1
|
Lin XX, Yang PQ, Li XJ, Xu ZZ, Wu HT, Hu SM, Yang XL, Ding Y, Yu WZ. Network pharmacology‑based analysis and in vitro experimental verification of the inhibitory role of luteoloside on gastric cancer cells via the p53/p21 pathway. Oncol Lett 2025; 29:76. [PMID: 39650229 PMCID: PMC11622105 DOI: 10.3892/ol.2024.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/16/2024] [Indexed: 12/11/2024] Open
Abstract
The present study aimed to investigate the inhibitory effect of luteoloside on the proliferation, migration and invasion of gastric cancer (GC) cells based on network pharmacology and in vitro experiments. GC-associated targets were obtained from the GeneCards and Online Mendelian Inheritance in Man databases. Gene Ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery. Protein-protein interaction (PPI) networks and herb-active ingredient-target gene-signaling pathway networks were constructed using the Search Tool for the Retrieval of Interacting Genes and proteins and Cytoscape software to analyze core target genes and pathways. In addition, the alkaline comet assay was performed to assess DNA damage, demonstrating that luteoloside induces DNA double-strand breaks in a concentration-dependent manner, as indicated by increased comet tail lengths. γ-H2AX detection through western blot analysis further corroborated these findings, showing significant upregulation of this DNA damage marker in luteoloside-treated GC cells. The human GC cell line NCI-N87 was utilized for in vitro experiments to investigate the impact of different doses of luteoloside on cell proliferation, invasion and migration using Cell Counting Kit-8, scratch-wound and Transwell assays, respectively. The underlying molecular mechanism of luteoloside was explored using western blot analysis. The successfully constructed PPI network revealed the p53, Akt1, Bcl-2 and Caspase-3 proteins as the core targets, all of which showed good binding activity with luteoloside. The in vitro experiments demonstrated that luteoloside treatment significantly inhibited GC-cell proliferation, migration and invasion. The western blot results showed notable concentration-dependent upregulation of p53 and p21 protein expression and downregulation of Bcl-2 protein expression following luteoloside treatment. Overall, luteoloside inhibited the proliferation, migration and invasion of GC cells by activating the p53/p21 signaling pathway.
Collapse
Affiliation(s)
- Xin-Xing Lin
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Pei-Qing Yang
- Department of Gastroenterology, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Xiao-Jun Li
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Zhong-Zhen Xu
- Department of Gastroenterology, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Hai-Tao Wu
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Shun-Ming Hu
- Department of Gastroenterology, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Xiao-Lei Yang
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Yong Ding
- Department of General Surgery, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Wei-Zhou Yu
- Department of Gastroenterology, Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| |
Collapse
|
2
|
Saini H, Basu P, Nesari T, Huddar VG, Ray K, Srivastava A, Gupta S, Mehrotra R, Tripathi R. Therapeutic and pharmacological efficacy of plant-derived bioactive compounds in targeting breast cancer. Am J Transl Res 2024; 16:1499-1520. [PMID: 38883353 PMCID: PMC11170612 DOI: 10.62347/nuzn4999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/23/2024] [Indexed: 06/18/2024]
Abstract
Breast cancer (BC) ranks number one among cancers affecting women globally. Serious concerns include delayed diagnosis, poor prognosis, and adverse side effects of conventional treatment, leading to residual morbidity. Therefore, an alternative treatment approach that is safe and effective has become the need of the hour. In this regard, plant-based medicines via a combination of conventional drugs are gaining increasing acceptance worldwide, playing a pivotal role in cancer management as proven by their efficacy evaluation studies. This review aims to fill the knowledge gaps by providing the preclinical evidence of cellular and molecular mechanisms of Indian phytomedicines in targeting varied pathways of breast cancer progression. A comprehensive search was performed on different platforms, followed by screening of relevant studies for review. In this article, the in-depth of various botanical drugs covering their nomenclature, dosage, toxicity, and modus operandi in BC cells have been extensively discussed. Various signaling pathways like Notch signaling, MAPK signaling, apoptosis, Wnt signaling, etc. regulated by herbal medicine treatment in BC are also highlighted to understand the drug mechanism better. This will guide the researchers to plan future strategies and generate more robust integrated evidence of plant-based drugs or botanical formulations for their potential role in the management of BC.
