1
|
Munteanu C, Kotova P, Schwartz B. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus. Nutrients 2025; 17:570. [PMID: 39940428 PMCID: PMC11820997 DOI: 10.3390/nu17030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Polina Kotova
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| |
Collapse
|
2
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Subramanian V, Dhandayuthapani UN, Kandasamy S, Sivaprakasam JV, Balasubramaniam P, Shanmugam MK, Nagappan S, Elangovan S, Subramani UK, Palaniyappan K, Vellingiri G, Muthurajan R. Unravelling the metabolomic diversity of pigmented and non-pigmented traditional rice from Tamil Nadu, India. BMC PLANT BIOLOGY 2024; 24:402. [PMID: 38745317 PMCID: PMC11095017 DOI: 10.1186/s12870-024-05123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Rice metabolomics is widely used for biomarker research in the fields of pharmacology. As a consequence, characterization of the variations of the pigmented and non-pigmented traditional rice varieties of Tamil Nadu is crucial. These varieties possess fatty acids, sugars, terpenoids, plant sterols, phenols, carotenoids and other compounds that plays a major role in achieving sustainable development goal 2 (SDG 2). Gas-chromatography coupled with mass spectrometry was used to profile complete untargeted metabolomics of Kullkar (red colour) and Milagu Samba (white colour) for the first time and a total of 168 metabolites were identified. The metabolite profiles were subjected to data mining processes, including principal component analysis (PCA), Orthogonal Partial Least Square Discrimination Analysis (OPLS-DA) and Heat map analysis. OPLS-DA identified 144 differential metabolites between the 2 rice groups, variable importance in projection (VIP) ≥ 1 and fold change (FC) ≥ 2 or FC ≤ 0.5. Volcano plot (64 down regulated, 80 up regulated) was used to illustrate the differential metabolites. OPLS-DA predictive model showed good fit (R2X = 0.687) and predictability (Q2 = 0.977). The pathway enrichment analysis revealed the presence of three distinct pathways that were enriched. These findings serve as a foundation for further investigation into the function and nutritional significance of both pigmented and non-pigmented rice grains thereby can achieve the SDG 2.
Collapse
Affiliation(s)
- Venkatesan Subramanian
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Udhaya Nandhini Dhandayuthapani
- Centre of Excellence in sustaining Soil Health, Anbil Dharmalingam Agricultural College & Research Institute, Trichy, Tamil Nadu, 620 027, India
| | - Senthilraja Kandasamy
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | | | - Prabha Balasubramaniam
- Department of Renewable Energy Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Mohan Kumar Shanmugam
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Sriram Nagappan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | | | - Umesh Kanna Subramani
- Office of the Vice Chancellor, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Kumaresan Palaniyappan
- Agribusiness Development, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Geethalakshmi Vellingiri
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| | - Raveendran Muthurajan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| |
Collapse
|
4
|
Castillo HB, Shuster SO, Tarekegn LH, Davis CM. Oleic acid differentially affects lipid droplet storage of de novo synthesized lipids in hepatocytes and adipocytes. Chem Commun (Camb) 2024; 60:3138-3141. [PMID: 38329230 PMCID: PMC10939124 DOI: 10.1039/d3cc04829b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Lipogenesis is a vital but often dysregulated metabolic pathway. Here we use optical photothermal infrared imaging to quantify lipogenesis rates of isotopically labelled oleic acid and glucose concomitantly in live cells. In hepatocytes, but not adipocytes, we find that oleic acid feeding at 60 μM increases the number and size of lipid droplets (LDs) while simultaneously inhibiting storage of de novo synthesized lipids in LDs. Our results demonstrate alternate regulation of lipogenesis between cell types.
Collapse
Affiliation(s)
- Hannah B Castillo
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, USA.
| | - Sydney O Shuster
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, USA.
| | - Lydia H Tarekegn
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, USA.
| | - Caitlin M Davis
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, USA.
