1
|
Zhang P, Liu M, Pei S, Huang H, Zhao Z, Yang L, Pan W, Li S, Bai Q, Zhang R, Zhou P. Efficient Differentiation of hiPSCs into hMSC-like Cells under Chemically Defined Conditions on Temperature-Sensitive Micropatterned Surfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13358-13374. [PMID: 39976673 DOI: 10.1021/acsami.4c13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The fairness of long-term self-renewal and robust cell proliferation limits the applications of human mesenchymal stem cells (hMSCs) in regenerative medicine. Inducing hMSCs from human-induced pluripotent stem cells (hiPSCs), which have the advantages of autogenous and no cell number issues, is highly valuable. However, current induction methods using FBS-containing mesenchymal culture medium have problems, including immunogenicity, microbial contamination, and low efficiency. To solve these problems, we propose a chemically defined induction protocol incorporating transforming growth factor-beta 1 and retinoic acid (RA) additives in serum-free E6 medium for the suspension induction of embryoid bodies in hiPSCs. Additionally, microgroove-patterned polydimethylsiloxane surfaces coated with temperature-sensitive N-isopropylacrylamide (PNIPAAm) were prepared for efficient harvesting and purification of induced hiPSC-derived hMSCs (hiPSC-MSCs). The results showed that both supplementation with RA and patterned microgrooves with a width of 20 μm could accelerate the induction of hiPSC-MSCs, realizing the promising scalable production of homogeneous cells. This study successfully established a chemically defined induction protocol and utilized patterned surfaces to obtain clinically applicable hiPSC-MSCs, which show great promise in tissue engineering, gene therapy, and cell transplantation.
Collapse
Affiliation(s)
- Pengxia Zhang
- School of Stomatology, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Maoying Liu
- School of Basic Medical Sciences, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Zhengyan Zhao
- School of Stomatology, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Ling Yang
- School of Stomatology, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Wen Pan
- School of Life Science, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Siyi Li
- School of Stomatology, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Qifeng Bai
- School of Basic Medical Sciences, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Rui Zhang
- School of Stomatology, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Ping Zhou
- School of Stomatology, Lanzhou University, No. 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| |
Collapse
|
2
|
Ragni E, Papait A, Taiana MM, De Luca P, Grieco G, Vertua E, Romele P, Colombo C, Silini AR, Parolini O, de Girolamo L. Cell culture expansion media choice affects secretory, protective and immuno-modulatory features of adipose mesenchymal stromal cell-derived secretomes for orthopaedic applications. Regen Ther 2025; 28:481-497. [PMID: 39980717 PMCID: PMC11840939 DOI: 10.1016/j.reth.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) gained attention for their anti-inflammatory and trophic properties, with musculoskeletal diseases and osteoarthritis (OA) being among the most studied conditions. Alongside cells, their released factors and extracellular vesicles (EVs), overall termed "secretome", are actively sifted being envisioned as the main therapeutic actors. In addition to standard supplementation given by foetal bovine serum (FBS) or human platelet lysate (hPL), new good manufacturing practice (GMP)-compliant serum/xeno (S/X)-free media formulations have been proposed, although their influence on MSCs phenotype and potential is scarcely described. The aim of this study is therefore to evaluate, in the OA context, the differences in secretome composition and potential after adipose-MSCs (ASCs) cultivation in both standard (FBS and hPL) and two next generation (S/X) GMP-ready supplements. Methods Immunophenotype and secretory ability at soluble protein and EV-related levels, including embedded miRNAs, were analysed in the secretomes by means of flow cytometry, nanoparticle tracking analysis, high throughput ELISA and qRT-PCR arrays. Secretomes effect was tested in in vitro models of chondrocytes, lymphocytes and monocytes to mimic the OA microenvironment. Results Within a conserved molecular signature, a divergent fingerprint emerged for ASCs' secretomes collected after expansion in standard FBS/hPL or next-generation S/X formulations. Regarding soluble factors, a less protective feature for those in the secretome collected after ASCs were cultured in S/X media emerged. Moreover, the overall message for EV-miRNAs was characterized by a preponderance of protective signals in FBS and hPL conditions in a context of general safeguard given by ASCs released molecules. This dichotomy was reflected on secretomes' potential in vitro, with expansion in hPL resulting in the most effective secretome for chondrocytes and in FBS for immune cells. Conclusions These data open the question about the implications from using new media for MSCs expansion for clinical application. Although the undeniable advantages for GMP compliant processes, this study results suggest that new media formulations would deserve a deep characterization to drive the choice of the most effective one tailored to each specific application.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Andrea Papait
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Roma, Italy
| | - Michela Maria Taiana
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Paola De Luca
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Giulio Grieco
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Elsa Vertua
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Pietro Romele
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Cecilia Colombo
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Roma, Italy
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant’Ambrogio, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
3
|
Kaokaen P, Pangjantuk A, Kunhorm P, Promjantuek W, Chaicharoenaudomrung N, Noisa P. Conditioned medium of human umbilical cord-mesenchymal stem cells cultivated with human cord blood serum enhances stem cell stemness and secretome profiles. Toxicol In Vitro 2025; 103:105973. [PMID: 39561911 DOI: 10.1016/j.tiv.2024.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The proteins secreted by human umbilical cord mesenchymal stem cells (hUC-MSCs) may enhance tissue regeneration and wound healing. Traditional hUC-MSC cultures may not be enough since they undergo recurrent cellular senescence during large-scale production. This decreases the therapeutic ability of hUC-MSCs by altering genes and proteins that control stemness, proliferation, and protein release. Human cord blood serum (CBS) and the middle-density technique were used to evaluate hUC-MSC regeneration ability. To evaluate early-passage hMSCs for secretome-based therapies, they were expanded and secreted in vitro. After 4 days, hUC-MSCs cultivated at 3000 cells/cm2 and supplemented with 1 ng/ml CBS showed increased growth, cell proliferation, and a much lower population doubling time. CBS treatment reduced CD34, CD45, and HLA-DR levels in human umbilical cord mesenchymal stem cells (hUC-MSCs) by less than 2 %. Positive markers such CD73, CD90, and CD105 were found at >97 %, like control hUC-MSCs. Over extended culture, this combination culture can increase survival, proliferation, and stemness and postpone cell death and hUC-MSC senescence. The protein profile and hUC-MSC secretion were improved to make MSC secretion protein therapeutic. This improves cell-free treatment, proliferation, and wound healing in human skin cells. To improve cell-based transplantation or cosmeceutical manufacturing, this technique can boost hUC-MSC regeneration capacity.
Collapse
Affiliation(s)
- Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Amorn Pangjantuk
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
4
|
Du P, Tao X, Harati J, Shi Y, Xiao L, Li X, Pan H, Wang PY. Human platelet lysate enhances small lipid droplet accumulation of human MSCs through MAPK phosphorylation. Stem Cell Res Ther 2024; 15:473. [PMID: 39696689 DOI: 10.1186/s13287-024-04085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Human platelet lysate (hPL) has emerged as a promising serum substitute to enhance the self-renewal and multipotency of human mesenchymal stem cells (MSCs). Despite its potential, the specific biological mechanisms by which hPL influences MSC phenotypes remain inadequately understood. METHODS We investigated the biological signaling activated by hPL in two common types of human MSCs: bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs). Cell adhesion and cell-matrix interaction were assessed through immunofluorescence staining and western blotting. The impact of hPL on lipid droplet formation in MSCs was thoroughly examined using oil red O/BODIPY staining, semi-quantitative analysis, and qRT-PCR. RNA sequencing and intracellular inhibition assays were also performed to elucidate the mechanisms by which hPL modulates MSC behavior. RESULTS MSCs cultured in hPL medium demonstrated a reduction in cell size, spreading area, and vinculin puncta, while enhancing cell proliferation and lipid droplet accumulation compared to those cultured in control media. Notably, the lipid droplets in hPL-treated MSCs were significantly smaller than those in adipocyte-like cells differentiated from MSCs, highlighting hPL's distinctive role in lipid production. Gene and protein expression profiles of hPL-treated MSCs differed from those in adipocyte-like cells. An angiogenic factor array revealed that hPL-MSCs had a distinct angiogenic factor profile compared to FBS-MSCs, with VEGF expression closely linked to HIF-1α expression. RNA-seq data identified approximately 1,900 differentially expressed genes (DEGs) between hPL-MSCs and FBS-MSCs, with enrichment in focal adhesion, ECM-receptor interaction, and PI3K-Akt/MAPK signaling pathways. Inhibition of MAPK phosphorylation significantly hampered lipid formation in hPL-MSCs, underscoring the pivotal role of MAPK signaling in hPL-driven adipogenesis. CONCLUSION This study reveals the biological mechanisms by which hPL infleunces MSC behavior and differentiation, offering new insights into its potential application in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xuelian Tao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Liang Xiao
- Department of Surgery and Oncology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Xian Li
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Di Nubila A, Doulgkeroglou MN, Gurdal M, Korntner SH, Zeugolis DI. In vitro and in vivo assessment of a non-animal sourced chitosan scaffold loaded with xeno-free umbilical cord mesenchymal stromal cells cultured under macromolecular crowding conditions. BIOMATERIALS AND BIOSYSTEMS 2024; 16:100102. [PMID: 40225717 PMCID: PMC11993840 DOI: 10.1016/j.bbiosy.2024.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 10/08/2024] [Indexed: 04/15/2025] Open
Abstract
There is an increasing demand to not only accelerate the development of advanced therapy tissue engineered medicines, but to also eliminate xenogeneic materials from their development cycle. With these in mind, herein we first assessed the influence of carrageenan as macromolecular crowding agent to enhance and accelerate extracellular matrix deposition in xeno-free human umbilical cord mesenchymal stromal cell cultures and we developed and characterised a non-animal sourced chitosan scaffold. Following appropriate in vitro experimentation, a splinted nude mouse wound healing model was used to assess wound closure and scar size of non-treated control, non-animal sourced chitosan scaffold, non-animal sourced chitosan scaffold loaded with xeno-free human umbilical cord mesenchymal stromal cells and non-animal sourced chitosan scaffold loaded with xeno-free human umbilical cord mesenchymal stromal cells cultured under macromolecular crowding conditions groups. Across all three donors, carrageenan supplementation significantly increased collagen deposition at day 5, day 8 and day 11 without affecting cell morphology, viability, DNA concentration and metabolic activity. Through freeze drying, a non-animal sourced chitosan sponge was developed with appropriate structural and mechanical properties for wound healing applications. In vitro biological analysis made apparent that neither the scaffold nor macromolecular crowding negatively impacted xeno-free human umbilical cord mesenchymal stromal cell metabolic activity and proliferation. In vivo biological analysis revealed no significant differences between the groups in wound closure and scar size, raising question about the suitability of the model. In any case, this work sets the foundations for the development of completely xeno-free tissue engineered medicines.
