1
|
Liu M. Cytokines, chemokines and growth factors involved in keloids pathogenesis. An Bras Dermatol 2025; 100:300-307. [PMID: 39799030 PMCID: PMC11963030 DOI: 10.1016/j.abd.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/15/2025] Open
Abstract
Keloid is a common fibrotic disease, which is difficult to treat. It often causes itching and pain, which greatly disturbs patients in their work and daily life and causing difficulties in social interaction. Its pathogenesis is not clear, but may be related to several aspects: genetic susceptibility, environmental, immunological and endocrine factors, trauma and tension. The central point of its pathogenesis is the excessive proliferation of fibroblasts, with excessive synthesis and secretion of extracellular matrix such as collagen. However, the cause of fibroblast excessive proliferation and differentiation is not clear. Immune abnormalities may play an important role, with cytokines, chemokines, growth factors, and other important immune molecules acting on fibroblasts. This paper presents a detailed and comprehensive literature review on this subject.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Sezer A, Ozalp H, Imge Ucar-Goker B, Gencer A, Ozogul E, Cennet O, Yazici G, Arica Yegin B, Yabanoglu-Ciftci S. Protective role of transforming growth factor-Β3 (TGF-Β3) in the formation of radiation-induced capsular contracture around a breast implant: In vivo experimental study. Int J Pharm 2024; 665:124715. [PMID: 39284424 DOI: 10.1016/j.ijpharm.2024.124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Postmastectomy radiotherapy causes capsular contracture due to fibroproliferation of the capsular tissue around the implant. In fibrosis, unlike normal wound healing, structural and functional disorders are observed in the tissues caused by excessive/irregular accumulation of extracellular matrix proteins. It has been reported that transforming growth factor-β3 (TGF-β3) prevents and reverses fibrosis in various tissues or provides scarless healing with its antifibrotic effect. Additionally, TGF-β3 has been shown to reduce fibrosis in radiotherapy-induced fibrosis syndrome. However, no study in the literature investigates the effects of exogenously applied TGF-β3 on capsular contracture in aesthetic or reconstructive breast implant application. TGF-β3, which has a very short half-life, has low bioavailability with parenteral administration. Within the scope of this study, free TGF-β3 was loaded into the nanoparticles to increase its low bioavailability and extend its duration of action by providing controlled release. The aim of this study is to investigate the preventive/improving effects of radiation induced capsular contracture using chitosan film formulations containing TGF-β3 loaded poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles in implant-based breast reconstruction. In the characterization studies of nanoparticles, the particle size and zeta potential of the TGF-β3-loaded PLGA-b-PEG nanoparticle formulation selected to be used in the treatment group were found to be 123.60 ± 2.09 nm and -34.87 ± 1.42 mV, respectively. The encapsulation efficiency of the formulation was calculated as 99.91 %. A controlled release profile was obtained in in vitro release studies. Chitosan film formulations containing free TGF-β3 or TGF-β3-loaded PLGA-b-PEG nanoparticles were used in in vivo studies. In animal studies, rats were randomly distributed into 6 groups (n = 8) as sham, implant, implant + radiotherapy, implant + radiotherapy + chitosan film containing unloaded nanoparticles, implant + radiotherapy + chitosan film containing free TGF-β3, implant + radiotherapy + chitosan film containing TGF-β3 loaded nanoparticle. In all study groups, a 2 cm incision was made along the posterior axillary line at the thoracic vertebral level in rats to reach the lateral edge of the latissimus dorsi. The fascial attachment to the chest wall was then bluntly dissected to create a pocket for the implants. In the treatment groups, the wound was closed after films were placed on the outer surface of the implants. After administering prophylactic antibiotics, rats were subjected to irradiation with 10 Gy photon beams targeted to each implant site. Each implant and the surrounding excised tissue were subjected to the necessary procedures for histological (capsule thickness, cell density), immunohistochemical, and biochemical (α-SMA, vimentin, collagen type I and type III, TGF-β1 and TGF-β3: expression level/protein level) examinations. It was determined that the levels of TGF-β1 and TGF-β3 collagen type III, which decreased as a result of radiotherapy, were brought to the control level with free TGF-β3 film and TGF-β3 nanoparticle film formulations. Histological analyses, consistent with biochemical analyses, showed that thick collagen and fibrosis, which increased with radiotherapy, were brought to the control level with free TGF-β3 film and TGF-β3 nanoparticle film treatments. In biochemical analyses, the decrease in thick collagen was compatible with the decrease in the collagen type I/type III ratio in the free TGF-β3 film and TGF-β3 nanoparticle film groups. Changes in protein expression show that TGF-β3 loaded nanoparticles are more successful than free TGF-β3 in wound healing. In line with these results and the literature, it is thought that the balance of TGF-β1 and TGF-β3 should be maintained to ensure scarless wound healing with no capsule contracture.