| |
Collapse
|
5
|
Zhao Z, Li B, Chen Q, Xiang X, Xu X, Han S, Lai W, Li Y, Xu W, Mai K, Ai Q. Dietary palm oil enhances Sterol regulatory element-binding protein 2-mediated cholesterol biosynthesis through inducing endoplasmic reticulum stress in muscle of large yellow croaker ( Larimichthys crocea). Br J Nutr 2024; 131:553-566. [PMID: 37699661 DOI: 10.1017/s0007114523001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Sterol regulatory element-binding protein 2 (SREBP2) is considered to be a major regulator to control cholesterol homoeostasis in mammals. However, the role of SREBP2 in teleost remains poorly understand. Here, we explored the molecular characterisation of SREBP2 and identified SREBP2 as a key modulator for 3-hydroxy-3-methylglutaryl-coenzyme A reductase and 7-dehydrocholesterol reductase, which were rate-limiting enzymes of cholesterol biosynthesis. Moreover, dietary palm oil in vivo or palmitic acid (PA) treatment in vitro elevated cholesterol content through triggering SREBP2-mediated cholesterol biosynthesis in large yellow croaker. Furthermore, our results also found that PA-induced activation of SREBP2 was dependent on the stimulating of endoplasmic reticulum stress (ERS) in croaker myocytes and inhibition of ERS by 4-Phenylbutyric acid alleviated PA-induced SREBP2 activation and cholesterol biosynthesis. In summary, our findings reveal a novel insight for understanding the role of SREBP2 in the regulation of cholesterol metabolism in fish and may deepen the link between dietary fatty acid and cholesterol biosynthesis.
Collapse
Affiliation(s)
- Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Baolin Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong266237, People's Republic of China
| |
Collapse
|
6
|
López de Las Hazas MC, Del Saz-Lara A, Cedó L, Crespo MC, Tomé-Carneiro J, Chapado LA, Macià A, Visioli F, Escola-Gil JC, Dávalos A. Hydroxytyrosol Induces Dyslipidemia in an ApoB100 Humanized Mouse Model. Mol Nutr Food Res 2024; 68:e2300508. [PMID: 37933702 DOI: 10.1002/mnfr.202300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Extra virgin olive oil has numerous cardiopreventive effects, largely due to its high content of (poly)phenols such as hydroxytyrosol (HT). However, some animal studies suggest that its excessive consumption may alter systemic lipoprotein metabolism. Because human lipoprotein metabolism differs from that of rodents, this study examines the effects of HT in a humanized mouse model that approximates human lipoprotein metabolism. METHODS AND RESULTS Mice are treated as follows: control diet or diet enriched with HT. Serum lipids and lipoproteins are determined after 4 and 8 weeks. We also analyzed the regulation of various genes and miRNA by HT, using microarrays and bioinformatic analysis. An increase in body weight is found after supplementation with HT, although food intake was similar in both groups. In addition, HT induced the accumulation of triacylglycerols but not cholesterol in different tissues. Systemic dyslipidemia after HT supplementation and impaired glucose metabolism are observed. Finally, HT modulates the expression of genes related to lipid metabolism, such as Pltp or Lpl. CONCLUSION HT supplementation induces systemic dyslipidemia and impaired glucose metabolism in humanized mice. Although the numerous health-promoting effects of HT far outweigh these potential adverse effects, further carefully conducted studies are needed.
Collapse
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
| | - Andrea Del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
- Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, 16171, Spain
| | - Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, 08041, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona, 43005, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - María Carmen Crespo
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
| | - João Tomé-Carneiro
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
| | - Luis A Chapado
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
| | - Alba Macià
- Department of Food Technology, Engineering and Science, XaRTA-TPV, Agrotecnio Center, Escuela Técnica Superior de Ingeniería Agraria, University of Lleida, Lleida, 25198, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, Padova, 35121, Italy
| | - Joan C Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, 08041, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, 28049, Spain
- Consorcio CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| |
Collapse
|
7
|
