stem cells from subcutaneous adipose tissue is non-invasive, non-traumatic, cheaper, and safer than other sources. Since there is a lack of unique standards for identification, the isolated cells and applied differentiation protocols are often not species-specific; therefore, the cells cannot reveal their multipotent properties, so their stemness features remain questionable. The current review discusses some aspects of the specificity of equine adipose stem cells concerning their features, immunophenotyping, secretome profile, differentiation abilities, culturing conditions, and consequent possibilities for clinical application in concrete disorders. The presented new approaches elucidate the possibility of the transition from cell-based to cell-free therapy with regenerative purposes in horses as an alternative treatment to cellular therapy. In conclusion, their clinical benefits should not be underestimated due to the higher yield and the physiological properties of adipose-derived stem cells that facilitate the healing and tissue regeneration process and the ability to amplify the effects of traditional treatments. More profound studies are necessary to apply these innovative approaches when treating traumatic disorders in racing horses.
Collapse
Affiliation(s)
- Valeria Petrova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
7
|
Chu KA, Yeh CC, Hsu CH, Hsu CW, Kuo FH, Tsai PJ, Fu YS. Reversal of Pulmonary Fibrosis: Human Umbilical Mesenchymal Stem Cells from Wharton's Jelly versus Human-Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24086948. [PMID: 37108112 PMCID: PMC10139084 DOI: 10.3390/ijms24086948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Pulmonary fibrosis (PF) is a progressive, non-reversible illness with various etiologies. Currently, effective treatments for fibrotic lungs are still lacking. Here, we compared the effectiveness of transplantation of human mesenchymal stem cells from umbilical cord Wharton's jelly (HUMSCs) versus those from adipose tissue (ADMSCs) in reversing pulmonary fibrosis in rats. Bleomycin 5 mg was intratracheally injected to establish a severe, stable, single left lung animal model with PF. On Day 21 post-BLM administration, one single transplantation of 2.5 × 107 HUMSCs or ADMSCs was performed. Lung function examination of Injury and Injury+ADMSCs rats displayed significantly decreased blood oxygen saturation and increased respiratory rates, while Injury+HUMSCs rats showed statistical amelioration in blood oxygen saturation and significant alleviation in respiratory rates. Reduced cell number in the bronchoalveolar lavage and lower myofibroblast activation appeared in the rats transplanted with either ADMSCs or HUMSCS than that in the Injury group. However, ADMSC transplantation stimulated more adipogenesis. Furthermore, matrix-metallopeptidase-9 over-expression for collagen degradation, and the elevation of Toll-like receptor-4 expression for alveolar regeneration were observed only in the Injury+HUMSCs. In comparison with the transplantation of ADMSCs, transplantation of HUMSCs exhibited a much more effective therapeutic effect on PF, with significantly better results in alveolar volume and lung function.
Collapse
Affiliation(s)
- Kuo-An Chu
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821004, Taiwan
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan
| | - Chang-Ching Yeh
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Nurse-Midwifery and Women Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
| | - Chun-Hsiang Hsu
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Chien-Wei Hsu
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Medical Intensive Unit, Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Fu-Hsien Kuo
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Pei-Jiun Tsai
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Trauma Center, Department of Surgery, Veterans General Hospital, Taipei 112201, Taiwan
- Department of Critical Care Medicine, Veterans General Hospital, Taipei 112201, Taiwan
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
8
|
Berezin AA, Obradovic Z, Berezina TA, Boxhammer E, Lichtenauer M, Berezin AE. Cardiac Hepatopathy: New Perspectives on Old Problems through a Prism of Endogenous Metabolic Regulations by Hepatokines. Antioxidants (Basel) 2023; 12:516. [PMID: 36830074 PMCID: PMC9951884 DOI: 10.3390/antiox12020516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiac hepatopathy refers to acute or chronic liver damage caused by cardiac dysfunction in the absence of any other possible causative reasons of liver injury. There is a large number of evidence of the fact that cardiac hepatopathy is associated with poor clinical outcomes in patients with acute or actually decompensated heart failure (HF). However, the currently dominated pathophysiological background does not explain a role of metabolic regulative proteins secreted by hepatocytes in progression of HF, including adverse cardiac remodeling, kidney injury, skeletal muscle dysfunction, osteopenia, sarcopenia and cardiac cachexia. The aim of this narrative review was to accumulate knowledge of hepatokines (adropin; fetuin-A, selenoprotein P, fibroblast growth factor-21, and alpha-1-microglobulin) as adaptive regulators of metabolic homeostasis in patients with HF. It is suggested that hepatokines play a crucial, causative role in inter-organ interactions and mediate tissue protective effects counteracting oxidative stress, inflammation, mitochondrial dysfunction, apoptosis and necrosis. The discriminative potencies of hepatokines for HF and damage of target organs in patients with known HF is under on-going scientific discussion and requires more investigations in the future.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, 69000 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Tetiana A. Berezina
- Department of Internal Medicine & Nephrology, VitaCenter, 69000 Zaporozhye, Ukraine
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| |
Collapse
|
9
|