Collapse
Affiliation(s)
- Aysima Sezer
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100 Ankara, Turkey
| | - Hulya Ozalp
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey
| | - Bercis Imge Ucar-Goker
- Kütahya Health Sciences University, Faculty of Medicine, Department of General Surgery, 43000 Kutahya, Turkey
| | - Ayse Gencer
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Ece Ozogul
- Hacettepe University, Department of Pathology, 06100 Ankara, Turkey
| | - Omer Cennet
- Hacettepe University, Faculty of Medicine, Department of General Surgery, 06100 Ankara, Turkey
| | - Gozde Yazici
- Hacettepe University, Faculty of Medicine, Department of Radiation Oncology, 06100 Ankara, Turkey
| | - Betul Arica Yegin
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Samiye Yabanoglu-Ciftci
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100 Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey; Hacettepe University, Institute of Health Sciences, Department of One Health, 06100 Ankara, Turkey.
| |
Collapse
|
3
|
Ramelyte E, Welti M, Gardin F, Maul JT, Dummer R, Imhof L. Post-Excision Soft X-Ray Radiotherapy for Keloids: Experience in a Tertiary Referral Center. Dermatology 2024; 240:572-580. [PMID: 38897192 PMCID: PMC11309064 DOI: 10.1159/000539782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Keloid is an abnormal proliferation of scar tissue that grows beyond the original margins of the injury. Even after complete resection, recurrences are common and pose a poorly understood challenge in dermatology. There is lack of large prospective clinical trials; thus, treatment recommendations are based on retrospective analyses and small cohort studies. Superficial radiotherapy is recommended in recurrent keloids; however, the successful treatment rates vary greatly. The aim of this study was to evaluate the keloid recurrence rate after post-excision soft X-ray radiotherapy and the associated factors. METHODS We reviewed retrospective data of all patients, treated with adjuvant post-excision soft X-ray radiotherapy with 12 Gy in 6 sessions at the tertiary referral center, Department of Dermatology, University Hospital Zurich, Switzerland, between 2005 and 2018. We analyzed individual keloids as separate cases. Successful treatment was defined as no sign of recurrence within 2 years. RESULTS Of the 200 identified patients, 90 met the inclusion criteria and were included in the final analysis. In 90 patients, 104 cases of treated keloids were analyzed. Keloids were mainly located on the trunk (49%) and were mostly caused by previous surgery (52.2%). 50% of the keloids did not relapse within 2 years after therapy. A significant factor leading to recurrence was the presence of previous therapy, with prior topical therapies, such as steroid injections or 5-fluorouracil, leading to most relapses. 69.2% of keloid cases who relapsed were pretreated. Soft X-ray radiotherapy was well tolerated, with posttreatment hyperpigmentation noted in 34% of patients, particularly in patients with non-Caucasian origin (61.3%). CONCLUSION Treatment of refractory keloids is difficult. Post-excision radiotherapy is an established adjuvant treatment option; nevertheless, recurrence rates are high, especially in pretreated keloids. Prospective studies determining the exact dosage and fraction of post-excisional radiotherapy are needed to determine the optimal radiation parameters.
Collapse
Affiliation(s)
- Egle Ramelyte
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Michèle Welti
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Fabian Gardin
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Julia-Tatjana Maul
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Laurence Imhof
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
- Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Li Z, Zhang C, Zhang Q, Dong Y, Sha X, Jiang M, Yan J, Wang W, Li H, Zhang Y, Zhou YL. Identification of a potential bioinformatics-based biomarker in keloids and its correlation with immune infiltration. Eur J Med Res 2023; 28:476. [PMID: 37915086 PMCID: PMC10621210 DOI: 10.1186/s40001-023-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
Keloid formation is a pathological consequence resulting from cutaneous irritation and injury, primarily attributed to excessive collagen matrix deposition and fibrous tissue proliferation. Chronic inflammation, left uncontrolled over an extended period, also stands as a substantial contributing factor. The precise mechanisms underlying keloid formation remain unclear. Therefore, this study aimed to identify key genes for diagnostic purposes. To achieve this, we used two Gene Expression Omnibus (GEO) data sets to identify differentially expressed genes. We identified one particular gene, homeobox C9 (HOXC9), using a thorough strategy involving two algorithms (least absolute shrinkage and selection operator and support vector machine-recursive feature elimination) and weighted gene co-expression network analysis. We then assessed its expression in normal and keloid tissues. In addition, we explored its temporal expression patterns via Mfuzz time clustering analysis. In our comprehensive analysis, we observed that immune infiltration, as well as cell proliferation, are crucial to keloid formation. Thus, we investigated immune cell infiltration in the keloid and normal groups, as well as the correlation between HOXC9 and these immune cells. It was found that HOXC9 was closely associated with the immune microenvironment of keloids. This shows that HOXC9 can serve as a potential biomarker and therapeutic target for keloids.
Collapse
Affiliation(s)
- Zihan Li
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Chuwei Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
| | - Qingrong Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yipeng Dong
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
| | - Xinyu Sha
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ming Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
| | - Jun Yan
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Nantong University, Nantong, China
| | - Wenmiao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Houqiang Li
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| | - You Lang Zhou
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China.