Collapse
Affiliation(s)
- Alessia Di Nubila
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Meletios-Nikolaos Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Stefanie H. Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
6
|
Kai R, Hatakeyama M, Iwamoto S, Kitaoka T. Primary human mesenchymal stem cell culture under xeno-free conditions using surface-modified cellulose nanofiber scaffolds. Carbohydr Polym 2024; 343:122479. [PMID: 39174138 DOI: 10.1016/j.carbpol.2024.122479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Stem cell culture often requires various animal-derived components such as serum and collagen. This limits its practical use. Therefore, xeno-free (xenogeneic component-free) culture systems are receiving increased attention. Herein, we propose xeno-free, plant-derived cellulose nanofibers (CNFs) with different surface chemistry: 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized CNFs (TOCNFs) with carboxy groups and surface-sulfated CNFs (S-CNFs) for the proliferation of human mesenchymal stem cells (hMSCs) under various serum conditions. We cultured bone marrow-derived hMSCs on CNF scaffolds with various fiber lengths and functional group contents. Original CNFs were bioinert materials that did not contribute to cell adhesion. In contrast, the surface-modified CNFs facilitated the proliferation of immortalized hMSCs under normal and low-serum conditions. The TOCNFs (COONa: 1.47 mmol g-1; length: 0.53 μm), the S-CNFs (OSO3Na: 0.64 mmol g-1; 0.61 μm), and a combination of the two (1:1 by weight) enabled immortalized hMSCs to maintain their multipotency, even under serum-free conditions. Primary cultured hMSCs proliferated well on the TOCNF/S-CNF scaffolds in a completely serum-free medium, comparable to animal-derived type I collagen, although few hMSCs adhered to the standard polystyrene substrate. Our strategy of using surface-modified CNFs will inform the development of xeno-free culture systems to avoid the use of animal-derived materials for both cell culture media and scaffolds.
Collapse
Affiliation(s)
- Ritomo Kai
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mayumi Hatakeyama
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Takahashi K, Aritomi S, Honkawa F, Asari S, Hirose K, Konishi A. Efficient and cost-effective differentiation of induced neural crest cells from induced pluripotent stem cells using laminin 211. Regen Ther 2024; 26:749-759. [PMID: 39290629 PMCID: PMC11406167 DOI: 10.1016/j.reth.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Neural crest cells (NCCs) are cell populations that originate during the formation of neural crest in developmental stages. They are characterized by their multipotency, self-renewal and migration potential. Given their ability to differentiate into various types of cells such as neurons and Schwann cells, NCCs hold promise for cell therapy applications. The conventional method for obtaining NCCs involves inducing them from stem cells like induced pluripotent stem cells (iPSCs), followed by a long-term passage or purification using fluorescence-activated cell sorting (FACS). Although FACS allows high purity induced neural crest cells (iNCCs) to be obtained quickly, it is complex and costly. Therefore, there is a need for a simpler, cost-effective and less time-consuming method for cell therapy application. Methods To select differentiated iNCCs from heterogeneous cell populations quickly without using FACS, we adopted the use of scaffold material full-length laminin 211 (LN211), a recombinant, xeno-free protein suitable for cell therapy. After fist passage on LN211, iNCCs characterization was performed using polymerase chain reaction and flow cytometry. Additionally, proliferation and multipotency to various cells were evaluated. Result The iNCCs obtained using our new method expressed cranial NCC- related genes and exhibited stable proliferation ability for at least 57 days, while maintaining high expression level of the NCCs marker CD271. They demonstrated differentiation ability into several cell types: neurons, astrocytes, melanocytes, smooth muscle cells, osteoblasts, adipocytes and chondrocytes. Furthermore, they could be induced to differentiate into induced mesenchymal stem cells (iMSCs) which retain the essential functions of somatic MSCs. Conclusion In this study, we have developed novel method for obtaining high purity iNCCs differentiated from iPSCs in a short time using LN211 under xeno-free condition. Compared with traditional methods, like FACS or long-term passage, this approach enables the acquisition of a large amount of cells at a lower cost and labor, and it is expected to contribute to stable supply of large scale iNCCs for future cell therapy applications.
Collapse
Affiliation(s)
- Kazuma Takahashi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Shizuka Aritomi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Fumie Honkawa
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Sayaka Asari
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Ken Hirose
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Atsushi Konishi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| |
Collapse
|
8
|
Chu W, Zhang F, Zeng X, He F, Shang G, Guo T, Wang Q, Wu J, Li T, Zhong ZZ, Liang X, Hu J, Liu M. A GMP-compliant manufacturing method for Wharton's jelly-derived mesenchymal stromal cells. Stem Cell Res Ther 2024; 15:131. [PMID: 38702793 PMCID: PMC11069138 DOI: 10.1186/s13287-024-03725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Wanglong Chu
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Fen Zhang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Xiuping Zeng
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Fangtao He
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Guanyan Shang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Tao Guo
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Qingfang Wang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Jianfu Wu
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Tongjing Li
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Zhen Zhong Zhong
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Xiao Liang
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd, 518000, Shenzhen, Guangdong, People's Republic of China.
| | - Muyun Liu
- National Engineering Research Center of Foundational Technologies for CGT Industry, 518000, Shenzhen, Guangdong, People's Republic of China.
- Shenzhen Kenuo Medical Laboratory, 518000, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Limaye A, Perumal V, Karner CM, Arinzeh TL. Plant-Derived Zein as an Alternative to Animal-Derived Gelatin for Use as a Tissue Engineering Scaffold. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300104. [PMID: 38665311 PMCID: PMC11045004 DOI: 10.1002/anbr.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Natural biomaterials are commonly used as tissue engineering scaffolds due to their biocompatibility and biodegradability. Plant-derived materials have also gained significant interest due to their abundance and as a sustainable resource. This study evaluates the corn-derived protein zein as a plant-derived substitute for animal-derived gelatin, which is widely used for its favorable cell adhesion properties. Limited studies exist evaluating pure zein for tissue engineering. Herein, fibrous zein scaffolds are evaluated in vitro for cell adhesion, growth, and infiltration into the scaffold in comparison to gelatin scaffolds and are further studied in a subcutaneous model in vivo. Human mesenchymal stem cells (MSCs) on zein scaffolds express focal adhesion kinase and integrins such as αvβ3, α4, and β1 similar to gelatin scaffolds. MSCs also infiltrate zein scaffolds with a greater penetration depth than cells on gelatin scaffolds. Cells loaded onto zein scaffolds in vivo show higher cell proliferation and CD31 expression, as an indicator of blood vessel formation. Findings also demonstrate the capability of zein scaffolds to maintain the multipotent capability of MSCs. Overall, findings demonstrate plant-derived zein may be a suitable alternative to the animalderived gelatin and demonstrates zein's potential as a scaffold for tissue engineering.
Collapse
Affiliation(s)
- Apurva Limaye
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, Columbia University, 3960 Broadway, New York, NY 10027, USA
| | - Venkatesan Perumal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Courtney M Karner
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
10
|
Ragni E, Piccolo S, Taiana M, Visconte C, Grieco G, de Girolamo L. Inflammation and Starvation Affect Housekeeping Gene Stability in Adipose Mesenchymal Stromal Cells. Curr Issues Mol Biol 2024; 46:842-855. [PMID: 38275668 PMCID: PMC10814131 DOI: 10.3390/cimb46010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Due to the scientific success of in vitro and in vivo model studies, the interest in using mesenchymal stromal cells (MSCs) for the treatment of orthopaedic conditions is growing. In the context of osteoarthritis (OA), MSCs, and, in particular, those derived from adipose tissues (ASCs), have found broader access to clinical use as active components of minimally manipulated orthobiologics, as well as clinically expanded cell preparations, or to collect their released factors (secretome) for cell-free approaches. In this regard, while both inflammatory priming and starvation are common strategies used to empower cell potency or collect the secretome, respectively, little is known about the possible influence of these approaches on the stability of housekeeping genes (HKGs) for molecular studies able to fingerprint cell phenotype or potency. In this report, the reliability of five commonly used HKGs (ACTB, B2M, GAPDH, HPRT1 and RPLP0) was tested in ASCs cultured under standard protocol after inflammatory priming or starvation. Gene expression data were computed with four different applets able to rank genes depending on their stability in either single or combined conditions. The obtained final ranking suggests that for each treatment, a specific HKG is needed, and that starvation is the condition with the stronger effect on HKGs' stability and, therefore, reliability. The normalization effect of proper HKGs' use was then validated on three genes involved in OA and whose product is released by ASCs. Overall, data presented herein confirm that the choice of the best HKG has to be carefully considered and that each specific condition has to be tested to identify the most reliable candidate.