Yasumura Y, Teshima T, Nagashima T, Takano T, Michishita M, Taira Y, Suzuki R, Matsumoto H. Immortalized Canine Adipose-Derived Mesenchymal Stem Cells as a Novel Candidate Cell Source for Mesenchymal Stem Cell Therapy. Int J Mol Sci 2023; 24:ijms24032250. [PMID: 36768587 PMCID: PMC9917102 DOI: 10.3390/ijms24032250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stem cells are expected to be a cell source for stem cell therapy of various diseases in veterinary medicine. However, donor-dependent cell heterogenicity has been a cause of inconsistent therapeutic efficiency. Therefore, we established immortalized cells from canine adipose tissue-derived mesenchymal stem cells (ADSCs) to minimize cellular heterogeneity by reducing the number of donors, evaluated their properties, and compared them to the primary cells with RNA-sequencing. Immortalized canine ADSCs were established by transduction with combinations of the R24C mutation of human cyclin-dependent kinase 4 (CDKR24C), canine cyclin D1, and canine TERT. The ADSCs transduced with CDK4R24C, cyclin D1, and TERT (ADSC-K4DT) or with CDK4R24C and cyclin D1 (ADSC-K4D) showed a dramatic increase in proliferation (population doubling level >100) without cellular senescence compared to the primary ADSCs. The cell surface markers, except for CD90 of the ADSC-K4DT and ADSC-K4D cells, were similar to those of the primary ADSCs. The ADSC-K4DT and ADSC-K4D cells maintained their trilineage differentiation capacity and chromosome condition, and did not have a tumorigenic development. The ability to inhibit lymphocyte proliferation by the ADSC-K4D cells was enhanced compared with the primary ADSCs and ADSC-K4DT cells. The pathway analysis based on RNA-sequencing revealed changes in the pathways mainly related to the cell cycle and telomerase. The ADSC-K4DT and ADSC-K4D cells had decreased CD90 expression, but there were no obvious defects associated with the decreased CD90 expression in this study. Our results suggest that ADSC-K4DT and ADSC-K4D cells are a potential novel cell source for mesenchymal stem cell therapy.
Collapse
Affiliation(s)
- Yuyo Yasumura
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
- Correspondence: ; Tel.: +81-422-31-4151 (ext. 3434)
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Takashi Takano
- Laboratory of Veterinary Public Health, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Yoshiaki Taira
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
10
|
Optimal Intravenous Administration Procedure for Efficient Delivery of Canine Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232314681. [PMID: 36499004 PMCID: PMC9740176 DOI: 10.3390/ijms232314681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Mesenchymal stem cells (MSC) are currently being investigated for their therapeutic applications in a wide range of diseases. Although many studies examined peripheral venous administration of MSC, few have investigated the detailed intravenous administration procedures of MSC from their preparation until they enter the body. The current study therefore aimed to explore the most efficient infusion procedure for MSC delivery by preparing and infusing them under various conditions. Canine adipose-derived mesenchymal stem cells (cADSC) were infused using different infusion apparatuses, suspension solutions, allogenic serum supplementation, infusion time and rates, and cell densities, respectively. Live and dead cell counts were then assessed by manual measurements and flow cytometry. Efficiency of live- and dead-cell infusion and cell viability were calculated from the measured cell counts and compared under each condition. Efficiency of live-cell infusion differed significantly according to the infusion apparatus, infusion rate, and combination of cell density and serum supplementation. Cell viability after infusion differed significantly between the infusion apparatuses. The optimal infusion procedure resulting in the highest cell delivery and viability involved suspending cADSC in normal saline supplemented with 5% allogenic serum at a density of 5 × 105 cells/mL, and infusing them using an automatic infusion device for 15 min. This procedure is therefore recommended as the standard procedure for the intravenous administration of ADSC in terms of cell-delivery efficiency.
Collapse
|
11
|
Harrell CR, Pavlovic D, Djonov V, Volarevic V. Therapeutic potential of mesenchymal stem cells in the treatment of acute liver failure. World J Gastroenterol 2022; 28:3627-3636. [PMID: 36161038 PMCID: PMC9372816 DOI: 10.3748/wjg.v28.i28.3627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) is a severe and life-threatening condition in which rapid deterioration of liver function develops in a patient who has no preexisting liver disease. Mesenchymal stem cells (MSCs) are immunoregulatory stem cells which are able to modulate phenotype and function of all immune cells that play pathogenic role in the development and progression of ALF. MSCs in juxtacrine and paracrine manner attenuate antigen-presenting properties of dendritic cells and macrophages, reduce production of inflammatory cytokines in T lymphocytes, suppress hepatotoxicity of natural killer T (NKT) cells and promote generation and expansion of immunosuppressive T, B and NKT regulatory cells in acutely inflamed liver. Due to their nano-sized dimension and lipid envelope, intravenously injected MSC-derived exosomes (MSC-Exos) may by-pass all biological barriers to deliver MSC-sourced immunoregulatoy factors directly into the liver-infiltrated immune cells and injured hepatocytes. Results obtained by us and others revealed that intravenous administration of MSCs and MSC-Exos efficiently attenuated detrimental immune response and acute inflammation in the liver, suggesting that MSCs and MSC-Exos could be considered as potentially new remedies in the immunotherapy of ALF. In this review, we emphasize the current knowledge about molecular and cellular mechanisms which are responsible for MSC-based modulation of liver-infiltrated immune cells and we discuss different insights regarding the therapeutic potential of MSCs in liver regeneration.