Collapse
Affiliation(s)
- Heena Saini
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan evam Vikriti Vigyan (Pathology), All India Institute of AyurvedaNew Delhi-110076, India
| | - Partha Basu
- Section of Early Detection and Prevention, International Agency for Research on CancerLyon-69008, France
| | - Tanuja Nesari
- Department of Dravyaguna (Materia Medica and Pharmacology), All India Institute of AyurvedaNew Delhi-110076, India
| | - Vitthal Govindappa Huddar
- Department of Kayachikitsa (Internal Medicine), All India Institute of AyurvedaNew Delhi-110076, India
| | - Koninika Ray
- Open Health Systems Laboratory (OHSL)Los Gatos, California-95032, US
| | - Anil Srivastava
- Open Health Systems Laboratory (OHSL)Los Gatos, California-95032, US
| | - Subhash Gupta
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi-110029, India
| | - Ravi Mehrotra
- Rollins School of Public Health, Emory UniversityAtlanta, Georgia-30322, US
| | - Richa Tripathi
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan evam Vikriti Vigyan (Pathology), All India Institute of AyurvedaNew Delhi-110076, India
| |
Collapse
|
3
|
Ullah Z, Iqbal J, Gul F, Abbasi BA, Kanwal S, Elsadek MF, Ali MA, Iqbal R, Elsalahy HH, Mahmood T. Biogenic synthesis, characterization, and in vitro biological investigation of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata. Sci Rep 2024; 14:10484. [PMID: 38714767 PMCID: PMC11076632 DOI: 10.1038/s41598-024-60694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 05/10/2024] Open
Abstract
The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 μg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 μg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 μg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.
Collapse
Affiliation(s)
- Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Farhat Gul
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, 45320, Pakistan
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Heba H Elsalahy
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan.
| |
Collapse
|
4
|
Wahyuni DK, Yoku BF, Mukarromah SR, Purnama PR, Ilham M, Rakashiwi GA, Indriati DT, Junairiah, Wacharasindhu S, Prasongsuk S, Subramaniam S, Purnobasuki H. Unraveling the secrets of Eclipta alba (L.) Hassk.: a comprehensive study of morpho-anatomy and DNA barcoding. BRAZ J BIOL 2023; 83:e274315. [PMID: 38126630 DOI: 10.1590/1519-6984.274315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/21/2023] [Indexed: 12/23/2023] Open
Abstract
Safety regarding herbal products is very necessary; therefore, routine identification of raw materials should be performed to ensure that the raw materials used in pharmaceutical products are suitable for their intended use. In order for the identification-related data obtained to be accurate, the identification of various kinds of markers is also very necessary. The purpose of this study was to describe the characteristics of Eclipta alba (L.) Hassk. based on qualitative morpho-anatomical markers and quantitative DNA coding. The morphology of this plant has herbaceous habit with a taproot and a stem with branches that appear from the middle. Leaves are single type imperfectly arranged oppositely, lanceolatus, finely serrated on the edges, tapered at the base, pointed at the end, and have a pinnate and hairy leaf surface. The flowers consist of ray flowers and tube flowers with a cup shape. Meanwhile, in terms of anatomy, E. alba has aerenchyma, which are scattered in the cortex of the root and stem. In addition, there are anisocytic stomata, glandular trichomes, and non-glandural trichomes with an elongated shape accompanied by ornamentation found on the leaf epidermis. The results of sequence alignment and phylogenetic tree reconstruction show that the sample plants are closely related to species in the genus Eclipta.
Collapse
Affiliation(s)
- D K Wahyuni
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - B F Yoku
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - S R Mukarromah
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - P R Purnama
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
- Chulalongkorn University, Faculty of Science, Graduate Program in Bioinformatics and Computational Biology, Wangmai, Bangkok, Thailand
| | - M Ilham
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - G A Rakashiwi
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - D T Indriati
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - Junairiah
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| | - S Wacharasindhu
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
- Chulalongkorn University, Faculty of Science, Department of Chemistry, Wangmai, Bangkok, Thailand
| | - S Prasongsuk
- Chulalongkorn University, Department of Botany, Faculty of Science, Wangmai, Bangkok, Thailand
| | - S Subramaniam
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
- Universiti Sains Malaysia, School of Biological Science, Georgetown, Penang, Malaysia
| | - H Purnobasuki
- Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Surabaya, East Java, Indonesia
| |
Collapse
|
5
|
Phan TKP, Wang SL, Nguyen QV, Phan TQ, Nguyen TT, Tran TTT, Nguyen AD, Nguyen VB, Doan MD. Assessment of the Chemical Profile and Potential Medical Effects of a Flavonoid-Rich Extract of Eclipta prostrata L. Collected in the Central Highlands of Vietnam. Pharmaceuticals (Basel) 2023; 16:1476. [PMID: 37895947 PMCID: PMC10609904 DOI: 10.3390/ph16101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Eclipta prostrata L. (EPL), a medicinal plant, is widely utilized in the central highlands of Vietnam. This study aims to assess the chemical profile and potential medical effects of an EPL extract rich in flavonoids. A total of 36 secondary metabolites were identified from the EPL extract through GC-MS and UHPLC-UV analysis. Among them, 15 volatile compounds and several phenolic and flavonoid chemicals, including salicylic acid, epicatechin gallate, isovitexin, and apigetrin, were reported in EPL extract for the first time. This herbal extract demonstrated moderate inhibition against α-amylase and α-glucosidase, and high anti-oxidant and anti-acetylcholinesterase activities (IC50 = 76.8 ± 0.8 μg/mL). These promising attributes can be likely attributed to the high levels of major compounds, including wedelolactone (1), chlorogenic acid (3), epicatechin gallate (6), salicylic acid (8), isovitexin (9), apigetrin (11), and myricetin (12). These findings align with the traditional use of EPL for enhancing memory and cognitive function, as well as its potential benefits in diabetes management. The results of the molecular docking study reveal that the major identified compounds (1, 6, 9, and 11) showed a more effective acetylcholinesterase inhibitory effect than berberine chloride, with good binding energy (DS values, -12.3 to -14.3 kcal/mol) and acceptable values of RMSD (1.02-1.67 Å). Additionally, almost all the identified major compounds exhibited good ADMET properties within the required limits.