Udhaya Nandhini D, Venkatesan S, Senthilraja K, Janaki P, Prabha B, Sangamithra S, Vaishnavi SJ, Meena S, Balakrishnan N, Raveendran M, Geethalakshmi V, Somasundaram E. Metabolomic analysis for disclosing nutritional and therapeutic prospective of traditional rice cultivars of Cauvery deltaic region, India. Front Nutr 2023; 10:1254624. [PMID: 37841397 PMCID: PMC10568072 DOI: 10.3389/fnut.2023.1254624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Traditional rice is gaining popularity worldwide due to its high nutritional and pharmaceutical value, as well as its high resistance to abiotic and biotic stresses. This has attracted significant attention from breeders, nutritionists, and plant protection scientists in recent years. Hence, it is critical to investigate the grain metabolome to reveal germination and nutritional importance. This research aimed to explore non-targeted metabolites of five traditional rice varieties, viz., Chinnar, Chithiraikar, Karunguruvai, Kichili samba, and Thooyamalli, for their nutritional and therapeutic properties. Approximately 149 metabolites were identified using the National Institute of Standards and Technology (NIST) library and Human Metabolome Database (HMDB) and were grouped into 34 chemical classes. Major classes include fatty acids (31.1-56.3%), steroids and their derivatives (1.80-22.4%), dihydrofurans (8.98-11.6%), prenol lipids (0.66-4.44%), organooxygen compounds (0.12-6.45%), benzene and substituted derivatives (0.53-3.73%), glycerolipids (0.36-2.28%), and hydroxy acids and derivatives (0.03-2.70%). Significant variations in metabolite composition among the rice varieties were also observed through the combination of univariate and multivariate statistical analyses. Principal component analysis (PCA) reduced the dimensionality of 149 metabolites into five principle components (PCs), which explained 96% of the total variance. Two clusters were revealed by hierarchical cluster analysis, indicating the distinctiveness of the traditional varieties. Additionally, a partial least squares-discriminant analysis (PLS-DA) found 17 variables important in the projection (VIP) scores of metabolites. The findings of this study reveal the biochemical intricate and distinctive metabolomes of the traditional therapeutic rice varieties. This will serve as the foundation for future research on developing new rice varieties with traditional rice grain metabolisms to increase grain quality and production with various nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Dhandayuthapani Udhaya Nandhini
- Centre of Excellence in Sustaining Soil Health, Anbil Dharmalingam Agricultural College and Research Institute, Trichy, Tamil Nadu, India
| | - Subramanian Venkatesan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Kandasamy Senthilraja
- Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Balasubramaniam Prabha
- Department of Renewable Energy Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sadasivam Sangamithra
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Sadasivam Meena
- Centre of Excellence in Sustaining Soil Health, Anbil Dharmalingam Agricultural College and Research Institute, Trichy, Tamil Nadu, India
| | - Natarajan Balakrishnan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Muthurajan Raveendran
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Vellingiri Geethalakshmi
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Eagan Somasundaram
- Agribusiness Development, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
8
|
Fadil HAE, Behairy A, Ebraheim LLM, Abd-Elhakim YM, Fathy HH. The palliative effect of mulberry leaf and olive leaf ethanolic extracts on hepatic CYP2E1 and caspase-3 immunoexpression and oxidative damage induced by paracetamol in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41682-41699. [PMID: 36637651 PMCID: PMC10067661 DOI: 10.1007/s11356-023-25152-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the possible protective role of mulberry leaf (MLE) and olive leaf (OLE) ethanolic extracts against paracetamol (PTL)-induced liver injury in rats compared to silymarin as a reference drug. Initially, MLE and OLE were characterized using gas chromatography-mass spectrometry (GC/MS). Then, forty male Sprague Dawley rats were divided into five groups: the negative control group orally received distilled water for 35 days, the PTL-treated group (PTG) received 500 mg PTL/kg b. wt. for 7 days, the MLE-treated group (MLTG) received 400 mg MLE/kg b. wt., the OLE-treated group (OLTG) received 400 mg OLE/kg b. wt., and the silymarin-treated group (STG) received 100 mg silymarin/kg b. wt. The last three groups received the treatment for 28 days, then PTL for 7 days. The GC-MS characterization revealed that MLE comprised 19 constituents dominated by ethyl linoleate, phytol, hexadecanoic acid, ethyl ester, and squalene. Moreover, OLE comprised 30 components, and the major components were 11-eicosenoic acid, oleic acid, phytol, and à-tetralone. MLE and OLE significantly corrected the PTL-induced normocytic normochromic anemia, leukocytosis, hypercholesterolemia, and hypoproteinemia. Moreover, the MLE and OLE pretreatment considerably suppressed the PTL-induced increment in serum levels of hepatic enzymes, including alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Furthermore, the PTL-induced depletion in antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, and the rise in hepatic malondialdehyde content were significantly reversed by the MLE and OLE pretreatment. Besides, MLE and OLE pretreatment significantly protected the hepatic tissue against PTL-induced DNA damage, pathological perturbations, and increased caspase 3 and CYP2E1 immunoexpression. Of note, OLTG showed better enhancement of most indices rather than MLTG. Conclusively, these findings imply that OLE, with its antioxidant and antiapoptotic capabilities, is superior to MLE in protecting against PTL-induced liver injury.