Collapse
Affiliation(s)
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Vladislav Volarevic
- Department of Medical Genetics and Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
12
|
Abo-Aziza FAM, Zaki AKA, Adel RM, Fotouh A. Amelioration of aflatoxin acute hepatitis rat model by bone marrow mesenchymal stem cells and their hepatogenic differentiation. Vet World 2022; 15:1347-1364. [PMID: 35765490 PMCID: PMC9210847 DOI: 10.14202/vetworld.2022.1347-1364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation and their hepatogenic differentiated cells (HDCs) can be applied for liver injury repair by tissue grafting. Regenerative potentiality in liver cirrhosis models was widely investigated; however, immunomodulation and anti-inflammation in acute hepatitis remain unexplored. This study aimed to explore the immunomodulatory and evaluate twice intravenous (IV) or intrahepatic (IH) administration of either BM-MSCs or middle-stage HDCs on aflatoxin (AF) acute hepatitis rat model. Materials and Methods: BM-MSCs viability, phenotypes, and proliferation were evaluated. Hepatogenic differentiation, albumin, and mmmmmmmm-fetoprotein gene expression were assessed. AF acute hepatitis was induced in rats using AFB1 supplementation. The transplantation of BM-MSCs or their HDCs was done either by IV or IH route. Hepatic ultrasound was performed after 3-weeks of therapy. Cytokines profile (tumor necrosis factor-α [TNF-α], interleukin [IL]-4, and IL-10) was assessed. Hepatic bio-indices, serum, and hepatic antioxidant activity were evaluated, besides examining liver histological sections. Results: Acute AFB1 showed a significant increase in TNF-α (p<0.01), liver enzyme activities (p<0.05), as well as decrease in IL-4, IL-10, and antioxidant enzyme activities (p<0.05). Cytokines profile was ameliorated in groups treated with IV and IH BM-MCs, showed a negative correlation between IL-4 and TNF-α (p<0.05), and a positive correlation between IL-10 upregulation and TNF-α (p<0.01). In IV HDCs treated group, positive correlations between IL-4 and IL-10 downregulation and TNF-α were observed. However, in IH HDCs group, a significant positive correlation between IL-4 and IL-10 upregulation and TNF-α, were recorded (p<0.05). In addition, IV BM-MSCs and IH HDCs treatments significantly increased antioxidant enzymes activity (p<0.05). IV and IH BM-MSCs significantly ameliorated liver transaminase levels, whereas IH HDCs significantly ameliorated alanine aminotransferase activity and nitric oxide concentration (p<0.05). Conclusion: The administration routes of BM-MSCs did not demonstrate any significant difference; however, the IH route of HDCs showed significant amelioration from the IV route. On the other hand, it showed noticeable anti-inflammatory and immunomodulatory improvements in aflatoxicosis rats. Therefore, it can be concluded that acute hepatitis can be treated by a noninvasive IV route without the expense of hepatogenic differentiation. Further research using clinical trials that address several problems regarding engraftment and potentiation are needed to determine the optimal manipulation strategy as well as to achieve better long term effects.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rana M. Adel
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
13
|
Prišlin M, Vlahović D, Kostešić P, Ljolje I, Brnić D, Turk N, Lojkić I, Kunić V, Karadjole T, Krešić N. An Outstanding Role of Adipose Tissue in Canine Stem Cell Therapy. Animals (Basel) 2022; 12:ani12091088. [PMID: 35565514 PMCID: PMC9099541 DOI: 10.3390/ani12091088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/15/2023] Open
Abstract
Adipose tissue, previously known as connective tissue with a role in energy storage, is currently changing the course of treatments in veterinary medicine. Recent studies have revealed one particularly impressive function among all the newly discovered functions of adipose tissue. The interactive cells hosted by adipose tissue, the stromal vascular fraction (SVF), and their role in treating numerous diseases have provided a prospective course of research with positive outcomes in regenerative veterinary medicine (RVM). This review describes the main features of adipose tissue, emphasizing an eclectic combination of cells within the SVF and its thus far researched therapeutic possibilities in canine RVM. An afterwards focus is on a highly researched component of the SVF, adipose-derived mesenchymal stem cells (ASCs), which were shown to have an extraordinary impact relying on several proposed mechanisms of action on mitigating pathologies in canines. Furthermore, ASC therapy showed the most significant results in the orthopaedics field and in neurology, dermatology, ophthalmology, gastroenterology, and hepatology, which elevates the possibilities of ASC therapy to a whole new level. Therefore, this review article aims to raise awareness of the importance of research on cellular components, within abundant and easily accessible adipose tissue, in the direction of regenerative therapy in canines, considering the positive outcomes so far. Although the focus is on the positive aspects of cellular therapy in canines, the researchers should not forget the importance of identifying the potential negative aspects within published and upcoming research. Safe and standardized treatment represents a fundamental prerequisite for positively impacting the lives of canine patients.