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
5
|
Zhu L, Liu L, Wang A, Liu J, Huang X, Zan T. Positive feedback loops between fibroblasts and the mechanical environment contribute to dermal fibrosis. Matrix Biol 2023; 121:1-21. [PMID: 37164179 DOI: 10.1016/j.matbio.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lechen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aoli Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jinwen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Kidzeru EB, Lebeko M, Sharma JR, Nkengazong L, Adeola HA, Ndlovu H, P Khumalo N, Bayat A. Immune cells and associated molecular markers in dermal fibrosis with focus on raised cutaneous scars. Exp Dermatol 2023; 32:570-587. [PMID: 36562321 PMCID: PMC10947010 DOI: 10.1111/exd.14734] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Raised dermal scars including hypertrophic, and keloid scars as well as scalp-associated fibrosing Folliculitis Keloidalis Nuchae (FKN) are a group of fibrotic raised dermal lesions that mostly occur following cutaneous injury. They are characterized by increased extracellular matrix (ECM) deposition, primarily excessive collagen type 1 production by hyperproliferative fibroblasts. The extent of ECM deposition is thought to be proportional to the severity of local skin inflammation leading to excessive fibrosis of the dermis. Due to a lack of suitable study models, therapy for raised dermal scars remains ill-defined. Immune cells and their associated markers have been strongly associated with dermal fibrosis. Therefore, modulation of the immune system and use of anti-inflammatory cytokines are of potential interest in the management of dermal fibrosis. In this review, we will discuss the importance of immune factors in the pathogenesis of raised dermal scarring. The aim here is to provide an up-to-date comprehensive review of the literature, from PubMed, Scopus, and other relevant search engines in order to describe the known immunological factors associated with raised dermal scarring. The importance of immune cells including mast cells, macrophages, lymphocytes, and relevant molecules such as cytokines, chemokines, and growth factors, antibodies, transcription factors, and other immune-associated molecules as well as tissue lymphoid aggregates identified within raised dermal scars will be presented. A growing body of evidence points to a shift from proinflammatory Th1 response to regulatory/anti-inflammatory Th2 response being associated with the development of fibrogenesis in raised dermal scarring. In summary, a better understanding of immune cells and associated molecular markers in dermal fibrosis will likely enable future development of potential immune-modulated therapeutic, diagnostic, and theranostic targets in raised dermal scarring.
Collapse
Affiliation(s)
- Elvis Banboye Kidzeru
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Maribanyana Lebeko
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Present address:
Cape Biologix Technologies (PTY, LTD)Cape TownSouth Africa
| | - Jyoti Rajan Sharma
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
- Present address:
Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
| | - Lucia Nkengazong
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Henry Ademola Adeola
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Hlumani Ndlovu
- Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla P Khumalo
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ardeshir Bayat
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
7
|
Remaggi G, Bottari B, Bancalari E, Catanzano O, Neviani E, Elviri L. Lactobacillus delbrueckii subsp. bulgaricus derivatives for 3D printed alginate/hyaluronic acid self-crosslinking hydrogels: Manufacturing and wound healing potential. Int J Biol Macromol 2023; 242:124454. [PMID: 37076070 DOI: 10.1016/j.ijbiomac.2023.124454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Derivatives [i.e. proteins and exopolysaccharides (EPS)] from Lactobacillus delbrueckii subsp. bulgaricus (LB) were extracted, characterized, and for the first time used in the production of novel self-crosslinking 3D printed alginate/hyaluronic acid (ALG/HA) hydrogels, as high-value functional biomaterials with therapeutic potentials in regenerative medicine applications. Derivatives coming from two different LB strains, LB1865 and LB1932, were tested in-vitro and compared for their cytotoxicity and effect on proliferation and migration on human fibroblast. EPS received particular attention as showing relevant dose-dependent cytocompatibility against the human fibroblast. The derivatives showed an ability to increase cell proliferation and migration, quantifiable between 10 and 20 % if compared to controls, with higher values for the derivatives obtained from the LB1932 strain. These were explained by liquid chromatography-mass spectrometry targeted protein biomarker analysis as a decrease in matrix-degrading and proapoptotic proteins, associated with an increase in collagen and antiapoptotic proteins production. LB1932 enriched hydrogel was found to be of benefit compared to control dressings, giving the more promising results as potential for in vivo skin wound healing tests.
Collapse
Affiliation(s)
- Giulia Remaggi
- Department of Food and Drug Science, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Benedetta Bottari
- Department of Food and Drug Science, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Elena Bancalari
- Department of Food and Drug Science, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ovidio Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Erasmo Neviani
- Department of Food and Drug Science, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Lisa Elviri
- Department of Food and Drug Science, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
8
|
Huang S, Deng W, Dong Y, Hu Z, Zhang Y, Wang P, Cao X, Chen M, Cheng P, Xu H, Zhu W, Tang B, Zhu J. Melatonin influences the biological characteristics of keloid fibroblasts through the Erk and Smad signalling pathways. BURNS & TRAUMA 2023; 11:tkad005. [PMID: 36873285 PMCID: PMC9977354 DOI: 10.1093/burnst/tkad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/31/2023] [Accepted: 01/17/2023] [Indexed: 03/06/2023]
Abstract
Background Keloids are abnormal fibrous hyperplasias that are difficult to treat. Melatonin can be used to inhibit the development of certain fibrotic diseases but has never been used to treat keloids. We aimed to discover the effects and mechanisms of melatonin in keloid fibroblasts (KFs). Methods Flow cytometry, CCK-8 assays, western blotting, wound-healing assays, transwell assays, collagen gel contraction assays and immunofluorescence assays were applied to demonstrate the effects and mechanisms of melatonin in fibroblasts derived from normal skin, hypertrophic scars and keloids. The therapeutic potential of the combination of melatonin and 5-fluorouracil (5-FU) was investigated in KFs. Results Melatonin significantly promoted cell apoptosis and inhibited cell proliferation, migration and invasion, contractile capability and collagen production in KFs. Further mechanistic studies demonstrated that melatonin could inhibit the cAMP/PKA/Erk and Smad pathways through the membrane receptor MT2 to alter the biological characteristics of KFs. Moreover, the combination of melatonin and 5-FU remarkably promoted cell apoptosis and inhibited cell migration and invasion, contractile capability and collagen production in KFs. Furthermore, 5-FU suppressed the phosphorylation of Akt, mTOR, Smad3 and Erk, and melatonin in combination with 5-FU markedly suppressed the activation of the Akt, Erk and Smad pathways. Conclusions Collectively, melatonin may inhibit the Erk and Smad pathways through the membrane receptor MT2 to alter the cell functions of KFs, while combination with 5-FU could exert even more inhibitory effects in KFs through simultaneous suppression of multiple signalling pathways.