Collapse
Affiliation(s)
- Hosny Abd El Fadil
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lamiaa L M Ebraheim
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba Hussein Fathy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
10
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
11
|
Jagirdar G, Elsner M, Scharf C, Simm S, Borucki K, Peter D, Lalk M, Methling K, Linnebacher M, Krohn M, Wolke C, Lendeckel U. Re-Expression of Tafazzin Isoforms in TAZ-Deficient C6 Glioma Cells Restores Cardiolipin Composition but Not Proliferation Rate and Alterations in Gene Expression. Front Genet 2022; 13:931017. [PMID: 35957687 PMCID: PMC9358009 DOI: 10.3389/fgene.2022.931017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Tafazzin—an acyltransferase—is involved in cardiolipin (CL) remodeling. CL is associated with mitochondrial function, structure and more recently with cell proliferation. Various tafazzin isoforms exist in humans. The role of these isoforms in cardiolipin remodeling is unknown. Aim of this study was to investigate if specific isoforms like Δ5 can restore the wild type phenotype with respect to CL composition, cellular proliferation and gene expression profile. In addition, we aimed to determine the molecular mechanism by which tafazzin can modulate gene expression by applying promoter analysis and (Ingenuity Pathway Analyis) IPA to genes regulated by TAZ-deficiency. Expression of Δ5 and rat full length TAZ in C6-TAZ- cells could fully restore CL composition and—as proven for Δ5—this is naturally associated with restoration of mitochondrial respiration. A similar restoration of CL-composition could not be observed after re-expression of an enzymatically dead full-length rat TAZ (H69L; TAZMut). Re-expression of only rat full length TAZ could restore proliferation rate. Surprisingly, the Δ5 variant failed to restore wild-type proliferation. Further, as expected, re-expression of the TAZMut variant completely failed to reverse the gene expression changes, whereas re-expression of the TAZ-FL variant largely did so and the Δ5 variant to somewhat less extent. Very likely TAZ-deficiency provokes substantial long-lasting changes in cellular lipid metabolism which contribute to changes in proliferation and gene expression, and are not or only very slowly reversible.
Collapse
Affiliation(s)
- Gayatri Jagirdar
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head, and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Daniela Peter
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology, and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Mathias Krohn
- Department of General Surgery, Molecular Oncology, and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
- *Correspondence: Uwe Lendeckel,
| |
Collapse
|
12
|
Scuto M, Ontario ML, Salinaro AT, Caligiuri I, Rampulla F, Zimbone V, Modafferi S, Rizzolio F, Canzonieri V, Calabrese EJ, Calabrese V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic Biol Med 2022; 179:59-75. [PMID: 34929315 DOI: 10.1016/j.freeradbiomed.2021.12.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| |
Collapse
|
13
|
Quercetin Reduces Lipid Accumulation in a Cell Model of NAFLD by Inhibiting De Novo Fatty Acid Synthesis through the Acetyl-CoA Carboxylase 1/AMPK/PP2A Axis. Int J Mol Sci 2022; 23:ijms23031044. [PMID: 35162967 PMCID: PMC8834998 DOI: 10.3390/ijms23031044] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of de novo lipogenesis (DNL) has recently gained strong attention as being one of the critical factors that contribute to the assessment of non-alcoholic fatty liver disease (NAFLD). NAFLD is often diagnosed in patients with dyslipidemias and type 2 diabetes; thus, an interesting correlation can be deduced between high hematic free fatty acids and glucose excess in the DNL dysregulation. In the present study, we report that, in a cellular model of NAFLD, the coexistence of elevated glucose and FFA conditions caused the highest cellular lipid accumulation. Deepening the molecular mechanisms of the DNL dysregulation—RT-qPCR and immunoblot analysis demonstrated increased expression of mitochondrial citrate carrier (CiC), cytosolic acetyl-CoA carboxylase 1 (ACACA), and diacylglycerol acyltransferase 2 (DGAT2) involved in fatty acids and triglycerides synthesis, respectively. XBP-1, an endoplasmic reticulum stress marker, and SREBP-1 were the transcription factors connected to the DNL activation. Quercetin (Que), a flavonoid with strong antioxidant properties, and noticeably reduced the lipid accumulation and the expression of SREBP-1 and XBP-1, as well as of their lipogenic gene targets in steatotic cells. The anti-lipogenic action of Que mainly occurs through a strong phosphorylation of ACACA, which catalyzes the committing step in the DNL pathway. The high level of ACACA phosphorylation in Que-treated cells was explained by the intervention of AMPK together with the reduction of enzymatic activity of PP2A phosphatase. Overall, our findings highlight a direct anti-lipogenic effect of Que exerted through inhibition of the DNL pathway by acting on ACACA/AMPK/PP2A axis; thus, suggesting this flavonoid as a promising molecule for the NAFLD treatment.