Collapse
Affiliation(s)
- Marina Prišlin
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Dunja Vlahović
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Petar Kostešić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Ivana Ljolje
- Veterinary Clinic for Small Animals Buba, Dore Pfanove 11, 10000 Zagreb, Croatia;
| | - Dragan Brnić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Nenad Turk
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Valentina Kunić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Tugomir Karadjole
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Nina Krešić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
- Correspondence:
| |
Collapse
|
14
|
Mitani K, Ito Y, Takene Y, Hatoya S, Sugiura K, Inaba T. Long-Term Trypsin Treatment Promotes Stem Cell Potency of Canine Adipose-Derived Mesenchymal Stem Cells. Stem Cells Dev 2021; 30:337-349. [PMID: 33528297 DOI: 10.1089/scd.2020.0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from adipose tissue (adipose-derived stem cells [ADSCs]) are considered one of the most promising cell types for applications in regenerative medicine. However, the regenerative potency of ADSCs may vary because of heterogeneity. Long-term trypsin treatment (LTT) is known to significantly concentrate multilineage-differentiating stress-enduring (Muse) cells from human MSCs. In this study, we aimed to generate cells with high stem cell potency from canine ADSCs using LTT. After 16 h of treatment with trypsin, surviving ADSCs (LTT-tolerant cells) had significantly enhanced expression of stage-specific embryonic antigen (SSEA)-1, a mouse embryonic stem cell marker, and fucosyltransferase 9, one of several fucosyltransferases for SSEA-1 biosynthesis. However, LTT-tolerant cells did not enhance the expression of SSEA-3, a known human Muse cell marker. LTT-tolerant cells, however, showed significantly higher self-renewal capacity in the colony-forming unit fibroblast assay than ADSCs. In addition, the LTT-tolerant cells formed cell clusters similar to embryoid bodies and expressed undifferentiated markers. Moreover, these cells differentiated into cells of all three germ layers and showed significantly higher levels of α 2-6 sialic acid (Sia)-specific lectins, known as differentiation potential markers of human MSCs, than ADSCs. LTT-tolerant cells had a normal karyotype and had low telomerase activity, showing little carcinogenetic potency. LTT-tolerant cells also showed significantly increased activity of transmigration in the presence of chemoattractants and had increased expression of migration-related genes compared with ADSCs. In addition, LTT-tolerant cells had stronger suppressive activity against mitogen-stimulated lymphocyte proliferation than ADSCs. Overall, these results indicated that the LTT-tolerant cells in canine ADSCs have similar properties as human Muse cells (although one of the undifferentiated markers is different) and are expected to be a promising tool for regenerative therapy in dogs.
Collapse
Affiliation(s)
- Kosuke Mitani
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan.,Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yuki Ito
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yukio Takene
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
15
|
Generation of Insulin-Producing Cells from Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8841865. [PMID: 33133196 PMCID: PMC7591982 DOI: 10.1155/2020/8841865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
The potential of mesenchymal stem cells (MSCs) to differentiate into nonmesodermal cells such as pancreatic beta cells has been reported. New cell-based therapy using MSCs for diabetes mellitus is anticipated as an alternative treatment option to insulin injection or islet transplantation in both human and veterinary medicine. Several protocols were reported for differentiation of MSCs into insulin-producing cells (IPCs), but no studies have reported IPCs generated from canine MSCs. The purpose of this study was to generate IPCs from canine adipose tissue-derived MSCs (AT-MSCs) in vitro and to investigate the effects of IPC transplantation on diabetic mice in vivo. Culturing AT-MSCs with the differentiation protocol under a two-dimensional culture system did not produce IPCs. However, spheroid-like small clusters consisting of canine AT-MSCs and human recombinant peptide μ-pieces developed under a three-dimensional (3D) culture system were successfully differentiated into IPCs. The generated IPCs under 3D culture condition were stained with dithizone and anti-insulin antibody. Canine IPCs also showed gene expression typical for pancreatic beta cells and increased insulin secretion in response to glucose stimulation. The blood glucose levels in streptozotocin-induced diabetic mice were decreased after injection with the supernatant of canine IPCs, but the hyperglycemic states of diabetic mice were not improved after transplanting IPCs subcutaneously or intramesenterically. The histological examination showed that the transplanted small clusters of IPCs were successfully engrafted to the mice and included cells positive for insulin by immunofluorescence. Several factors, such as the transplanted cell number, the origin of AT-MSCs, and the differentiation protocol, were considered potential reasons for the inability to improve the hyperglycemic state after IPC transplantation. These findings suggest that canine AT-MSCs can be differentiated into IPCs under a 3D culture system and IPC transplantation may be a new treatment option for dogs with diabetes mellitus.