Collapse
Affiliation(s)
| | | | | | - Caterina Visconte
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157 Milano, Italy; (E.R.); (S.P.); (M.T.); (G.G.); (L.d.G.)
| | | | | |
Collapse
|
11
|
Ragni E, Piccolo S, De Luca P, Taiana M, Grieco G, de Girolamo L. Housekeeping Gene Stability in Adipose Mesenchymal Stromal Cells Cultivated in Serum/Xeno-Free Media for Osteoarthritis. Cells 2024; 13:167. [PMID: 38247858 PMCID: PMC10814848 DOI: 10.3390/cells13020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Among the available therapeutics for the conservative treatment of osteoarthritis (OA), mesenchymal stromal cells (MSCs)-based products appear to be the most promising. Alongside minimally manipulated cell-based orthobiologics, where MSCs are the engine of the bioactive properties, cell expansion under good manufacturing practice (GMP) settings is actively studied to obtain clinical-grade pure populations able to concentrate the biological activity. One of the main characteristics of GMP protocols is the use of clinical-grade reagents, including the recently released serum-free/xeno-free (SFM/XFM) synthetic media, which differ significantly from the traditional reagents like those based on fetal bovine serum (FBS). As SFM/XFM are still poorly characterized, a main lack is the notion of reliable housekeeping genes (HKGs) for molecular studies, either standalone or in combination with standard conditions. Indeed, the aim of this work was to test the stability of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) in adipose-derived MSCs (ASCs) cultivated in two commercially available SFM/XFM and to compare outcomes with those obtained in FBS. Four different applets widely recognized by the scientific community (NormFinder, geNorm, comparative ΔCt method, and BestKeeper) were used and data were merged to obtain a final stability order. The analysis showed that cells cultured in both synthetic media had a similar ranking for HKGs stability (GAPDH being best), albeit divergent from FBS expanded products (EF1A at top). Moreover, it was possible to identify specific HKGs for side by side studies, with EF1A/TBP being the most reliable normalizers for single SFM/XFM vs. FBS cultured cells and TBP the best one for a comprehensive analysis of all samples. In addition, stability of HKGs was donor-dependent. The normalization effect on selected genes coding for factors known to be involved in OA pathology, and whose amount should be carefully considered for the selection of the most appropriate MSC-based treatment, showed how HKGs choice might affect the perceived amount for the different media or donor. Overall, this work confirms the impact of SFM/XFM conditions on HKGs stability performance, which resulted similarly for both synthetic media analyzed in the study.
Collapse
Affiliation(s)
| | | | - Paola De Luca
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157 Milano, Italy; (E.R.); (S.P.); (M.T.); (G.G.); (L.d.G.)
| | | | | | | |
Collapse
|
12
|
Li J, Wu Y, Yao X, Tian Y, Sun X, Liu Z, Ye X, Wu C. Preclinical Research of Stem Cells: Challenges and Progress. Stem Cell Rev Rep 2023:10.1007/s12015-023-10528-y. [PMID: 37097496 DOI: 10.1007/s12015-023-10528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/26/2023]
Abstract
In recent years, great breakthroughs have been made in basic research and clinical applications of stem cells in regenerative medicine and other fields, which continue to inspire people to explore the field of stem cells. With nearly unlimited self-renewal ability, stem cells can generate at least one type of highly differentiated daughter cell, which provides broad development prospects for the treatment of human organ damage and other diseases. In the field of stem cell research, related technologies for inducing or isolating stem cells are relatively mature, and a variety of stable stem cell lines have been successfully constructed. To realize the full clinical application of stem cells as soon as possible, it is more and more important to further optimize each stage of stem cell research while conforming to Current Good Manufacture Practices (cGMP) standards. Here, we synthesized recent developments in stem cell research and focus on the introduction of xenogenicity in the preclinical research process and the remaining problems of various cell bioreactors. Our goal is to promote the development of technologies for xeno-free culture and clinical expansion of stem cells through in-depth discussion of current research. This review will provide new insight into stem cell research protocols and will contribute to the creation of efficient and stable stem cell expansion systems.
Collapse
Affiliation(s)
- Jinhu Li
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yurou Wu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Yao
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Tian
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue Sun
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zibo Liu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
13
|
Sahoo A, Damala M, Jaffet J, Prasad D, Basu S, Singh V. Expansion and characterization of human limbus-derived stromal/mesenchymal stem cells in xeno-free medium for therapeutic applications. Stem Cell Res Ther 2023; 14:89. [PMID: 37061739 PMCID: PMC10105964 DOI: 10.1186/s13287-023-03299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been proven to prevent and clear corneal scarring and limbal stem cell deficiency. However, using animal-derived serum in a culture medium raises the ethical and regulatory bar. This study aims to expand and characterize human limbus-derived stromal/mesenchymal stem cells (hLMSCs) for the first time in vitro in the xeno-free medium. METHODS Limbal tissue was obtained from therapeutic grade corneoscleral rims and subjected to explant culture till tertiary passage in media with and without serum (STEM MACS XF; SM), to obtain pure hLMSCs. Population doubling time, cell proliferation, expression of phenotypic markers, tri-lineage differentiation, colony-forming potential and gene expression analysis were carried out to assess the retention of phenotypic and genotypic characteristics of hLMSCs. RESULTS The serum-free medium supported the growth of hLMSCs, retaining similar morphology but a significantly lower doubling time of 23 h (*p < 0.01) compared to the control medium. FACS analysis demonstrated ≥ 90% hLMSCs were positive for CD90+, CD73+, CD105+, and ≤ 6% were positive for CD45-, CD34- and HLA-DR-. Immunofluorescence analysis confirmed similar expression of Pax6+, COL IV+, ABCG2+, ABCB5+, VIM+, CD90+, CD105+, CD73+, HLA-DR- and CD45-, αSMA- in both the media. Tri-lineage differentiation potential and gene expression of hLMSCs were retained similarly to that of the control medium. CONCLUSION The findings of this study demonstrate successful isolation, characterization and culture optimization of hLMSCs for the first time in vitro in a serum-free environment. This will help in the future pre-clinical and clinical applications of MSCs in translational research.
Collapse
Affiliation(s)
- Abhishek Sahoo
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mukesh Damala
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sayan Basu
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
14
|
Cimino M, Parreira P, Leiro V, Sousa A, Gonçalves RM, Barrias CC, Martins MCL. Enhancement of hMSC In Vitro Proliferation by Surface Immobilization of a Heparin-Binding Peptide. Molecules 2023; 28:molecules28083422. [PMID: 37110656 PMCID: PMC10146743 DOI: 10.3390/molecules28083422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The use of human Mesenchymal Stem Cells (hMSC) as therapeutic agents for advanced clinical therapies relies on their in vitro expansion. Over the last years, several efforts have been made to optimize hMSC culture protocols, namely by mimicking the cell physiological microenvironment, which strongly relies on signals provided by the extracellular matrix (ECM). ECM glycosaminoglycans, such as heparan-sulfate, sequester adhesive proteins and soluble growth factors at the cell membrane, orchestrating signaling pathways that control cell proliferation. Surfaces exposing the synthetic polypeptide poly(L-lysine, L-leucine) (pKL) have previously been shown to bind heparin from human plasma in a selective and concentration-dependent manner. To evaluate its effect on hMSC expansion, pKL was immobilized onto self-assembled monolayers (SAMs). The pKL-SAMs were able to bind heparin, fibronectin and other serum proteins, as demonstrated by quartz crystal microbalance with dissipation (QCM-D) studies. hMSC adhesion and proliferation were significantly increased in pKL-SAMs compared to controls, most probably related to increased heparin and fibronectin binding to pKL surfaces. This proof-of-concept study highlights the potential of pKL surfaces to improve hMSC in vitro expansion possible through selective heparin/serum protein binding at the cell-material interface.
Collapse
Affiliation(s)
- Maura Cimino
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Parreira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aureliana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Raquel M Gonçalves
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cristina C Barrias
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Cristina L Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Jiang Z, Li N, Shao Q, Zhu D, Feng Y, Wang Y, Yu M, Ren L, Chen Q, Yang G. Light-controlled scaffold- and serum-free hard palatal-derived mesenchymal stem cell aggregates for bone regeneration. Bioeng Transl Med 2023; 8:e10334. [PMID: 36684075 PMCID: PMC9842060 DOI: 10.1002/btm2.10334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023] Open
Abstract
Cell aggregates that mimic in vivo cell-cell interactions are promising and powerful tools for tissue engineering. This study isolated a new, easily obtained, population of mesenchymal stem cells (MSCs) from rat hard palates named hard palatal-derived mesenchymal stem cells (PMSCs). The PMSCs were positive for CD90, CD44, and CD29 and negative for CD34, CD45, and CD146. They exhibited clonogenicity, self-renewal, migration, and multipotent differentiation capacities. Furthermore, this study fabricated scaffold-free 3D aggregates using light-controlled cell sheet technology and a serum-free method. PMSC aggregates were successfully constructed with good viability. Transplantation of the PMSC aggregates and the PMSC aggregate-implant complexes significantly enhanced bone formation and implant osseointegration in vivo, respectively. This new cell resource is easy to obtain and provides an alternative strategy for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Na Li
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Qin Shao
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Danji Zhu
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Yuting Feng
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Yang Wang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Mengjia Yu
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Lingfei Ren
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Qianming Chen
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| | - Guoli Yang
- Stomatology Hospital, School of StomatologyZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Oral DiseasesHangzhouZhejiangChina
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
16
|
Kamiya D, Takenaka-Ninagawa N, Motoike S, Kajiya M, Akaboshi T, Zhao C, Shibata M, Senda S, Toyooka Y, Sakurai H, Kurihara H, Ikeya M. Induction of functional xeno-free MSCs from human iPSCs via a neural crest cell lineage. NPJ Regen Med 2022; 7:47. [PMID: 36109564 PMCID: PMC9477888 DOI: 10.1038/s41536-022-00241-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells. Here, we induced MSCs from human induced pluripotent stem cells (iPSCs) via a neural crest cell (NCC) lineage under xeno-free conditions and evaluated their in vivo functions. We modified a previous MSC induction method to work under xeno-free conditions. Bovine serum albumin-containing NCC induction medium and fetal bovine serum-containing MSC induction medium were replaced with xeno-free medium. Through our optimized method, iPSCs differentiated into MSCs with high efficiency. To evaluate their in vivo activities, we transplanted the xeno-free-induced MSCs (XF-iMSCs) into mouse models for bone and skeletal muscle regeneration and confirmed their regenerative potency. These XF-iMSCs mainly promoted the regeneration of surrounding host cells, suggesting that they secrete soluble factors into affected regions. We also found that the peroxidasin and IGF2 secreted by the XF-iMSCs partially contributed to myotube differentiation. These results suggest that XF-iMSCs are important for future applications in regenerative medicine.