Collapse
|
14
|
|
15
|
Qiu R, Zhong Y, Li Q, Li Y, Fan H. Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors. Front Cell Dev Biol 2021; 9:693215. [PMID: 34211978 PMCID: PMC8239469 DOI: 10.3389/fcell.2021.693215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023] Open
Abstract
During metabolic reprogramming, glioma cells and their initiating cells efficiently utilized carbohydrates, lipids and amino acids in the hypoxic lesions, which not only ensured sufficient energy for rapid growth and improved the migration to normal brain tissues, but also altered the role of immune cells in tumor microenvironment. Glioma cells secreted interferential metabolites or depriving nutrients to injure the tumor recognition, phagocytosis and lysis of glioma-associated microglia/macrophages (GAMs), cytotoxic T lymphocytes, natural killer cells and dendritic cells, promoted the expansion and infiltration of immunosuppressive regulatory T cells and myeloid-derived suppressor cells, and conferred immune silencing phenotypes on GAMs and dendritic cells. The overexpressed metabolic enzymes also increased the secretion of chemokines to attract neutrophils, regulatory T cells, GAMs, and dendritic cells, while weakening the recruitment of cytotoxic T lymphocytes and natural killer cells, which activated anti-inflammatory and tolerant mechanisms and hindered anti-tumor responses. Therefore, brain-targeted metabolic therapy may improve glioma immunity. This review will clarify the metabolic properties of glioma cells and their interactions with tumor microenvironment immunity, and discuss the application strategies of metabolic therapy in glioma immune silence and escape.
Collapse
Affiliation(s)
- Runze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qingquan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Ashokkumar K, Govindaraj M, Vellaikumar S, Shobhana VG, Karthikeyan A, Akilan M, Sathishkumar J. Comparative Profiling of Volatile Compounds in Popular South Indian Traditional and Modern Rice Varieties by Gas Chromatography-Mass Spectrometry Analysis. Front Nutr 2020; 7:599119. [PMID: 33363195 PMCID: PMC7755633 DOI: 10.3389/fnut.2020.599119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023] Open
Abstract
Rice (Oryza sativa L.) is one of the major cereal crops cultivated across the world, particularly in Southeast Asia with 95% of global production. The present study was aimed to evaluate the total phenolic content (TPC) and to profile all the volatile organic compounds (VOCs) of eight popular traditional and two modern rice varieties cultivated in South India. Thirty-one VOCs were estimated by gas chromatography–mass spectrometry (GC-MS). The identified volatile compounds in the 10 rice varieties belong to the chemical classes of fatty acids, terpenes, alkanes, alkenes, alcohols, phenols, esters, amides, and others. Interestingly, most of the identified predominant components were not identical, which indicate the latent variation among the rice varieties. Significant variations exist for fatty acids (46.9–76.2%), total terpenes (12.6–30.7%), total phenols (0.9–10.0%), total aliphatic alcohols (0.8–5.9%), total alkanes (0.5–5.1%), and total alkenes (1.0–4.9%) among the rice varieties. Of all the fatty acid compounds, palmitic acid, elaidic acid, linoleic acid, and oleic acid predominantly varied in the range of 11.1–33.7, 6.1–31.1, 6.0–28.0, and 0.7–15.1%, respectively. The modern varieties recorded the highest palmitic acid contents (28.7–33.7%) than the traditional varieties (11.1–20.6%). However, all the traditional varieties had higher linoleic acid (10.0–28.0%) than the modern varieties (6.0–8.5%). Traditional varieties had key phenolic compounds, stearic acid, butyric acid, and glycidyl oleate, which are absent in the modern varieties. The traditional varieties Seeraga samba and Kichilli samba had the highest azulene and oleic acid, respectively. All these indicate the higher variability for nutrients and aroma in traditional varieties. These varieties can be used as potential parents to improve the largely cultivated high-yielding varieties for the evolving nutritional market. The hierarchical cluster analysis showed three different clusters implying the distinctness of the traditional and modern varieties. This study provided a comprehensive volatile profile of traditional and modern rice as a staple food for energy as well as for aroma with nutrition.