Collapse
Affiliation(s)
- Shaobin Huang
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yunxian Dong
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhicheng Hu
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Peng Wang
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoling Cao
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Pu Cheng
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Hailin Xu
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wenkai Zhu
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Bing Tang
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayuan Zhu
- Department of Burn, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Li J, Zhang T, Pan M, Xue F, Lv F, Ke Q, Xu H. Nanofiber/hydrogel core-shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing. J Nanobiotechnology 2022; 20:28. [PMID: 34998407 PMCID: PMC8742387 DOI: 10.1186/s12951-021-01208-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Herein, a nanofiber/hydrogel core–shell scaffold with three-dimensional (3D) multilayer patterned structure (3D-PT-P/GM) was introduced for promoting diabetic wound healing with improved angiogenesis. The results showed that the 3D-PT-P/GM scaffolds possessed multilayered structure with interlayer spacing of about 15–80 μm, and the hexagonal micropatterned structures were uniformly distributed on the surface of each layer. The nanofibers in the scaffold exhibited distinct core–shell structures with Gelatin methacryloyl (GelMA) hydrogel as the shell and Poly (d, l-lactic acid) (PDLLA) as the core. The results showed that the porosity, water retention time and water vapor permeability of the 3D-PT-P/GM scaffolds increased to 1.6 times, 21 times, and 1.9 times than that of the two-dimensional (2D) PDLLA nanofibrous scaffolds, respectively. The in vitro studies showed that the 3D-PT-P/GM scaffolds could significantly promote cell adhesion, proliferation, infiltration and migration throughout the scaffolds, and the expression of cellular communication protein-related genes, as well as angiogenesis-related genes in the same group, was remarkably upregulated. The in vivo results further demonstrated that the 3D-PT-P/GM scaffolds could not only effectively absorb exudate and provide a moist environment for the wound sites, but also significantly promote the formation of a 3D network of capillaries. As a result, the healing of diabetic wounds was accelerated with enhanced angiogenesis, granulation tissue formation, and collagen deposition. These results indicate that nanofiber/hydrogel core–shell scaffolds with 3D multilayer patterned structures could provide a new strategy for facilitating chronic wound healing. ![]()
Collapse
Affiliation(s)
- Jiankai Li
- College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, People's Republic of China
| | - Tianshuai Zhang
- College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, People's Republic of China
| | - Mingmang Pan
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Feng Xue
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Fang Lv
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China.
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, Shanghai Institute of Technology, No. 120 Caobao Road, Shanghai, 200235, People's Republic of China. .,College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, People's Republic of China.
| | - He Xu
- College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, People's Republic of China.
| |
Collapse
|
10
|
Zhou J, Shen JY, Tao LE, Chen H. The Inhibition of Adipose-Derived Stem Cells on the Invasion of Keloid Fibroblasts. Int J Med Sci 2022; 19:1796-1805. [PMID: 36313222 PMCID: PMC9608046 DOI: 10.7150/ijms.68646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Keloids represent the dysregulation of cutaneous wound healing caused by aberrant fibroblast activities. Adipose-derived stem cells have been recognized as a promising treatment for keloids. However, the molecular mechanisms have not been fully elucidated. Objectives: to explicitly demonstrate the relationship between adipose-derived stem cells alleviating keloids and alterations of Col-1, Col-3, CTGF, and P-4-HB. Methods: Skin biopsies were obtained from 10 keloid patients and 9 healthy volunteers. Fibroblasts isolated from all samples were divided into two groups, one co-cultured with adipose-derived stem cells and the other grown independently. We compared the wound-healing rates, fibroblast survival rates, apoptosis rates, mRNA expressions, and protein levels of Col-1, Col-3, CTGF, and P-4-HB between separated groups. Results: We found no significant differences between normal fibroblasts and keloid fibroblasts in terms of wound-healing rate, survival rate, or apoptosis rate at the baseline. With adipose-derived stem cells, wound-healing rate and survival rate of normal fibroblasts were promoted, whereas in keloid fibroblasts, they were reduced. The apoptosis rate of normal fibroblasts and keloid fibroblasts were restrained, with the restraint in keloid fibroblasts being more evident. The protein levels of Col-3, CTGF, and P-4-HB were lower in keloid fibroblasts co-cultured with adipose-derived stem cells than in normal fibroblasts under similar conditions. Conclusions: Adipose-derived stem cells strongly suppressed keloid fibroblasts' proliferative and invasive behavior. However, adipose-derived stem cells negatively regulated keloid fibroblast apoptosis. Adipose-derived stem cells can be a potential keloid therapy worth further investigation.