Collapse
|
16
|
Joshi MG, Kshersagar J, Desai SR, Sharma S. Antiviral properties of placental growth factors: A novel therapeutic approach for COVID-19 treatment. Placenta 2020; 99:117-130. [PMID: 32798764 PMCID: PMC7406421 DOI: 10.1016/j.placenta.2020.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023]
Abstract
The current challenge of the COVID-19 pandemic is complicated by the limited therapeutic options against the virus, with many being anecdotal or still undergoing confirmatory trials, underlining the urgent need for novel strategies targeting the virus. The pulmotropic virus causes loss of oxygenation in severe cases with acute respiratory distress syndrome (ARDS) and need for mechanical ventilation. This work seeks to introduce placental extract-derived biologically active components as a therapeutic option and highlights their mechanism of action relevant to COVID-19 virus. Human placenta has been used in clinical practice for over a century and there is substantial experience in clinical applications of placental extract for different indications. Aqueous extract of human placentacontains growth factors, cytokines/chemokines, natural metabolic and other compounds, anti-oxidants, amino acids, vitamins, trace elements and biomolecules, which individually or in combination show accelerated cellular metabolism, immunomodulatory and anti-inflammatory effects, cellular proliferation and stimulation of tissue regeneration processes. Placental extract treatment is proposed as a suitable therapeutic approach consideringthe above properties which could protect against initial viral entry and acute inflammation of alveolar epithelial cells, reconstitute pulmonary microenvironment and regenerate the lung. We reviewed useful therapeutic information of placental biomolecules in relation to COVID-19 treatment. We propose the new approach of using placental growth factors, chemokines and cytokine which will execute antiviral activity in coordination with innate and humoral immunity and improve patient's immunological responses to COVID-19. Executing a clinical trial using placental extract as preventive, protective and/or therapeutic approach for COVID-19treatment could advance the development of a most promising therapeutic candidate that can join the armamentaria against the COVID-19 virus.
Collapse
Affiliation(s)
- Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, D Y Patil Education Society (Deemed University), E 869 D. Y. Patil Vidyanagar, KasbaBawda, Kolhapur, 416006, MS, India.
| | - Jeevitaa Kshersagar
- Department of Stem Cells & Regenerative Medicine, D Y Patil Education Society (Deemed University), E 869 D. Y. Patil Vidyanagar, KasbaBawda, Kolhapur, 416006, MS, India
| | - Shashikant R Desai
- Stem Plus Foundation, C.T.S 648 A/1, Gajendra Bol, Gavali Galli, Peth Bhag, Sangli, 416 415, MS, India
| | - Shimpa Sharma
- Department of Medicine, D Y Patil Medical College, D Y Patil Education Society (Deemed University), E 869 D. Y. Patil Vidyanagar, KasbaBawda, Kolhapur, 416006, MS, India
| |
Collapse
|
17
|
Han HS, Lee H, You D, Nguyen VQ, Song DG, Oh BH, Shin S, Choi JS, Kim JD, Pan CH, Jo DG, Cho YW, Choi KY, Park JH. Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. J Control Release 2020; 320:328-336. [PMID: 31981658 DOI: 10.1016/j.jconrel.2020.01.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
Abstract
Liver fibrosis is an excessive wound healing process that occurs in response to liver damage depending on underlying aetiologies. Currently, there are no effective therapies and FDA-approved therapeutics for the treatment of liver fibrosis except liver transplantation. Multipotent adipose-derived stem cells (ADSCs) have received significant attention as regenerative medicine for liver fibrosis owing to their advantages over stem cells with other origins. However, intrinsic limitations of stem cell therapies, such as cellular rejection and tumor formation, have impeded clinical applications of the ADSC-based liver therapeutics. To overcome these problems, the extracellular nanovesicles (ENVs) responsible for the therapeutic effect of ADSCs (A-ENVs) have shown considerable promise as cell-free therapeutics for liver diseases. However, A-ENVs have not been used for the treatment of intractable chronic liver diseases including liver fibrosis and cirrhosis. Therefore, in this study, we investigated the in vitro and in vivo antifibrotic efficacy of A-ENVs in thioacetamide-induced liver fibrosis models. A-ENVs significantly downregulated the expression of fibrogenic markers, such as matrix metalloproteinase-2, collagen-1, and alpha-smooth muscle actin. The systemic administration of A-ENVs led to high accumulation in fibrotic liver tissue and the restoration of liver functionality in liver fibrosis models through a marked reduction in α-SMA and collagen deposition. These results demonstrate the significant potential of A-ENVs for use as extracellular nanovesicles-based therapeutics in the treatment of liver fibrosis and possibly other intractable chronic liver diseases.