Collapse
|
17
|
Visweswaran M, Cunningham CW, Sidhu KS. Isolation and Characterisation of an Adipose-derived human mesenchymal stem cell line - ' CKC-Endeavour-1'. J Stem Cells Regen Med 2022; 18:2-10. [PMID: 36003657 DOI: 10.46582/jsrm.1801002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
Mesenchymal stem cells derived from adipose tissue (ADMSCs) are being increasingly considered in regenerative medicine-based clinical applications. Apart from possessing therapeutic applications themselves, ADMSCs also secrete a myriad of soluble factors which are promising candidates for treating several degenerative diseases such as osteoarthritis and neurodegenerative diseases, wound repair as well as for cosmeceutical purposes. In our research study, we successfully isolated ADMSCs in-house, now called CKC-Endeavour-1 from the lipoaspirate sample of a patient who underwent liposuction. The subsequent expansion of cells was performed in xeno-free and serum-free conditions and their characterisation was performed using tri-lineage differentiation studies. The levels of differentiation were assessed by staining and gene expression which was observed to be comparable between the in-house developed ADMSC cell line and the commercially purchased ADMSCs. Following characterisation, the secretory components from these MSCs, namely, conditioned media (ADMSC-CM) and exosomes (ADMSC-EXO) were harvested from CKC-Endeavour-1 under xeno-free, serum-free, and supplement-free conditions followed by lyophilisation in order to attempt to prolong its shelf-life. The comprehensive analysis of the secretome profile of ADMSC-CM using carried out using cytokine array and demonstrated the presence of 105 cytokines and growth factors. Also, clinical grade Izon columns were used to isolate the exosomes from ADMSC-CM obtaining exosomes in the size range of <200nm, analysed using nanoparticle tracking analysis. Overall, our study developed an ADMSC cell line, CKC-Endeavour-1, along with their CM and exosome (EXO) products under clinically safe conditions. Additionally, we have obtained a comprehensive understanding of the secreted factors present in the ADMSC-CM which could be further explored in detail to tap the best therapeutic benefits from them.
Collapse
|
18
|
Supphaprasitt W, Charoenmuang L, Thuaksuban N, Sangsuwan P, Leepong N, Supakanjanakanti D, Vongvatcharanon S, Suwanrat T, Srimanok W. A Three-Dimensional Printed Polycaprolactone–Biphasic-Calcium-Phosphate Scaffold Combined with Adipose-Derived Stem Cells Cultured in Xenogeneic Serum-Free Media for the Treatment of Bone Defects. J Funct Biomater 2022; 13:jfb13030093. [PMID: 35893462 PMCID: PMC9326540 DOI: 10.3390/jfb13030093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The efficacy of a three-dimensional printed polycaprolactone–biphasic-calcium-phosphate scaffold (PCL–BCP TDP scaffold) seeded with adipose-derived stem cells (ADSCs), which were cultured in xenogeneic serum-free media (XSFM) to enhance bone formation, was assessed in vitro and in animal models. The ADSCs were isolated from the buccal fat tissue of six patients using enzymatic digestion and the plastic adherence method. The proliferation and osteogenic differentiation of the cells cultured in XSFM when seeded on the scaffolds were assessed and compared with those of cells cultured in a medium containing fetal bovine serum (FBS). The cell–scaffold constructs were cultured in XSFM and were implanted into calvarial defects in thirty-six Wistar rats to assess new bone regeneration. The proliferation and osteogenic differentiation of the cells in the XSFM medium were notably better than that of the cells in the FBS medium. However, the efficacy of the constructs in enhancing new bone formation in the calvarial defects of rats was not statistically different to that achieved using the scaffolds alone. In conclusion, the PCL–BCP TDP scaffolds were biocompatible and suitable for use as an osteoconductive framework. The XSFM medium could support the proliferation and differentiation of ADSCs in vitro. However, the cell–scaffold constructs had no benefit in the enhancement of new bone formation in animal models.
Collapse
Affiliation(s)
- Woraporn Supphaprasitt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Lalita Charoenmuang
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Nuttawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
- Correspondence: ; Tel.: +66-954592492
| | - Prawichaya Sangsuwan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai 90110, Thailand;
| | - Narit Leepong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Danaiya Supakanjanakanti
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Surapong Vongvatcharanon
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Trin Suwanrat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| | - Woraluk Srimanok
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90110, Thailand; (W.S.); (L.C.); (N.L.); (D.S.); (S.V.); (T.S.); (W.S.)
| |
Collapse
|
19
|
Platelet-Rich Plasma as an Alternative to Xenogeneic Sera in Cell-Based Therapies: A Need for Standardization. Int J Mol Sci 2022; 23:ijms23126552. [PMID: 35742995 PMCID: PMC9223511 DOI: 10.3390/ijms23126552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
There has been an explosion in scientific interest in using human-platelet-rich plasma (PRP) as a substitute of xenogeneic sera in cell-based therapies. However, there is a need to create standardization in this field. This systematic review is based on literature searches in PubMed and Web of Science databases until June 2021. Forty-one studies completed the selection criteria. The composition of PRP was completely reported in less than 30% of the studies. PRP has been used as PRP-derived supernatant or non-activated PRP. Two ranges could be identified for platelet concentration, the first between 0.14 × 106 and 0.80 × 106 platelets/µL and the second between 1.086 × 106 and 10 × 106 platelets/µL. Several studies have pooled PRP with a pool size varying from four to nine donors. The optimal dose for the PRP or PRP supernatant is 10%. PRP or PRP-derived supernatants a have positive effect on MSC colony number and size, cell proliferation, cell differentiation and genetic stability. The use of leukocyte-depleted PRP has been demonstrated to be a feasible alternative to xenogeneic sera. However, there is a need to improve the description of the PRP preparation methodology as well as its composition. Several items are identified and reported to create guidelines for future research.
Collapse
|
20
|
Schepici G, Gugliandolo A, Mazzon E. Serum-Free Cultures: Could They Be a Future Direction to Improve Neuronal Differentiation of Mesenchymal Stromal Cells? Int J Mol Sci 2022; 23:ijms23126391. [PMID: 35742836 PMCID: PMC9223839 DOI: 10.3390/ijms23126391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are undifferentiated cells with multilinear potential, known for their immunomodulatory and regenerative properties. Although the scientific community is working to improve their application, concerns limit their use to repair tissues following neurological damage. One of these obstacles is represented by the use of culture media supplemented with fetal bovine serum (FBS), which, due to its xenogenic nature and the risk of contamination, has increased scientific, ethical and safety problems. Therefore, the use of serum-free media could improve MSC culture methods, avoiding infectious and immunogenic transmission problems as well as MSC bioprocesses, without the use of animal components. The purpose of our review is to provide an overview of experimental studies that demonstrate that serum-free cultures, along with the supplementation of growth factors or chemicals, can lead to a more defined and controlled environment, enhancing the proliferation and neuronal differentiation of MSCs.
Collapse
|
21
|
Aussel C, Busson E, Vantomme H, Peltzer J, Martinaud C. Quality assessment of a serum and xenofree medium for the expansion of human GMP-grade mesenchymal stromal cells. PeerJ 2022; 10:e13391. [PMID: 35663525 PMCID: PMC9161815 DOI: 10.7717/peerj.13391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/15/2022] [Indexed: 01/14/2023] Open
Abstract
Background Cell-based therapies are emerging as a viable modality to treat challenging diseases, resulting in an increasing demand for their large-scale, high-quality production. Production facilities face the issue of batch-to-batch consistency while producing a safe and efficient cell-based product. Controlling culture conditions and particularly media composition is a key factor of success in this challenge. Serum and Xeno-Free Media (SXFM) represent an interesting option to achieve this goal. By reducing batch to batch variability, they increase Good Manufacturing Practices (GMP)-compliance and safety regarding xenogenic transmission, as compared to fetal bovine serum (FBS) supplemented-media or human platelet lysate supplemented medium. Methods In this study, the isolation, expansion and characteristics including the anti-inflammatory function of human mesenchymal stromal cells (MSC) are compared after culture in MEMα supplemented with human Concentrate Platelet Lysate (hCPL, reference medium) or in MSC-Brew GMP Medium. The latter is a GMP SXFM manufactured in bags under strictly controlled conditions in volumes suitable for expansion to a clinical scale and does not require neither pre-coating of the cell culture units nor the addition of blood derivatives at the isolation step. Results We showed that MSC derived from human bone-marrow and adipose tissue can be successfully isolated and expanded in this SXFM. Number and size of Colony-Forming Unit fibroblast (CFU-F) is increased compared to cells cultivated in hCPL medium. All cells retained a CD90+, CD73+, CD105+, HLADR-, CD34-, CD45- phenotype. Furthermore, the osteogenic and adipocyte potentials as well as the anti-inflammatory activity were comparable between culture conditions. All cells reached the release criteria established in our production facility to treat inflammatory pathologies. Conclusions The use of MSC-Brew GMP Medium can therefore be considered for clinical bioprocesses as a safe and efficient substitute for hCPL media.