Collapse
Affiliation(s)
- Jiong Zhou
- Department of Dermatology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ji-Yang Shen
- Department of Dermatology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Dermatology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Li-En Tao
- Department of Dermatology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan Chen
- Department of Dermatology, The Central Hospital of Lishui City, Lishui, Zhejiang, China
| |
Collapse
|
11
|
Nangole FW, Ouyang K, Anzala O, Ogengo J, Agak GW. Multiple Cytokines Elevated in Patients with Keloids: Is It an Indication of Auto-Inflammatory Disease? J Inflamm Res 2021; 14:2465-2470. [PMID: 34140794 PMCID: PMC8203597 DOI: 10.2147/jir.s312091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inflammation seems to play a major role in the pathophysiology of keloids. However, the role of cytokines in keloid pathophysiology has not been fully evaluated with only a few cytokines studied. We undertook this study to compare various cytokines in patients with keloids and a control group of patients without keloids nor family history of keloids so as to determine which cytokines are elevated and could thus be critical in keloid formation. METHODS This was a cross-sectional study of patients with keloids and a control group of those without. Patients in both groups were matched for age, sex and body mass index. Their plasma was analyzed for both inflammatory and anti-inflammatory cytokines using the Bio-flex ElisaTM method. Comparisons of cytokines means in both groups were done using Student's t-test. RESULTS A total of 84 participants with 42 participants in each group were followed during the study. Male to female ratio was 1:2. Age ranges were similar with a mean of 29.6 years. A total of 28 cytokines were assayed. Statistically significant differences were noted in 15 of the 28 cytokines assayed with 11 being elevated more in keloid patients with only four in the non-keloid forming group. Among elevated cytokines in keloid patients were granulocyte colony-stimulating factors, granulocyte-monocyte-colony-stimulating factors, interleukins 4, 6 and 13. CONCLUSION Patients with keloids have significantly higher cytokines compared with non-keloid forming patients. This finding suggests that keloid formation could be influenced by multiple inflammatory cytokines, an indication that the patient's immune system could play a role in keloid formation akin to auto-inflammatory disease.
Collapse
Affiliation(s)
| | - Kelsey Ouyang
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Omu Anzala
- Institute of Aids Vaccine Initiative, University of Nairobi, Nairobi, Kenya
| | - Julius Ogengo
- Department of Human Anatomy, University of Nairobi, Nairobi, Kenya
| | - George W Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
12
|
Zhang D, Li B, Zhao M. Therapeutic Strategies by Regulating Interleukin Family to Suppress Inflammation in Hypertrophic Scar and Keloid. Front Pharmacol 2021; 12:667763. [PMID: 33959031 PMCID: PMC8093926 DOI: 10.3389/fphar.2021.667763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scar (HS) and keloid are fibroproliferative disorders (FPDs) of the skin due to aberrant wound healing, which cause disfigured appearance, discomfort, dysfunction, psychological stress, and patient frustration. The unclear pathogenesis behind HS and keloid is partially responsible for the clinical treatment stagnancy. However, there are now increasing evidences suggesting that inflammation is the initiator of HS and keloid formation. Interleukins are known to participate in inflammatory and immune responses, and play a critical role in wound healing and scar formation. In this review, we summarize the function of related interleukins, and focus on their potentials as the therapeutic target for the treatment of HS and keloid.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bo Li
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Muxin Zhao
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Zhang P, Li Y, Tang Y, Shen H, Li J, Yi Z, Ke Q, Xu H. Copper-Based Metal-Organic Framework as a Controllable Nitric Oxide-Releasing Vehicle for Enhanced Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18319-18331. [PMID: 32216291 DOI: 10.1021/acsami.0c01792] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic wounds are one of the most serious complications of diabetes mellitus. Even though utilizing nitric oxide (NO) as a gas medicine to repair diabetic wounds presents a promising strategy, controlling the NO release behavior in the affected area, which is vital for NO-based therapy, still remains a significant challenge. In this work, a copper-based metal-organic framework, namely, HKUST-1, has been introduced as a NO-loading vehicle, and a NO sustained release system with the core-shell structure has been designed through the electrospinning method. The results show that the NO is quantificationally and stably loaded in the HKUST-1 particles, and the NO-loaded HKUST-1 particles are well incorporated into the core layer of the coaxial nanofiber. Therefore, NO can be controllably released with an average release rate of 1.74 nmol L-1 h-1 for more than 14 days. Moreover, the additional copper ions released from the degradable HKUST-1 play a synergistic role with NO to promote endothelial cell growth and significantly improve the angiogenesis, collagen deposition as well as anti-inflammatory property in the wound bed, which eventually accelerate the diabetic wound healing. These results suggest that such a copper-based metal-organic framework material as a controllable NO-releasing vehicle is a highly efficient therapy for diabetic wounds.