Collapse
Affiliation(s)
- Kaliyaperumal Ashokkumar
- Crop Improvement, Cardamom Research Station, Kerala Agricultural University, Pampadumpara, India.,School of Agriculture, PRIST Deemed University, Thanjavur, India
| | - Mahalingam Govindaraj
- Crop Improvement Program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - V G Shobhana
- Crop Improvement Program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - Manoharan Akilan
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | | |
Collapse
|
17
|
Rehman K, Haider K, Jabeen K, Akash MSH. Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes. Rev Endocr Metab Disord 2020; 21:631-643. [PMID: 32125563 DOI: 10.1007/s11154-020-09549-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Insulin resistance (IR) and type 2 diabetes mellitus (T2DM) is a leading cause of deaths due to metabolic disorders in recent years. Molecular mechanisms involved in the initiation and development of IR and T2DM are multiples. The major factors include mitochondrial dysfunction which may cause incomplete fatty acid oxidation (FAO). Oleic acid upregulates the expression of genes causing FAO by deacetylation of PGC1α by PKA-dependent activation of SIRT1-PGC1α complex. Another potent factor for the development of IR and T2DM is endothelial dysfunction as damaged endothelium causes increased release of inflammatory mediators such as TNF-α, IL-6, IL-1β, sVCAM, sICAM, E-selectin and other proinflammatory cytokines. While, on the other hand, oleic acid has the ability to regulate E-selectin, and sICAM expression. Rest of the risk factors may include inflammation, β-cell dysfunction, oxidative stress, hormonal imbalance, apoptosis, and enzyme dysregulation. Here, we have highlighted how oleic acid regulates underlying causatives factors and hence, keeps surpassing effect in prevention and treatment of IR and T2DM. However, the percentage contribution of these factors in combating IR and ultimately averting T2DM is still debatable. Thus, because of its exceptional protective effect, it can be considered as an improved therapeutic agent in prophylaxis and/or treatment of IR and T2DM.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Kamran Haider
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Komal Jabeen
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
18
|
Dinu M, Pagliai G, Scavone F, Bellumori M, Cecchi L, Nediani C, Maggini N, Sofi F, Giovannelli L, Mulinacci N. Effects of an Olive By-Product Called Pâté on Cardiovascular Risk Factors. J Am Coll Nutr 2020; 40:617-623. [DOI: 10.1080/07315724.2020.1813060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Scavone
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Maria Bellumori
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Lorenzo Cecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Niccolò Maggini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Don Carlo Gnocchi Foundation, Onlus IRCCS, Florence, Italy
| | - Lisa Giovannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Nadia Mulinacci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
19
|
Kampa JM, Kellner U, Marsching C, Ramallo Guevara C, Knappe UJ, Sahin M, Giampà M, Niehaus K, Bednarz H. Glioblastoma multiforme: Metabolic differences to peritumoral tissue and
IDH
‐mutated gliomas revealed by mass spectrometry imaging. Neuropathology 2020; 40:546-558. [DOI: 10.1111/neup.12671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Judith M. Kampa
- Proteome and Metabolome Research, Faculty of Biology & Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Udo Kellner
- Institut für Pathologie, Johannes Wesling Klinikum Minden Germany
| | - Christian Marsching
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) Mannheim University of Applied Sciences Mannheim Germany
| | - Carina Ramallo Guevara
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS) Mannheim University of Applied Sciences Mannheim Germany
| | - Ulrich J. Knappe
- Klinik für Neurochirurgie, Johannes Wesling Klinikum Minden Germany
| | - Mikail Sahin
- Proteome and Metabolome Research, Faculty of Biology & Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Marco Giampà
- Proteome and Metabolome Research, Faculty of Biology & Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology & Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Hanna Bednarz
- Proteome and Metabolome Research, Faculty of Biology & Center for Biotechnology Bielefeld University Bielefeld Germany
| |
Collapse
|
20
|
Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, Moschetta A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019; 11:nu11102283. [PMID: 31554181 PMCID: PMC6835877 DOI: 10.3390/nu11102283] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
The consumption of an olive oil rich diet has been associated with the diminished incidence of cardiovascular disease and cancer. Several studies have attributed these beneficial effects to oleic acid (C18 n-9), the predominant fatty acid principal component of olive oil. Oleic acid is not an essential fatty acid since it can be endogenously synthesized in humans. Stearoyl-CoA desaturase 1 (SCD1) is the enzyme responsible for oleic acid production and, more generally, for the synthesis of monounsaturated fatty acids (MUFA). The saturated to monounsaturated fatty acid ratio affects the regulation of cell growth and differentiation, and alteration in this ratio has been implicated in a variety of diseases, such as liver dysfunction and intestinal inflammation. In this review, we discuss our current understanding of the impact of gene-nutrient interactions in liver and gut diseases, by taking advantage of the role of SCD1 and its product oleic acid in the modulation of different hepatic and intestinal metabolic pathways.