Collapse
Affiliation(s)
- Clotilde Aussel
- Biomedical Research Institute of the Armed Forces, Clamart, France
| | - Elodie Busson
- Advanced Therapy Medicine Unit, French Military Blood Institute, Clamart, France
| | - Helene Vantomme
- Advanced Therapy Medicine Unit, French Military Blood Institute, Clamart, France
| | - Juliette Peltzer
- Biomedical Research Institute of the Armed Forces, Clamart, France
| | - Christophe Martinaud
- Advanced Therapy Medicine Unit, French Military Blood Institute, Clamart, France
| |
Collapse
|
22
|
New Perspectives to Improve Mesenchymal Stem Cell Therapies for Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23052669. [PMID: 35269830 PMCID: PMC8910533 DOI: 10.3390/ijms23052669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. Many factors may contribute to the susceptibility of patients to this condition, making DILI a global medical problem that has an impact on public health and the pharmaceutical industry. The use of mesenchymal stem cells (MSCs) has been at the forefront of regenerative medicine therapies for many years, including MSCs for the treatment of liver diseases. However, there is currently a huge gap between these experimental approaches and their application in clinical practice. In this concise review, we focus on the pathophysiology of DILI and highlight new experimental approaches conceived to improve cell-based therapy by the in vitro preconditioning of MSCs and/or the use of cell-free products as treatment for this liver condition. Finally, we discuss the advantages of new approaches, but also the current challenges that must be addressed in order to develop safer and more effective procedures that will allow cell-based therapies to reach clinical practice, enhancing the quality of life and prolonging the survival time of patients with DILI.
Collapse
|
23
|
Abstract
Ethical and possible reproducibility issues arise when using fetal bovine serum in cell culture media.
Collapse
|
24
|
Nguyen LT, Tran NT, Than UTT, Nguyen MQ, Tran AM, Do PTX, Chu TT, Nguyen TD, Bui AV, Ngo TA, Hoang VT, Hoang NTM. Optimization of human umbilical cord blood-derived mesenchymal stem cell isolation and culture methods in serum- and xeno-free conditions. Stem Cell Res Ther 2022; 13:15. [PMID: 35012671 PMCID: PMC8751356 DOI: 10.1186/s13287-021-02694-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although umbilical cord blood (UCB) is identified as a source of mesenchymal stem cells (MSCs) with various advantages, the success in cell isolation is volatile. Therefore, it is necessary to optimize methods of cord blood-derived MSC (UCB-MSC) isolation and culture. In this study, we evaluated the efficiency of UCB-MSC isolation and expansion using different commercially available serum- and xeno-free media and investigated the capacity of autologous serum and plasma as a supplement to support cell proliferation. Additionally, we defined the presence of multilineage-differentiating stress-enduring (Muse) cells in the UCB-MSC population. Functions of UCB-MSC in in vitro angiogenesis processes and anti-cancer were also verified. METHODS Mononuclear cells were isolated using density gradient separation and cultured in four commercial media kits, as well as four surface coating solutions. UCB-MSCs were characterized and tested on tube formation assay, and co-cultured with SK-MEL cells in a transwell system. RESULTS The results showed that only StemMACS™ MSC Expansion Media is more appropriate to isolate and culture UCB-MSCs. The cells exhibited a high cell proliferation rate, CFU forming capability, MSC surface marker expression, trilineage differentiate potential, and chromosome stability. In addition, the culture conditions with autologous serum coating and autologous plasma supplement enhanced cell growth and colony forming. This cell population contained Muse cells at rate of 0.3%. Moreover, UCB-MSCs could induce the tube formation of human umbilical vein endothelial cells and inhibit more than 50% of SK-MEL cell growth. CONCLUSIONS UCB-MSCs could be high-yield isolated and expanded under serum- and xeno-free conditions by using the StemMACS™ MSC Expansion Media kit. Autologous serum coating and plasma supplement enhanced cell proliferation. These UCB-MSCs had effected the tube formation process and an anti-cancer impact.
Collapse
Affiliation(s)
- Liem Thanh Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Nghia Trung Tran
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, Korea
| | - Uyen Thi Trang Than
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Minh Quang Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Anh Minh Tran
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Phuong Thi Xuan Do
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thao Thi Chu
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Tu Dac Nguyen
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Anh Viet Bui
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Tien Anh Ngo
- Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam
| | - Van Thanh Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Nhung Thi My Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam. .,VNU University of Science, Vietnam National University, Hanoi, Vietnam. .,Center of Applied sciences, Regenerative medicine, and Advance technologies (CARA), Hanoi, Vietnam.
| |
Collapse
|
25
|
Clumps of Mesenchymal Stem Cells/Extracellular Matrix Complexes Generated with Xeno-Free Chondro-Inductive Medium Induce Bone Regeneration via Endochondral Ossification. Biomedicines 2021; 9:biomedicines9101408. [PMID: 34680525 PMCID: PMC8533314 DOI: 10.3390/biomedicines9101408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 01/14/2023] Open
Abstract
Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification.
Collapse
|
26
|
Mollentze J, Durandt C, Pepper MS. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int 2021; 2021:9919361. [PMID: 34539793 PMCID: PMC8443361 DOI: 10.1155/2021/9919361] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The use of stem cells in regenerative medicine, including tissue engineering and transplantation, has generated a great deal of enthusiasm. Mesenchymal stromal/stem cells (MSCs) can be isolated from various tissues, most commonly, bone marrow but more recently adipose tissue, dental pulp, and Wharton's jelly, to name a few. MSCs display varying phenotypic profiles and osteogenic differentiating capacity depending and their site of origin. MSCs have been successfully differentiated into osteoblasts both in vitro an in vivo but discrepancies exist when the two are compared: what happens in vitro does not necessarily happen in vivo, and it is therefore important to understand why these differences occur. The osteogenic process is a complex network of transcription factors, stimulators, inhibitors, proteins, etc., and in vivo experiments are helpful in evaluating the various aspects of this osteogenic process without distractions and confounding variables. With that in mind, the results of in vitro experiments need to be carefully considered and interpreted with caution as they do not perfectly replicate the conditions found within living organisms. This is where in vivo experiments help us better understand interactions that might occur in the osteogenic process that cannot be replicated in vitro. Potentially, these differences could also be exploited to develop an optimal MSC cell therapeutic product that can be used for bone disorders. There are many bone disorders, most of which cause a great deal of discomfort. Clinically acceptable protocols could be developed in which MSCs are used to aid in bone regeneration providing relief for patients with chronic pain. The aim of this review is to examine the differences between studies conducted in vitro and in vivo with regard to the osteogenic process to better define the gaps in current osteogenic research. By better understanding osteogenic differentiation, we can better define treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Jamie Mollentze
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Van Beylen K, Papantoniou I, Aerts JM. Microcarrier Screening and Evaluation for Dynamic Expansion of Human Periosteum-Derived Progenitor Cells in a Xenogeneic Free Medium. Front Bioeng Biotechnol 2021; 9:624890. [PMID: 34109163 PMCID: PMC8181150 DOI: 10.3389/fbioe.2021.624890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
An increasing need toward a more efficient expansion of adherent progenitor cell types arises with the advancements of cell therapy. The use of a dynamic expansion instead of a static planar expansion could be one way to tackle the challenges of expanding adherent cells at a large scale. Microcarriers are often reported as a biomaterial for culturing cells in suspension. However, the type of microcarrier has an effect on the cell expansion. In order to find an efficient expansion process for a specific adherent progenitor cell type, it is important to investigate the effect of the type of microcarrier on the cell expansion. Human periosteum-derived progenitor cells are extensively used in skeletal tissue engineering for the regeneration of bone defects. Therefore, we evaluated the use of different microcarriers on human periosteum-derived progenitor cells. In order to assess the potency, identity and viability of these cells after being cultured in the spinner flasks, this study performed several in vitro and in vivo analyses. The novelty of this work lies in the combination of screening different microcarriers for human periosteum-derived progenitor cells with in vivo assessments of the cells’ potency using the microcarrier that was selected as the most promising one. The results showed that expanding human periosteum-derived progenitor cells in spinner flasks using xeno-free medium and Star-Plus microcarriers, does not affect the potency, identity or viability of the cells. The potency of the cells was assured with an in vivo evaluation, where bone formation was achieved. In summary, this expansion method has the potential to be used for large scale cell expansion with clinical relevance.
Collapse
Affiliation(s)
- Kathleen Van Beylen
- M3-BIORES: Measure, Model, and Manage Bioresponses, Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Skeletal Biology and Engineering Research Centre, Leuven, Belgium.,Foundation for Research and Technology - Hellas (FORTH), Institute of Chemical Engineering Sciences, Patras, Greece
| | - Jean-Marie Aerts
- M3-BIORES: Measure, Model, and Manage Bioresponses, Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Shahani P, Datta I. Mesenchymal stromal cell therapy for coronavirus disease 2019: which? when? and how much? Cytotherapy 2021; 23:861-873. [PMID: 34053857 PMCID: PMC8084615 DOI: 10.1016/j.jcyt.2021.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/27/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
Mesenchymal stromal cells (MSCs) are under active consideration as a treatment strategy for controlling the hyper-inflammation and slow disease progression associated with coronavirus disease 2019 (COVID-19). The possible mechanism of protection through their immunoregulatory and paracrine action has been reviewed extensively. However, the importance of process control in achieving consistent cell quality, maximum safety and efficacy—for which the three key questions are which, when and how much—remains unaddressed. Any commonality, if it exists, in ongoing clinical trials has yet to be analyzed and reviewed. In this review, the authors have therefore compiled study design data from ongoing clinical trials to address the key questions of “which” with regard to tissue source, donor profile, isolation technique, culture conditions, long-term culture and cryopreservation of MSCs; “when” with regard to defining the transplantation window by identifying and staging patients based on their pro-inflammatory profile; and “how much” with regard to the number of cells in a single administration, number of doses and route of transplantation. To homogenize MSC therapy for COVID-19 on a global scale and to make it readily available in large numbers, a shared understanding and uniform agreement with respect to these fundamental issues are essential.