Collapse
Affiliation(s)
- Hwa Seung Han
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Hansang Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - DongGil You
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Byeong Hoon Oh
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; Research Institute, Exostemtech Inc., Ansan 15588, Republic of Korea
| | - Jae Dong Kim
- Research Institute, Exostemtech Inc., Ansan 15588, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; Research Institute, Exostemtech Inc., Ansan 15588, Republic of Korea.
| | - Ki Young Choi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea.
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
18
|
Comparison of Properties of Stem Cells Isolated from Adipose Tissue and Lipomas in Dogs. Stem Cells Int 2019; 2019:1609876. [PMID: 31827523 PMCID: PMC6886319 DOI: 10.1155/2019/1609876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) have been suggested their benefits in regenerative medicine for various diseases. Lipomas, benign neoplasms in adipose tissue, have been reported as a potential source of stem cells. These lipoma-derived mesenchymal stem cells (LDSCs) may be useful for regenerative medicine. However, the detailed characteristics of LDSCs have not been fully elucidated. This study investigated the cellular proteomics and secretomes of canine LDSCs in addition to morphology and proliferation and differentiation capacities. Some LDSCs isolated from canine subcutaneous lipomas were morphologically different from ADSCs and showed a rounded shape instead of fibroblast-like morphology. The phenotype of cell surface markers in LDSCs was similar to those in ADSCs, but CD29 and CD90 stem cell markers were more highly expressed compared with those of ADSCs. LDSCs had noticeably high proliferation ability, but no significant differences were observed compared with ADSCs. In regard to differentiation capacity compared to ADSCs, LDSCs showed higher adipogenesis, but no differences were observed with osteogenesis. Cellular proteomic analysis using two-dimensional gel electrophoresis revealed that over 95% of protein spots showed similar expression levels between LDSCs and ADSCs. Secretome analysis was performed using iTRAQ and quantitative cytokine arrays. Over 1900 proteins were detected in conditioned medium (CM) of LDSCs and ADSCs, and 94.0% of detected proteins showed similar expression levels between CM of both cell types. Results from cytokine arrays including 20 cytokines showed no significant differences between CM of LDSCs and that of ADSCs. Our results indicate that canine LDSCs had variability in characteristics among individuals in contrast with those of ADSCs. Cellular proteomics and secretomes were similar in both LDSCs and ADSCs. These findings suggest that LDSCs may be suitable for application in regenerative medicine.
Collapse
|
19
|
Yan Y, Fang J, Wen X, Teng X, Li B, Zhou Z, Peng S, Arisha AH, Liu W, Hua J. Therapeutic applications of adipose-derived mesenchymal stem cells on acute liver injury in canines. Res Vet Sci 2019; 126:233-239. [PMID: 31635840 DOI: 10.1016/j.rvsc.2019.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/18/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
In this study, canine adipose-derived mesenchymal stem cells (cADSCs) therapeutic potential was investigated in artificially induced acute liver injury model by CCl4 in canines. The primary cADSCs cells were cultured and then intravenously administered into the canine animal model. Six cross-breed dogs were divided into three groups including blank control group, CCl4 model group, CCl4 induced cADSCs transplantation group. The results showed that after intraperitoneal injection of CCl4 solution, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Albumin (ALB) in peripheral blood of experimental canines confirmed the correct induction of acute liver injury. Moreover, the liver structure showed clear macroscopic damage. The cADSCs were homed in the liver of the administered animals. The AST, ALT and ALB in the peripheral blood rapidly decreased. H&E and PAS histological evaluation showed that both the structure of canine liver tissue and the ability to synthesize hepatic glycogen could be restored to the control level after cADSCs transplantation. Therefore, cADSCs can play a therapeutic role in the recovery of liver injury. Overall, this study demonstrates that the primary cADSCs transplantation into the acute liver injury model induced by intravenous injection can play a certain therapeutic role in the recovery of liver in canines. These results may provide a new treatment idea for acute liver disease in pets clinically.