Collapse
Affiliation(s)
- Elena Piccinin
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Marica Cariello
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Stefania De Santis
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Simon Ducheix
- Institut du thorax, INSERM, CNRS, University of Nantes, 44007 Nantes, France.
| | - Carlo Sabbà
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - James M Ntambi
- Departments of Biochemistry and of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | - Antonio Moschetta
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy.
| |
Collapse
|
21
|
Damiano F, Giannotti L, Gnoni GV, Siculella L, Gnoni A. Quercetin inhibition of SREBPs and ChREBP expression results in reduced cholesterol and fatty acid synthesis in C6 glioma cells. Int J Biochem Cell Biol 2019; 117:105618. [PMID: 31542428 DOI: 10.1016/j.biocel.2019.105618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Quercetin (Que), a widely distributed flavonoid in the human diet, exerts neuroprotective action because of its property to antagonize oxidative stress. Here, we investigated the effects of Que on lipid synthesis in C6 glioma cells. A rapid Que-induced inhibition of cholesterol and, to a lesser extent, of fatty acid synthesis from [1-14C]acetate was observed. The maximum decrease was detected at the level of palmitate, the end product of de novo fatty acid synthesis. The effect of Que on the enzyme activities of acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FAS), the two enzymes of this pathway, was investigated directly in situ in permeabilized C6 cells. An inhibitory effect on ACC1 was observed after 4 h of 25 μM Que treatment, while FAS activity was not affected. A reduction of polar lipid biosynthesis was also detected. A remarkable decrease of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) activity, regulatory enzyme of cholesterol synthesis, was evidenced. Expression studies demonstrated that Que acts at transcriptional level, by reducing the mRNA abundance and protein amount of ACC1 and HMGCR. Deepening the molecular mechanism, we found that Que decreased the expression of SREBP-1 and SREBP-2, transcriptional factors representing the main regulators of de novo fatty acid and cholesterol synthesis, respectively. Que also reduced the nuclear content of ChREBP, a glucose-induced transcription factor involved in the regulation of lipogenic genes. Our results represent the first evidence that a direct and rapid downregulatory effect of Que on cholesterol and de novo fatty acid synthesis is elicited in C6 cells.
Collapse
Affiliation(s)
- Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Gabriele V Gnoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100, Lecce, Italy.
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy
| |
Collapse
|
22
|
Karković Marković A, Torić J, Barbarić M, Jakobušić Brala C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019; 24:molecules24102001. [PMID: 31137753 PMCID: PMC6571782 DOI: 10.3390/molecules24102001] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet and olive oil as its quintessential part are almost synonymous with a healthy way of eating and living nowadays. This kind of diet has been highly appreciated and is widely recognized for being associated with many favorable effects, such as reduced incidence of different chronic diseases and prolonged longevity. Although olive oil polyphenols present a minor fraction in the composition of olive oil, they seem to be of great importance when it comes to the health benefits, and interest in their biological and potential therapeutic effects is huge. There is a growing body of in vitro and in vivo studies, as well as intervention-based clinical trials, revealing new aspects of already known and many new, previously unknown activities and health effects of these compounds. This review summarizes recent findings regarding biological activities, metabolism and bioavailability of the major olive oil phenolic compounds—hydroxytyrosol, tyrosol, oleuropein, oleocanthal and oleacein—the most important being their antiatherogenic, cardioprotective, anticancer, neuroprotective and endocrine effects. The evidence presented in the review concludes that these phenolic compounds have great pharmacological potential, however, further studies are still required.
Collapse
Affiliation(s)
- Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Monika Barbarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| | - Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A.Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
23
|
de Pablos RM, Espinosa-Oliva AM, Hornedo-Ortega R, Cano M, Arguelles S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol Res 2019; 143:58-72. [DOI: 10.1016/j.phrs.2019.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
|