Collapse
Affiliation(s)
- Pradnya Shahani
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
29
|
Anton-Sales I, Koivusalo L, Skottman H, Laromaine A, Roig A. Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003937. [PMID: 33586332 DOI: 10.1002/smll.202003937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Limbal stem cells (LSCs) are already used in cell-based treatments for ocular surface disorders. Clinical translation of LSCs-based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation. Bacterial nanocellulose (BNC) is an appealing, yet unexplored, candidate for this application because of its biocompatibility, animal-free origin and mechanical stability. Here, BNC as a vehicle for human embryonic stem cells-derived LSC (hESC-LSC) are investigated. To enhance cell-biomaterial interactions, a plasma activation followed by a Collagen IV and Laminin coating of the BNC substrates is implemented. This surface functionalization with human extracellular matrix proteins greatly improved the attachment and survival of hESC-LSC without compromising the flexible, robust and semi-transparent nature of the BNC. The surface characteristics of the BNC substrates are described and a preliminary ex vivo test in simulated transplantation scenarios is provided. Importantly, it is shown that hESC-LSC retain their self-renewal and stemness characteristics up to 21 days on BNC substrates. These results open the door for future research on hESC-LSC/BNC constructs to treat severe ocular surface pathologies.
Collapse
Affiliation(s)
- Irene Anton-Sales
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
| | - Laura Koivusalo
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Anna Laromaine
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
| | - Anna Roig
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
| |
Collapse
|
30
|
Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions. Sci Rep 2021; 11:3403. [PMID: 33564114 PMCID: PMC7873235 DOI: 10.1038/s41598-021-83088-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are gaining increasing importance in the field of regenerative medicine. Although therapeutic value of MSCs is now being established through many clinical trials, issues have been raised regarding their expansion as per regulatory guidelines. Fetal bovine serum usage in cell therapy poses difficulties due to its less-defined, highly variable composition and safety issues. Hence, there is a need for transition from serum-based to serum-free media (SFM). Since SFM are cell type-specific, a precise analysis of the properties of MSCs cultured in SFM is required to determine the most suitable one. Six different commercially available low serum/SFM with two different seeding densities were evaluated to explore their ability to support the growth and expansion of BM-MSCs and assess the characteristics of BM-MSCs cultured in these media. Except for one of the SFM, all other media tested supported the growth of BM-MSCs at a low seeding density. No significant differences were observed in the expression of MSC specific markers among the various media tested. In contrary, the population doubling time, cell yield, potency, colony-forming ability, differentiation potential, and immunosuppressive properties of MSCs varied with one another. We show that SFM tested supports the growth and expansion of BM-MSCs even at low seeding density and may serve as possible replacement for animal-derived serum.
Collapse
|
31
|
da Silva-Junior AJ, Mesentier-Louro LA, Nascimento-Dos-Santos G, Teixeira-Pinheiro LC, Vasques JF, Chimeli-Ormonde L, Bodart-Santos V, de Carvalho LRP, Santiago MF, Mendez-Otero R. Human mesenchymal stem cell therapy promotes retinal ganglion cell survival and target reconnection after optic nerve crush in adult rats. Stem Cell Res Ther 2021; 12:69. [PMID: 33468246 PMCID: PMC7814601 DOI: 10.1186/s13287-020-02130-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Optic-nerve injury results in impaired transmission of visual signals to central targets and leads to the death of retinal ganglion cells (RGCs) and irreversible vision loss. Therapies with mesenchymal stem cells (MSCs) from different sources have been used experimentally to increase survival and regeneration of RGCs. METHODS We investigated the efficacy of human umbilical Wharton's jelly-derived MSCs (hWJ-MSCs) and their extracellular vesicles (EVs) in a rat model of optic nerve crush. RESULTS hWJ-MSCs had a sustained neuroprotective effect on RGCs for 14, 60, and 120 days after optic nerve crush. The same effect was obtained using serum-deprived hWJ-MSCs, whereas transplantation of EVs obtained from those cells was ineffective. Treatment with hWJ-MSCs also promoted axonal regeneration along the optic nerve and reinnervation of visual targets 120 days after crush. CONCLUSIONS The observations showed that this treatment with human-derived MSCs promoted sustained neuroprotection and regeneration of RGCs after optic nerve injury. These findings highlight the possibility to use cell therapy to preserve neurons and to promote axon regeneration, using a reliable source of human MSCs.
Collapse
Affiliation(s)
- Almir Jordão da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa-REGENERE, Rio de Janeiro, RJ, Brazil. .,Rede NanoSaúde, Rio de Janeiro, RJ, Brazil.
| | - Louise Alessandra Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
| | - Gabriel Nascimento-Dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa-REGENERE, Rio de Janeiro, RJ, Brazil
| | - Leandro Coelho Teixeira-Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa-REGENERE, Rio de Janeiro, RJ, Brazil
| | - Juliana F Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa-REGENERE, Rio de Janeiro, RJ, Brazil
| | - Luiza Chimeli-Ormonde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa-REGENERE, Rio de Janeiro, RJ, Brazil
| | - Victor Bodart-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa-REGENERE, Rio de Janeiro, RJ, Brazil
| | - Luiza Rachel Pinheiro de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa-REGENERE, Rio de Janeiro, RJ, Brazil
| | - Marcelo Felippe Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa-REGENERE, Rio de Janeiro, RJ, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa-REGENERE, Rio de Janeiro, RJ, Brazil.,Rede NanoSaúde, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
James BD, Guerin P, Allen JB. Let's Talk About Sex-Biological Sex Is Underreported in Biomaterial Studies. Adv Healthc Mater 2021; 10:e2001034. [PMID: 33043626 PMCID: PMC7791002 DOI: 10.1002/adhm.202001034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Indexed: 12/13/2022]
Abstract
Precision medicine aims to better individualize healthcare. It requires that biomaterials be designed for the physiological characteristics of a specific patient. To make this a reality, biomaterials research and development must address differences of biological sex. More specifically, biomaterials should be designed with properties optimized and appropriate for male and female patients. In analyzing research articles from seven prominent biomaterials journals, sex as a biological variable is missing from an overwhelming majority of in vitro biomaterial studies. From the survey, the reporting of the sex of primary cell cultures happened only 10.3% of the time. Contributing to this trend is that commercial vendors bias cell lines toward one sex or another by not disclosing information of cell line sex at the time of purchase; researchers do not communicate this pertinent information in published studies; and many journal policies have little to no requirements for reporting cell line characteristics. Omitting this valuable information leads to a gap in the understanding of sex-specific cell-biomaterial interactions and it creates a bias in research findings towards one sex or another. To curb this concerning trend and make precision biomaterials a reality will require the biomaterials field to "talk about sex" by reporting cell sex more broadly.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| | - Paxton Guerin
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL, 32611-6400, USA
| |
Collapse
|
33
|
Lin YJ, Lee YW, Chang CW, Huang CC. 3D Spheroids of Umbilical Cord Blood MSC-Derived Schwann Cells Promote Peripheral Nerve Regeneration. Front Cell Dev Biol 2020; 8:604946. [PMID: 33392194 PMCID: PMC7773632 DOI: 10.3389/fcell.2020.604946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Schwann cells (SCs) are promising candidates for cell therapy due to their ability to promote peripheral nerve regeneration. However, SC-based therapies are hindered by the lack of a clinically renewable source of SCs. In this study, using a well-defined non-genetic approach, umbilical cord blood mesenchymal stem cells (cbMSCs), a clinically applicable cell type, were phenotypically, epigenetically, and functionally converted into SC-like cells (SCLCs) that stimulated effective sprouting of neuritic processes from neuronal cells. To further enhance their therapeutic capability, the cbMSC-derived SCLCs were assembled into three-dimensional (3D) cell spheroids by using a methylcellulose hydrogel system. The cell-cell and cell-extracellular matrix interactions were well-preserved within the formed 3D SCLC spheroids, and marked increases in neurotrophic, proangiogenic and anti-apoptotic factors were detected compared with cells that were harvested using conventional trypsin-based methods, demonstrating the superior advantage of SCLCs assembled into 3D spheroids. Transplantation of 3D SCLC spheroids into crush-injured rat sciatic nerves effectively promoted the recovery of motor function and enhanced nerve structure regeneration. In summary, by simply assembling cells into a 3D-spheroid conformation, the therapeutic potential of SCLCs derived from clinically available cbMSCs for promoting nerve regeneration was enhanced significantly. Thus, these cells hold great potential for translation to clinical applications for treating peripheral nerve injury.