Collapse
Affiliation(s)
- Yuan Yan
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Jia Fang
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Xinyu Wen
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Xin Teng
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Balun Li
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China
| | - Ahmed H Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Wenshuai Liu
- Department of Pathology, Yangling Demonstration Zone Hospital, Yangling, Shaanxi Province, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
20
|
Hu C, Zhao L, Li L. Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther 2019; 10:199. [PMID: 31287024 PMCID: PMC6613269 DOI: 10.1186/s13287-019-1310-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest organ with multiple synthetic and secretory functions in mammals, consists of hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), sinusoidal endothelial cells, Kupffer cells (KCs), and immune cells, among others. Various causative factors, including viral infection, toxins, autoimmune defects, and genetic disorders, can impair liver function and result in chronic liver disease or acute liver failure. Mesenchymal stem cells (MSCs) from various tissues have emerged as a potential candidate for cell transplantation to promote liver regeneration. Adipose-derived MSCs (ADMSCs) with high multi-lineage potential and self-renewal capacity have attracted great attention as a promising means of liver regeneration. The abundance source and minimally invasive procedure required to obtain ADMSCs makes them superior to bone marrow-derived MSCs (BMMSCs). In this review, we comprehensively analyze landmark studies that address the isolation, proliferation, and hepatogenic differentiation of ADMSCs and summarize the therapeutic effects of ADMSCs in animal models of liver diseases. We also discuss key points related to improving the hepatic differentiation of ADMSCs via exposure of the cells to cytokines and growth factors (GFs), extracellular matrix (ECM), and various physical parameters in in vitro culture. The optimization of culturing methods and of the transplantation route will contribute to the further application of ADMSCs in liver regeneration and help improve the survival rate of patients with liver diseases. To this end, ADMSCs provide a potential strategy in the field of liver regeneration for treating acute or chronic liver injury, thus ensuring the availability of ADMSCs for research, trial, and clinical applications in various liver diseases in the future.
Collapse
Affiliation(s)
- Chenxia Hu
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lingfei Zhao
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lanjuan Li
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
21
|
Kornicka K, Geburek F, Röcken M, Marycz K. Stem Cells in Equine Veterinary Practice-Current Trends, Risks, and Perspectives. J Clin Med 2019; 8:jcm8050675. [PMID: 31091732 PMCID: PMC6572129 DOI: 10.3390/jcm8050675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
With this Editorial, we introduce the Special Issue "Adipose-Derived Stem Cells and Their Extracellular Microvesicles (ExMVs) for Tissue Engineering and Regenerative Medicine Applications" to the scientific community. In this issue, we focus on regenerative medicine, stem cells, and their clinical application.
Collapse
Affiliation(s)
- Katarzyna Kornicka
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland.
| | - Florian Geburek
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland.
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|
22
|
Jalalie L, Rezaie MJ, Jalili A, Rezaee MA, Vahabzadeh Z, Rahmani MR, Karimipoor M, Hakhamaneshi MS. Distribution of the CM-Dil-Labeled Human Umbilical Cord Vein Mesenchymal Stem Cells Migrated to the Cyclophosphamide-Injured Ovaries in C57BL/6 Mice. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 30797224 PMCID: PMC6462299 DOI: 10.29252/.23.3.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Mesenchymal stem cells (MSCs) can be used to treat premature ovarian failure (POF). Different methods have already been applied to detect MSCs in tissues. This study aimed to investigate the quantitative distribution of CM-DiI-labeled human umbilical cord vein MSCs (hUCV-MSCs) in different regions of the ovarian tissue of the cyclophosphamide (CTX)-induced POF in mice. Methods Adult female C57BL/6 mice (n = 40) were divided into four groups: (1) Mice receiving PBS as control (Ctrl) group; (2) mice receiving hUCV-MSCs intravenously as Ctrl + hUCV-MSCs group; (3) mice receiving CTX intraperitoneally (i.p.) as CTX group; (4) mice receiving CM-DiI-labeled hUCV-MSCs after CTX injection as CTX + hUCV-MSCs group. Histological changes and CM-DiI-labeled hUCV-MSCs distribution were analyzed in the ovarian tissues. Quantitative real-time PCR was performed to detect human mitochondrial cytochrome b (MTCYB) gene in the ovarian tissues of the mice. Results The mean number of the fluorescent hUCV-MSCs was 20 ± 2.5 (57.1%) in the medulla, 11.3 ± 2.8 (32.2%) in the cortex, and 5.5 ± 1 (15%) in the germinal epithelium of the ovarian tissue (p < 0.05). Moreover, MTCYB gene was detected in the mice ovaries of the CTX + hUCV-MSCs group, but not in other groups. Conclusion Our findings suggest that the distribution of the transplanted hUCV-MSCs in different regions of the ovarian tissue is not equal, and it is greater in the medulla than the cortex and germinal epithelium. This is the first report of quantitative distribution of MSCs in different regions of ovarian tissue in the POF model.