Collapse
Affiliation(s)
- Pengju Zhang
- College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - You Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Shen
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiankai Li
- College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qinfei Ke
- College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
- Shanghai Institute of Technology, School of Materials Science and Engineering, No. 120 Caobao Road, Shanghai 200235, China
| | - He Xu
- College of Chemistry and Materials Science, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
14
|
Wise LM, Stuart GS, Jones NC, Fleming SB, Mercer AA. Orf Virus IL-10 and VEGF-E Act Synergistically to Enhance Healing of Cutaneous Wounds in Mice. J Clin Med 2020; 9:jcm9041085. [PMID: 32290480 PMCID: PMC7231296 DOI: 10.3390/jcm9041085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Orf virus (OV) is a zoonotic parapoxvirus that causes highly proliferative skin lesions which resolve with minimal inflammation and scarring. OV encodes two immunomodulators, vascular endothelial growth factor (VEGF)-E and interleukin-10 (ovIL-10), which individually modulate skin repair and inflammation. This study examined the effects of the VEGF-E and ovIL-10 combination on healing processes in a murine wound model. Treatments with viral proteins, individually and in combination, were compared to a mammalian VEGF-A and IL-10 combination. Wound biopsies were harvested to measure re-epithelialisation and scarring (histology), inflammation, fibrosis and angiogenesis (immunofluorescence), and gene expression (quantitative polymerase chain reaction). VEGF-E and ovIL-10 showed additive effects on wound closure and re-epithelialisation, and suppressed M1 macrophage and myofibroblast infiltration, while allowing M2 macrophage recruitment. The viral combination also increased endothelial cell density and pericyte coverage, and improved collagen deposition while reducing the scar area. The mammalian combination showed equivalent effects on wound closure, re-epithelialisation and fibrosis, but did not promote blood vessel stabilisation or collagen remodeling. The combination treatments also differentially altered the expression of transforming growth factor beta isoforms, Tgfβ1 and Tgfβ3. These findings show that the OV proteins synergistically enhance skin repair, and act in a complimentary fashion to improve scar quality.
Collapse
Affiliation(s)
- Lyn M. Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (G.S.S.); (N.C.J.)
- Correspondence: ; Tel.: +64-3-479-7723
| | - Gabriella S. Stuart
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (G.S.S.); (N.C.J.)
| | - Nicola C. Jones
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (G.S.S.); (N.C.J.)
| | - Stephen B. Fleming
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (S.B.F.); (A.A.M.)
| | - Andrew A. Mercer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; (S.B.F.); (A.A.M.)
| |
Collapse
|
15
|
Thyparambil NJ, Gutgesell LC, Bromet BA, Flowers LE, Greaney S, Day DE, Semon JA. Bioactive borate glass triggers phenotypic changes in adipose stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:35. [PMID: 32206916 DOI: 10.1007/s10856-020-06366-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
A bioactive borate glass, 13-93B3 (B3), has been used successfully in the clinic to treat chronic, nonhealing wounds without scarring. However, the mechanism by which B3 stimulates wound healing is poorly understood. Because adipose stem cells (ASCs) have been shown to have multiple roles in wound repair, we hypothesized that B3 triggers ASCs. In this study, we evaluate the effects of B3 on ASC survival, migration, differentiation, and protein secretion in vitro. In concentrations ≤10 mg/ml, B3 did not affect ASC viability under static conditions. B3 promoted the migration of ASCs but did not increase differentiation into bone or fat. B3 also decreased ASCs secretion of collagen I, PAI-1, MCP-1, DR6, DKK-1, angiogenin, IL-1, IGFBP-6, VEGF, and TIMP-2; increased expression of IL-1R and E-selectin; had a transient decrease in IL-6 secretion; and had a transient increase in bFGF secretion. Together, these results show that B3 alters the protein secretion of ASCs.
Collapse
Affiliation(s)
- Nathan J Thyparambil
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Lisa C Gutgesell
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Bradley A Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Lauren E Flowers
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Samantha Greaney
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Delbert E Day
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO, USA
- Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA.
- Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO, USA.
| |
Collapse
|
16
|
A Novel Radiotherapy Approach for Keloids with Intrabeam. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4693528. [PMID: 31428636 PMCID: PMC6679878 DOI: 10.1155/2019/4693528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/10/2019] [Accepted: 07/14/2019] [Indexed: 01/05/2023]
Abstract
Background Keloids are hard nodules or plaques formed by excessive proliferation of connective tissue. Radiotherapy, widely used in various benign and malignant skin diseases, is an effective treatment for keloids. This work evaluates Intrabeam photon radiotherapy in the management of keloids. Methods Fourteen patients who have undergone Intrabeam radiotherapy for a total of 15 sites of keloids were followed up. Twelve cases were first onset and the other two had recurrent diseases. Thirteen patients underwent surgical resection of keloids before radiotherapy. One relapsing patient received only 2 rounds of radiation therapy as she could not be reoperated. Radiotherapy was divided into 2 sessions on days 0 and 3 after surgery. The dose was 4 or 5 Gy each time for 3 min 14 s to 12 min 1 s. In addition, we compared our data to the recurrence of keloids in fourteen patients who had previously been exposed to electron beam using conventional accelerators. Results We analyzed the treatment for adverse reactions and recurrence. In the Intrabeam group, one patient developed superficial skin ulcers a month after treatment. No one experienced wound rupture, bleeding, infection, skin contractures, or obvious hyperpigmentation. None of the fourteen cases showed any recurrence so far after on median 22.5 months of follow-up. Five patients in the electron beam group relapsed 3 to 10 months after treatment. Conclusion Here, Intrabeam photon radiotherapy was shown to be an effective treatment for keloid scars and it is therefore recommended for management of this disease.