Collapse
Affiliation(s)
- Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Wei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Che-Wei Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
34
|
Ogle ME, Doron G, Levy MJ, Temenoff JS. Hydrogel Culture Surface Stiffness Modulates Mesenchymal Stromal Cell Secretome and Alters Senescence. Tissue Eng Part A 2020; 26:1259-1271. [DOI: 10.1089/ten.tea.2020.0030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Molly E. Ogle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gilad Doron
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Matthew J. Levy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Silva Couto P, Rotondi M, Bersenev A, Hewitt C, Nienow A, Verter F, Rafiq Q. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv 2020; 45:107636. [DOI: 10.1016/j.biotechadv.2020.107636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/01/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
|
36
|
Nath SC, Harper L, Rancourt DE. Cell-Based Therapy Manufacturing in Stirred Suspension Bioreactor: Thoughts for cGMP Compliance. Front Bioeng Biotechnol 2020; 8:599674. [PMID: 33324625 PMCID: PMC7726241 DOI: 10.3389/fbioe.2020.599674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Cell-based therapy (CBT) is attracting much attention to treat incurable diseases. In recent years, several clinical trials have been conducted using human pluripotent stem cells (hPSCs), and other potential therapeutic cells. Various private- and government-funded organizations are investing in finding permanent cures for diseases that are difficult or expensive to treat over a lifespan, such as age-related macular degeneration, Parkinson’s disease, or diabetes, etc. Clinical-grade cell manufacturing requiring current good manufacturing practices (cGMP) has therefore become an important issue to make safe and effective CBT products. Current cell production practices are adopted from conventional antibody or protein production in the pharmaceutical industry, wherein cells are used as a vector to produce the desired products. With CBT, however, the “cells are the final products” and sensitive to physico- chemical parameters and storage conditions anywhere between isolation and patient administration. In addition, the manufacturing of cellular products involves multi-stage processing, including cell isolation, genetic modification, PSC derivation, expansion, differentiation, purification, characterization, cryopreservation, etc. Posing a high risk of product contamination, these can be time- and cost- prohibitive due to maintenance of cGMP. The growing demand of CBT needs integrated manufacturing systems that can provide a more simple and cost-effective platform. Here, we discuss the current methods and limitations of CBT, based upon experience with biologics production. We review current cell manufacturing integration, automation and provide an overview of some important considerations and best cGMP practices. Finally, we propose how multi-stage cell processing can be integrated into a single bioreactor, in order to develop streamlined cGMP-compliant cell processing systems.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lane Harper
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
37
|
Influences of Xeno-Free Media on Mesenchymal Stem Cell Expansion for Clinical Application. Tissue Eng Regen Med 2020; 18:15-23. [PMID: 33150562 DOI: 10.1007/s13770-020-00306-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent somatic stem/progenitor cells that can be isolated from various tissues and have attracted increasing attention from the scientific community. This is due to MSCs showing great potential for incurable disease treatment, and most applications of MSCs involve tissue degeneration and treatment of immune- and inflammation-mediated diseases. Conventional MSC cultures contain fetal bovine serum (FBS), which is a common supplement for cell development but is also a risk factor for exposure to animal-derived pathogens. To avoid the risks resulting from the xenogeneic origin and animal-derived pathogens of FBS, xeno-free media have been developed and commercialized to satisfy MSC expansion demands for human clinical applications. This review summarized and provided an overview of xeno-free media that are currently used for MSC expansion. Additionally, we discussed the influences of different xeno-free media on MSC biology with particular regard to cell morphology, surface marker expression, proliferation, differentiation and immunomodulation. The xeno-free media can be serum-free and xeno-free media or media supplemented with some human-originating substances, such as human serum, human platelet lysates, human umbilical cord serum/plasma, or human plasma-derived supplements for cell culture medium. These media have capacity to maintain a spindle-shaped morphology, the expression of typical surface markers, and the capacity of multipotent differentiation and immunomodulation of MSCs. Xeno-free media showed potential for safe use for human clinical treatment. However, the influences of these xeno-free media on MSCs are various and any xeno-free medium should be examined prior to being used for MSC cultures.
Collapse
|
38
|
Hoang VT, Trinh QM, Phuong DTM, Bui HTH, Hang LM, Ngan NTH, Anh NTT, Nhi PY, Nhung TTH, Lien HT, Nguyen TD, Thanh LN, Hoang DM. Standardized xeno- and serum-free culture platform enables large-scale expansion of high-quality mesenchymal stem/stromal cells from perinatal and adult tissue sources. Cytotherapy 2020; 23:88-99. [PMID: 33097415 DOI: 10.1016/j.jcyt.2020.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cells (MSCs) are of interest for the treatment of graft-versus-host disease, autoimmune diseases, osteoarthritis and neurological and cardiovascular diseases. Increasing numbers of clinical trials emphasize the need for standardized manufacturing of these cells. However, many challenges related to diverse isolation and expansion protocols and differences in cell tissue sources exist. As a result, the cell products used in numerous trials vary greatly in characteristics and potency. METHODS The authors have established a standardized culture platform using xeno- and serum-free commercial media for expansion of MSCs derived from umbilical cord (UC), bone marrow and adipose-derived (AD) and examined their functional characteristics. RESULTS MSCs from the tested sources stably expanded in vitro and retained their biomarker expression and normal karyotype at early and later passages and after cryopreservation. MSCs were capable of colony formation and successfully differentiated into osteogenic, adipogenic and chondrogenic lineages. Pilot expansion of UC-MSCs and AD-MSCs to clinical scale revealed that the cells met the required quality standard for therapeutic applications. CONCLUSIONS The authors' data suggest that xeno- and serum-free culture conditions are suitable for large-scale expansion and enable comparative study of MSCs of different origins. This is of importance for therapeutic purposes, especially because of the numerous variations in pre-clinical and clinical protocols for MSC-based products.
Collapse
Affiliation(s)
- Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Quynh-Mai Trinh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Dam Thi Minh Phuong
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Hue Thi Hong Bui
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Le Minh Hang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Nguyen Thi Hong Ngan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Nguyen Thi Tuyet Anh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Phung Yen Nhi
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trinh Thi Hong Nhung
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Ha Thi Lien
- College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Tu Dac Nguyen
- College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; Vinmec HiTech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
39
|
Guiotto M, Raffoul W, Hart AM, Riehle MO, di Summa PG. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review. J Transl Med 2020; 18:351. [PMID: 32933520 PMCID: PMC7493356 DOI: 10.1186/s12967-020-02489-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Foetal bovine serum (FBS), is the most commonly used culture medium additive for in vitro cultures, despite its undefined composition, its potential immunogenicity and possible prion/zoonotic transmission. For these reasons, significant efforts have been targeted at finding a substitute, such as serum free-media or human platelet-lysates (hPL). Our aim is to critically appraise the state-of-art for hPL in the published literature, comparing its impact with FBS. MATERIALS AND METHODS In June 2019 a systematic search of the entire Web of Science, Medline and PubMed database was performed with the following search terms: (mesenchymal stem cells) AND (fetal bovine serum OR fetal bovine calf) AND (human platelet lysate). Excluded from this search were review articles that were published before 2005, manuscripts in which mesenchymal stem cells (MSCs) were not from human sources, and when the FBS controls were missing. RESULTS Based on our search algorithm, 56 papers were selected. A review of these papers indicated that hMSCs cultured with hPL showed a spindle-shaped elongated morphology, had higher proliferation indexes, similar cluster of differentiation (CD) markers and no significant variation in differentiation lineage (osteocyte, adipocyte, and chondrocyte) compared to those cultured with FBS. Main sources of primary hMSCs were either fat tissue or bone marrow; in a few studies cells isolated from alternative sources showed no relevant difference in their response. CONCLUSION Despite the difference in medium choice and a lack of standardization of hPL manufacturing, the majority of publications support that hPL was at least as effective as FBS in promoting adhesion, survival and proliferation of hMSCs. We conclude that hPL should be considered a viable alternative to FBS in hMSCs culture-especially with a view for their clinical use.
Collapse
Affiliation(s)
- M Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. .,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.
| | - W Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - A M Hart
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - M O Riehle
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| | - P G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
40
|
A Xeno-Free Strategy for Derivation of Human Umbilical Vein Endothelial Cells and Wharton's Jelly Derived Mesenchymal Stromal Cells: A Feasibility Study toward Personal Cell and Vascular Based Therapy. Stem Cells Int 2020; 2020:8832052. [PMID: 32963549 PMCID: PMC7492901 DOI: 10.1155/2020/8832052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
Coimplantation of endothelial cells (ECs) and mesenchymal stromal cells (MSCs) into the transplantation site could be a feasible option to achieve a sufficient level of graft-host vascularization. To find a suitable source of tissue that provides a large number of high-quality ECs and MSCs suited for future clinical application, we developed a simplified xeno-free strategy for isolation of human umbilical vein endothelial cells (HUVECs) and Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs) from the same umbilical cord. We also assessed whether the coculture of HUVECs and WJ-MSCs derived from the same umbilical cord (autogenic cell source) or from different umbilical cords (allogenic cell sources) had an impact on in vitro angiogenic capacity. We found that HUVECs grown in 5 ng/ml epidermal growth factor (EGF) supplemented xeno-free condition showed higher proliferation potential compared to other conditions. HUVECs and WJ-MSCs obtained from this technic show an endothelial lineage (CD31 and von Willebrand factor) and MSC (CD73, CD90, and CD105) immunophenotype characteristic with high purity, respectively. It was also found that only the coculture of HUVEC/WJ-MSC, but not HUVEC or WJ-MSC mono-culture, provides a positive effect on vessel-like structure (VLS) formation, in vitro. Further investigations are needed to clarify the pros and cons of using autogenic or allogenic source of EC/MSC in tissue engineering applications. To the best of our knowledge, this study offers a simple, but reliable, xeno-free strategy to establish ECs and MSCs from the same umbilical cord, a new opportunity to facilitate the development of personal cell-based therapy.