Collapse
Affiliation(s)
- Ladan Jalalie
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran,Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Jafar Rezaie
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran,Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran,Corresponding Author: Mohammad Jafar Rezaie Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, P.O. Box: 66177-13446, Sanandaj, Iran; Tel: (+98-873) 3664653, Fax: (+98-871) 6664663; E-mail:
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Zoonoses Research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran,Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran,Zoonoses Research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mojtaba Karimipoor
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran,Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Saeed Hakhamaneshi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
23
|
Jalalie L, Rezaie MJ, Jalili A, Rezaee MA, Vahabzadeh Z, Rahmani MR, Karimipoor M, Hakhamaneshi MS. Distribution of the CM-Dil-Labeled Human Umbilical Cord Vein Mesenchymal Stem Cells Migrated to the Cyclophosphamide-Injured Ovaries in C57BL/6 Mice. IRANIAN BIOMEDICAL JOURNAL 2019; 23:200-8. [PMID: 30797224 PMCID: PMC6462299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 10/12/2023]
Abstract
Background Mesenchymal stem cells (MSCs) can be used to treat premature ovarian failure (POF). Different methods have already been applied to detect MSCs in tissues. This study aimed to investigate the quantitative distribution of CM-DiI-labeled human umbilical cord vein MSCs (hUCV-MSCs) in different regions of the ovarian tissue of the cyclophosphamide (CTX)-induced POF in mice. Methods Adult female C57BL/6 mice (n = 40) were divided into four groups: (1) Mice receiving PBS as control (Ctrl) group; (2) mice receiving hUCV-MSCs intravenously as Ctrl + hUCV-MSCs group; (3) mice receiving CTX intraperitoneally (i.p.) as CTX group; (4) mice receiving CM-DiI-labeled hUCV-MSCs after CTX injection as CTX + hUCV-MSCs group. Histological changes and CM-DiI-labeled hUCV-MSCs distribution were analyzed in the ovarian tissues. Quantitative real-time PCR was performed to detect human mitochondrial cytochrome b (MTCYB) gene in the ovarian tissues of the mice. Results The mean number of the fluorescent hUCV-MSCs was 20 ± 2.5 (57.1%) in the medulla, 11.3 ± 2.8 (32.2%) in the cortex, and 5.5 ± 1 (15%) in the germinal epithelium of the ovarian tissue (p < 0.05). Moreover, MTCYB gene was detected in the mice ovaries of the CTX + hUCV-MSCs group, but not in other groups. Conclusion Our findings suggest that the distribution of the transplanted hUCV-MSCs in different regions of the ovarian tissue is not equal, and it is greater in the medulla than the cortex and germinal epithelium. This is the first report of quantitative distribution of MSCs in different regions of ovarian tissue in the POF model.
Collapse
Affiliation(s)
- Ladan Jalalie
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Jafar Rezaie
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Zoonoses Research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mojtaba Karimipoor
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Saeed Hakhamaneshi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
24
|
Therapeutic Potential of Autologous Adipose-Derived Stem Cells for the Treatment of Liver Disease. Int J Mol Sci 2018; 19:ijms19124064. [PMID: 30558283 PMCID: PMC6321531 DOI: 10.3390/ijms19124064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Currently, the most effective therapy for liver diseases is liver transplantation, but its use is limited by organ donor shortage, economic reasons, and the requirement for lifelong immunosuppression. Mesenchymal stem cell (MSC) transplantation represents a promising alternative for treating liver pathologies in both human and veterinary medicine. Interestingly, these pathologies appear with a common clinical and pathological profile in the human and canine species; as a consequence, dogs may be a spontaneous model for clinical investigations in humans. The aim of this work was to characterize canine adipose-derived MSCs (cADSCs) and compare them to their human counterpart (hADSCs) in order to support the application of the canine model in cell-based therapy of liver diseases. Both cADSCs and hADSCs were successfully isolated from adipose tissue samples. The two cell populations shared a common fibroblast-like morphology, expression of stemness surface markers, and proliferation rate. When examining multilineage differentiation abilities, cADSCs showed lower adipogenic potential and higher osteogenic differentiation than human cells. Both cell populations retained high viability when kept in PBS at controlled temperature and up to 72 h, indicating the possibility of short-term storage and transportation. In addition, we evaluated the efficacy of autologous ADSCs transplantation in dogs with liver diseases. All animals exhibited significantly improved liver function, as evidenced by lower liver biomarkers levels measured after cells transplantation and evaluation of cytological specimens. These beneficial effects seem to be related to the immunomodulatory properties of stem cells. We therefore believe that such an approach could be a starting point for translating the results to the human clinical practice in future.
Collapse
|
25
|
Wang YH, Wu DB, Chen B, Chen EQ, Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 2018; 9:227. [PMID: 30143052 PMCID: PMC6109312 DOI: 10.1186/s13287-018-0972-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure is a life-threatening clinical syndrome characterized by rapid development of hepatocellular necrosis leading to high mortality and resource costs. Numerous treatment strategies for acute liver failure simply prevent complications and decelerate disease progression. The only curative treatment for acute liver failure is liver transplantation, but there are many restrictions on the application of liver transplantation. In recent years, a growing number of studies have shown that stem cells can effectively treat acute liver failure. Several types of stem cells have been used to study liver diseases; mesenchymal stem cells are most commonly used because they are easy to obtain and present no ethical problems. The aims of this article are to review the current knowledge regarding therapeutic mechanisms of mesenchymal stem cells in acute liver failure, to discuss recent advancements in preclinical and clinical studies in the treatment of mesenchymal stem cells, and to summarize the methodological improvement of mesenchymal stem cell transplantation in treating liver failure.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Bing Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|