Collapse
|
17
|
Baptista VIDA, Quintana HT, Lazzarin MC, Benfato ID, De Carvalho FP, Le Sueur-Maluf L, De Oliveira CAM, Baptista JDS, De Oliveira F. Short time insulin treatment post burn improves elastic-collagen rearrangement and reepithelization. Connect Tissue Res 2019; 60:230-239. [PMID: 29929404 DOI: 10.1080/03008207.2018.1484916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extensive burn may cause acute resistance to insulin, which accentuates hypermetabolism, impairs glucose metabolism, immune dysfunction and risks of sepsis. To minimize these effects, insulin is used as a treatment. The purpose was to analyze the collagen-elastic arrangement effects of insulin on the burned skin. Wistar rats were assigned in groups: control (C); control with insulin (C + I); scald burn injury (SBI); and SBI with insulin (SBI+ I). SBI were submitted to 45% total body surface area burn and the insulin-treated groups received insulin (5 UI/Kg/day) for 4 or 14 days (d). Insulin levels, glucose tolerance test and HOMA index were determined. The skin sections were analyzed for histophatological and morphoquantitative data. Histopathological findings showed increased reepithelization of SBI+ I and formation of a new muscle layer after 14 days. In the collagen-elastic arrangement, insulin for 4 days increased the volume fraction (Vv) of thin collagen and elastic fibers. After 14 days, independently of injury, insulin decreased the elastic fibers. Insulin was able to reverse damages in the collagen-elastic rearrangement and stimulate reepithelization after 4 days. Untreated scald-burned animals showed higher Vv of thick collagen after 4 days, while those treated had a higher Vv of thin collagen. The Vv of elastic fibers was increased in SBI+ I for 4 days. In conclusion, insulin treatment was able to stimulate reepithelization. It also reversed the damages to the collagen-elastic arrangement in the scald-burned group, improving the organization of thin collagen and increasing the Vv of elastic fibers in the injured group treated with insulin for a short time, that is, for 4 days.
Collapse
Affiliation(s)
| | | | - Mariana Cruz Lazzarin
- a Department of Biosciences , Federal University of São Paulo, UNIFESP , SP , Brazil
| | - Izabelle Dias Benfato
- a Department of Biosciences , Federal University of São Paulo, UNIFESP , SP , Brazil
| | | | | | | | | | - Flavia De Oliveira
- a Department of Biosciences , Federal University of São Paulo, UNIFESP , SP , Brazil
| |
Collapse
|
18
|
Euler T, Valesky EM, Meissner M, Hrgovic I, Kaufmann R, Kippenberger S, Zöller NN. Normal and keloid fibroblasts are differentially influenced by IFN-γ and triamcinolone as well as by their combination. Wound Repair Regen 2019; 27:450-461. [PMID: 30994217 DOI: 10.1111/wrr.12722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Impaired wound healing as well as imbalanced cell proliferation and extracellular matrix synthesis and degeneration can cause aberrant scarring. The most severe impacts of such scarring on patients' lives are stigmatization and physical restriction. Although, a broad variety of combinatorial approaches with, e.g., glucocorticoids, chemotherapeutics, and immunomodulators are used, there is still a high recurrence rate of keloids. The aim of this study was to investigate which influence interferon γ (IFN-γ, 1.000-10.000 IU/mL) and/or triamcinolone acetonide (TA, 1 μg/mL) have on proliferation, cell viability, collagen type I synthesis, and cytokine secretion in healthy and keloid fibroblasts. It was shown that mono-treatment with IFN-γ or TA for 2 days induced a severe reduction of the proliferative potential in both cell species. The combinatory treatment (IFN-γ plus TA) of keloid fibroblasts enhanced the anti-proliferative effect of the mono-treatments, whereas no additional anti-proliferative effect was observed in normal fibroblasts. Furthermore, we observed that the combinatory treatment regimen reduced the expression of α-smooth muscle actin (α-SMA), an actin isotype contributing to cell-generated mechanical tension, in keloid fibroblasts. In normal fibroblasts, α-SMA was reduced by the mono-treatment with IFN-γ as well as by the combinatory treatment. The analysis of collagen-type I synthesis revealed that TA did not reduce collagen type I synthesis in normal fibroblasts but in keloid fibroblasts. IFN-γ reduced in both cell species the collagen type I synthesis. The combination of TA and IFN-γ intensified the previously observed collagen type I synthesis reduction in keloid fibroblasts. The herein presented data suggest the combinatory application of IFN-γ and TA as a promising therapy concept for keloids.