Collapse
|
41
|
Rational evaluation of human serum albumin coated mesoporous silica nanoparticles for xenogenic-free stem cell therapies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
43
|
Sriram G, K Handral H, Uin Gan S, Islam I, Jalil Rufaihah A, Cao T. Fabrication of vascularized tissue constructs under chemically defined culture conditions. Biofabrication 2020; 12:045015. [DOI: 10.1088/1758-5090/aba0c2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Thamm K, Möbus K, Towers R, Segeletz S, Wetzel R, Bornhäuser M, Zhang Y, Wobus M. A Novel Synthetic, Xeno‐Free Biomimetic Surface for Serum‐Free Expansion of Human Mesenchymal Stromal Cells. ACTA ACUST UNITED AC 2020; 4:e2000008. [DOI: 10.1002/adbi.202000008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
| | - Kristin Möbus
- University Hospital Carl Gustav Carus der Technischen Universität Dresden Medizinische Klinik und Poliklinik 1 Fetscherstraße 74 Dresden 01307 Germany
| | - Russell Towers
- University Hospital Carl Gustav Carus der Technischen Universität Dresden Medizinische Klinik und Poliklinik 1 Fetscherstraße 74 Dresden 01307 Germany
| | | | | | - Martin Bornhäuser
- University Hospital Carl Gustav Carus der Technischen Universität Dresden Medizinische Klinik und Poliklinik 1 Fetscherstraße 74 Dresden 01307 Germany
| | - Yixin Zhang
- Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| | - Manja Wobus
- University Hospital Carl Gustav Carus der Technischen Universität Dresden Medizinische Klinik und Poliklinik 1 Fetscherstraße 74 Dresden 01307 Germany
| |
Collapse
|
45
|
Al Hosni R, Shah M, Cheema U, Roberts HC, Luyten FP, Roberts SJ. Mapping human serum-induced gene networks as a basis for the creation of biomimetic periosteum for bone repair. Cytotherapy 2020; 22:424-435. [PMID: 32522398 DOI: 10.1016/j.jcyt.2020.03.434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The periosteum is a highly vascularized, collagen-rich tissue that plays a crucial role in directing bone repair. This is orchestrated primarily by its resident progenitor cell population. Indeed, preservation of periosteum integrity is critical for bone healing. Cells extracted from the periosteum retain their osteochondrogenic properties and as such are a promising basis for tissue engineering strategies for the repair of bone defects. However, the culture expansion conditions and the way in which the cells are reintroduced to the defect site are critical aspects of successful translation. Indeed, expansion in human serum and implantation on biomimetic materials has previously been shown to improve in vivo bone formation. AIM This study aimed to develop a protocol to allow for the expansion of human periosteum derived cells (hPDCs) in a biomimetic periosteal-like environment. METHODS The expansion conditions were defined through the investigation of the bioactive cues involved in augmenting hPDC proliferative and multipotency characteristics, based on transcriptomic analysis of cells cultured in human serum. RESULTS Master regulators of transcriptional networks were identified, and an optimized periosteum-derived growth factor cocktail (PD-GFC; containing β-estradiol, FGF2, TNFα, TGFβ, IGF-1 and PDGF-BB) was generated. Expansion of hPDCs in PD-GFC resulted in serum mimicry with regard to the cell morphology, proliferative capacity and chondrogenic differentiation. When incorporated into a three-dimensional collagen type 1 matrix and cultured in PD-GFC, the hPDCs migrated to the surface that represented the matrix topography of the periosteum cambium layer. Furthermore, gene expression analysis revealed a down-regulated WNT and TGFβ signature and an up-regulation of CREB, which may indicate the hPDCs are recreating their progenitor cell signature. CONCLUSION This study highlights the first stage in the development of a biomimetic periosteum, which may have applications in bone repair.
Collapse
Affiliation(s)
- Rawiya Al Hosni
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Mittal Shah
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Umber Cheema
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
| | - Helen C Roberts
- Department of Natural Sciences, Faculty of Science & Technology, Middlesex University, London, UK
| | - Frank P Luyten
- Skeletal Biology and Tissue Engineering Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium and
| | - Scott J Roberts
- Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK; Skeletal Biology and Tissue Engineering Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium and; Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.
| |
Collapse
|
46
|
Cherian DS, Bhuvan T, Meagher L, Heng TSP. Biological Considerations in Scaling Up Therapeutic Cell Manufacturing. Front Pharmacol 2020; 11:654. [PMID: 32528277 PMCID: PMC7247829 DOI: 10.3389/fphar.2020.00654] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Cell therapeutics - using cells as living drugs - have made advances in many areas of medicine. One of the most clinically studied cell-based therapy products is mesenchymal stromal cells (MSCs), which have shown promising results in promoting tissue regeneration and modulating inflammation. However, MSC therapy requires large numbers of cells, the generation of which is not feasible via conventional planar tissue culture methods. Scale-up manufacturing methods (e.g., propagation on microcarriers in stirred-tank bioreactors), however, are not specifically tailored for MSC expansion. These processes may, in principle, alter the cell secretome, a vital component underlying the immunosuppressive properties and clinical effectiveness of MSCs. This review outlines our current understanding of MSC properties and immunomodulatory function, expansion in commercial manufacturing systems, and gaps in our knowledge that need to be addressed for effective up-scaling commercialization of MSC therapy.
Collapse
Affiliation(s)
- Darshana S Cherian
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
47
|
Cimino M, Parreira P, Bidarra SJ, Gonçalves RM, Barrias CC, Martins MCL. Effect of surface chemistry on hMSC growth under xeno-free conditions. Colloids Surf B Biointerfaces 2020; 189:110836. [DOI: 10.1016/j.colsurfb.2020.110836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 01/05/2023]
|
48
|
A Comparative In Vitro Analysis of the Osteogenic Potential of Human Dental Pulp Stem Cells Using Various Differentiation Conditions. Int J Mol Sci 2020; 21:ijms21072280. [PMID: 32224849 PMCID: PMC7177908 DOI: 10.3390/ijms21072280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Dental pulp stem cells (DPSCs) have excellent proliferative properties, mineralization potential and can be easily obtained from third molar teeth. Recently, many studies have focused on isolation and differentiation of DPSCs. In our study, we focused on biological properties of non-differentiated DPSCs in comparison with osteogenic differentiated cells from DPSCs. We analyzed morphology as well as mineralization potential using three varied osteogenic differentiation media. After fifteen days of differentiation, calcium deposit production was observed in all three osteogenic differentiation media. However, only one osteogenic medium, without animal serum supplement, showed rapid and strong calcification—OsteoMAX-XF™ Differentiation Medium. Therefore, we examined specific surface markers, and gene and protein expression of cells differentiated in this osteogenic medium, and compared them to non-differentiated DPSCs. We proved a decrease in expression of CD9 and CD90 mesenchymal stem cell surface markers, as well as downregulation in the expression of pluripotency genes (NANOG and OCT-4) and increased levels of expression in osteogenic genes (ALP, BSP, OCN and RUNX2). Moreover, osteogenic proteins, such as BSP and OCN, were only produced in differentiated cells. Our findings confirm that carefully selected differentiation conditions for stem cells are essential for their translation into future clinical applications.
Collapse
|
49
|
Suliman S, Ali HRW, Karlsen TA, Amiaud J, Mohamed-Ahmed S, Layrolle P, Costea DE, Brinchmann JE, Mustafa K. Impact of humanised isolation and culture conditions on stemness and osteogenic potential of bone marrow derived mesenchymal stromal cells. Sci Rep 2019; 9:16031. [PMID: 31690774 PMCID: PMC6831606 DOI: 10.1038/s41598-019-52442-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic potential of human bone marrow stromal/stem cells (hBMSC) must be developed using well defined xenogenic-free conditions. hBMSC were isolated from healthy donors (n = 3) using different isolation and expansion methods. Donor I was isolated and expanded by either bone marrow directly seeded and cells expanded in 10% AB human serum (AB) +5 ng/ml fibroblast growth factor-2 (FGF2) [Direct(AB + FGFlow)] or Ammonium-Chloride-Potassium Lysing Buffer was used before the cells were expanded in 10% AB +5 ng/ml FGF-2 [ACK(AB + FGFlow)] or Lymphoprep density gradient medium was used before the cells were expanded in 10% AB +5 ng/ml FGF2 [Lympho(AB + FGFlow)] or bone marrow directly seeded and cells expanded in 10% pooled platelet lysate plasma (PL) + heparin (2 I/U/mL) [Direct(PL)]. Groups for donors II and III were: Direct(AB + FGFlow) or 10% AB +10 ng/ml FGF2 [Direct(AB + FGFhigh)] or Direct(PL). HBMSCs were assessed for viability, multi-potency, osteogenic, inflammatory response and replicative senescence in vitro after 1 and 3 weeks. Pre-selected culture conditions, Direct(AB + FGFhigh) or Direct(PL), were seeded on biphasic calcium phosphate granules and subcutaneously implanted in NOD/SCID mice. After 1 and 11 weeks, explants were analysed for inflammatory and osteogenic response at gene level and histologically. To identify implanted human cells, in situ hybridisation was performed. hBMSC from all conditions showed in vitro multi-lineage potency. hBMSCs expanded in PL expressed stemness markers in vitro at significantly higher levels. Generally, cells expanded in AB + FGF2 conditions expressed higher osteogenic markers after 1 week both in vitro and in vivo. After 11 weeks in vivo, Direct(AB + FGFhigh) formed mature ectopic bone, compared to immature mineralised tissues formed by Direct(PL) implants. Mouse responses showed a significant upregulation of IL-1α and IL-1β expression in Direct(PL). After 1 week, human cells were observed in both groups and after 11 weeks in Direct(AB + FGFhigh) only. To conclude, results showed a significant effect of the isolation methods and demonstrated a relatively consistent pattern of efficacy from all donors. A tendency of hBMSC expanded in PL to retain a more stem-like phenotype elucidates their delayed differentiation and different inflammatory expressions.
Collapse
Affiliation(s)
- Salwa Suliman
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway.
| | - Hassan R W Ali
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Tommy A Karlsen
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jerome Amiaud
- INSERM, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Samih Mohamed-Ahmed
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Daniela E Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Jan E Brinchmann
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway.
| |
Collapse
|
50
|
Clumps of Mesenchymal Stem Cell/Extracellular Matrix Complexes Generated with Xeno-Free Conditions Facilitate Bone Regeneration via Direct and Indirect Osteogenesis. Int J Mol Sci 2019; 20:ijms20163970. [PMID: 31443173 PMCID: PMC6720767 DOI: 10.3390/ijms20163970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. We demonstrated previously that C-MSCs can be transplanted into bone defect regions with no artificial scaffold to induce bone regeneration. To apply C-MSCs in a clinical setting as a reliable bone regenerative therapy, the present study aimed to generate C-MSCs in xeno-free/serum-free conditions that can exert successful bone regenerative properties and to monitor interactions between grafted cells and host cells during bone healing processes. Human bone marrow-derived MSCs were cultured in xeno-free/serum-free medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. Then, C-MSCs were transplanted into an immunodeficient mouse calvarial defect model. Transplantation of C-MSCs induced bone regeneration in a time-dependent manner. Immunofluorescence staining showed that both donor human cells and host mice cells contributed to bone reconstruction. Decellularized C-MSCs implantation failed to induce bone regeneration, even though the host mice cells can infiltrate into the defect area. These findings suggested that C-MSCs generated in xeno-free/serum-free conditions can induce bone regeneration via direct and indirect osteogenesis.
Collapse
|