Collapse
Affiliation(s)
- Teresa Euler
- Frankfurt/Main, Department of Dermatology, Venereology and Allergology, University Hospital Frankfurt, Goethe University, Germany
| | - Eva M Valesky
- Frankfurt/Main, Department of Dermatology, Venereology and Allergology, University Hospital Frankfurt, Goethe University, Germany
| | - Markus Meissner
- Frankfurt/Main, Department of Dermatology, Venereology and Allergology, University Hospital Frankfurt, Goethe University, Germany
| | - Igor Hrgovic
- Frankfurt/Main, Department of Dermatology, Venereology and Allergology, University Hospital Frankfurt, Goethe University, Germany
| | - Roland Kaufmann
- Frankfurt/Main, Department of Dermatology, Venereology and Allergology, University Hospital Frankfurt, Goethe University, Germany
| | - Stefan Kippenberger
- Frankfurt/Main, Department of Dermatology, Venereology and Allergology, University Hospital Frankfurt, Goethe University, Germany
| | - Nadja N Zöller
- Frankfurt/Main, Department of Dermatology, Venereology and Allergology, University Hospital Frankfurt, Goethe University, Germany
| |
Collapse
|
19
|
Collagen Type III Metabolism Evaluation in Patients with Malignant Head and Neck Cancer Treated with Radiotherapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8702605. [PMID: 29780832 PMCID: PMC5892257 DOI: 10.1155/2018/8702605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/01/2018] [Accepted: 02/18/2018] [Indexed: 11/18/2022]
Abstract
Ionizing radiation affects the metabolism of key proteins of extracellular matrix including type III collagen, an important component of human skin. The aim of the work is an analysis of the impact of radical and palliative radiotherapy on collagen type III synthesis in patients with head and neck cancer. The test group consisted of 56 males with histopathologically confirmed head and neck cancer, for whom radiotherapy was applied as a form of radical or palliative treatment. The level of procollagen III aminoterminal propeptide (PIIINP), which is a marker of collagen type III synthesis, was determined in blood serum before radiotherapy, immediately following radiotherapy, and 3 months after it was finished. As a result of radical radiotherapy a statistically significant decrease of PIIINP levels in serum (p < 0.0001) was observed, both immediately after the radiotherapy and 3 months after the end of the treatment. Also the palliative radiotherapy caused a significant decrease of PIIINP right after the treatment (p = 0.0052), as well as during the examination performed 3 months later (p = 0.0004). The achieved results suggest that PIIINP can be used as a marker helpful in assessing radiation damage to connective tissue.
Collapse
|
20
|
Huang MQ, Cao XY, Chen XY, Liu YF, Zhu SL, Sun ZL, Kong XB, Huo JR, Zhang S, Xu YQ. Saikosaponin a increases interleukin-10 expression and inhibits scar formation after sciatic nerve injury. Neural Regen Res 2018; 13:1650-1656. [PMID: 30127128 PMCID: PMC6126128 DOI: 10.4103/1673-5374.237139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nerve scarring after peripheral nerve injury can severely hamper nerve regeneration and functional recovery. Further, the anti-inflammatory cytokine, interleukin-10, can inhibit nerve scar formation. Saikosaponin a (SSa) is a monomer molecule extracted from the Chinese medicine, Bupleurum. SSa can exert anti-inflammatory effects in spinal cord injury and traumatic brain injury. However, it has not been shown whether SSa can play a role in peripheral nerve injury. In this study, rats were randomly assigned to three groups. In the sham group, the left sciatic nerve was directly sutured after exposure. In the sciatic nerve injury (SNI) + SSa and SNI groups, the left sciatic nerve was sutured and continuously injected daily with SSa (10 mg/kg) or an equivalent volume of saline for 7 days. Enzyme linked immunosorbent assay results demonstrated that at 7 days after injury, interleukin-10 level was considerably higher in the SNI + SSa group than in the SNI group. Masson staining and western blot assay demonstrated that at 8 weeks after injury, type I and III collagen content was lower and nerve scar formation was visibly less in the SNI + SSa group compared with the SNI group. Simultaneously, sciatic functional index and nerve conduction velocity were improved in the SNI + SSa group compared with the SNI group. These results confirm that SSa can increase the expression of the anti-inflammatory factor, interleukin-10, and reduce nerve scar formation to promote functional recovery of injured sciatic nerve.
Collapse
Affiliation(s)
- Meng-Qiang Huang
- Graduate School, Tianjin Medical University; Department of Orthopedics, Tianjin Medical University General Hospital, Tinajin, China
| | - Xiao-Yu Cao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xu-Yi Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Ying-Fu Liu
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, Hebei Province, China
| | - Shuang-Long Zhu
- Graduate School, Tianjin Medical University; Department of Orthopedics, Tianjin Medical University General Hospital, Tinajin, China
| | - Zhong-Lei Sun
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xian-Bin Kong
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing-Rui Huo
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, Hebei Province, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Yun-Qiang Xu
- Graduate School, Tianjin Medical University; Department of Orthopedics, Tianjin Medical University General Hospital, Tinajin, China
| |
Collapse
|