Collapse
Affiliation(s)
- Thi Kim Phung Phan
- Faculty of Medicine and Pharmacy, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Quang Vinh Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| | - Tu Quy Phan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Tan Thanh Nguyen
- School of Chemistry Biology and Environment, Vinh University, Vinh City 43100, Vietnam;
| | | | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| | - Manh Dung Doan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (Q.V.N.); (A.D.N.); (V.B.N.)
| |
Collapse
|
6
|
Li H, Shi W, Shen T, Hui S, Hou M, Wei Z, Qin S, Bai Z, Cao J. Network pharmacology-based strategy for predicting therapy targets of Ecliptae Herba on breast cancer. Medicine (Baltimore) 2023; 102:e35384. [PMID: 37832105 PMCID: PMC10578738 DOI: 10.1097/md.0000000000035384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer is a prevalent malignancy affecting women globally, characterized by significant morbidity and mortality rates. Ecliptae Herba is a traditional herbal medicine commonly used in clinical practice, has recently been found to possess antitumor properties. In order to explore the underlying material basis and molecular mechanisms responsible for the anti-breast cancer effects of Ecliptae Herba, we used network pharmacology and experimental verification. UPLC-MS/MS was utilized to identify compounds present in Ecliptae Herba. The active components of Ecliptae Herba and its breast cancer targets were screened using public databases. Hub genes were identified using the STRING and Metascape database. The R software was utilized for visual analysis of GO and KEGG pathways. The affinity of the hub targets for the active ingredients was assessed by molecular docking analysis, which was verified by experimental assessment. A total of 178 targets were obtained from the 10 active components of Ecliptae Herba, while 3431 targets associated with breast cancer were screened. There were 144 intersecting targets between the components and the disease. Targets with a higher degree, namely EGFR and TGFB1, were identified through the hub subnetwork of PPI. GO and KEGG analyses revealed that Ecliptae Herba plays an important role in multiple cancer therapeutic mechanisms. Moreover, molecular docking results showed that the core components had good binding affinity with key targets. Finally, it was confirmed that TGF-β1 might be a potential crucial target of Ecliptae Herba in the treatment of breast cancer by cytological experiments, and the TGF-β1/Smad signaling pathway might be an important pathway for Ecliptae Herba to exert its therapeutic effects. This study elucidated the active ingredients, key targets, and molecular mechanisms of Ecliptae Herba in the treatment of breast cancer, providing a scientific foundation and therapeutic mechanism for the prevention and treatment of breast cancer with Traditional Chinese medicine.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingming Shen
- Ningde Hospital of Traditional Chinese Medicine, Ningde, China
| | - Siwen Hui
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manting Hou
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junling Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Luoyang Branch of Dongzhimen Hospital Afiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Gou Y, Wang Z, Zhou L, Du J, Huang J, Li J, Zhang X, Guan S. UPLC-QTOF-MS-based lipidomic study of wedelolactone in acute colitis mice induced by dextran sulfate sodium. Heliyon 2023; 9:e20162. [PMID: 37809775 PMCID: PMC10559927 DOI: 10.1016/j.heliyon.2023.e20162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Inflammatory bowel disease is a relapsing inflammatory disease seriously endanger human health. Wedelolactone (WED) is a major active ingredient from Eclipta prostrata (L.) L. and has shown anti-inflammatory effects. However, the mechanism of WED in treating inflammatory colitis remains unknown. We aimed to investigate the mechanisms of WED in treating ulcerative colitis through lipidomic study. Sixty male C57BL/6 mice were exposed to DSS to induce acute colitis. Disease progression was judged by the disease activity index (DAI) and pathological changes of colon tissue. An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method was performed for colon and plasma lipidomics analyses. Differential metabolites in the three groups were distinguished by univariate and multivariate analysis. WED exerted anti-inflammatory effects representing by body weight and DAI score. Three metabolites were identified in plasma and 20 in colon. According to pathway analysis, the effects of WED on colitis were associated with seven pathways. The glycerophospholipid metabolism and ether lipid metabolism were the primary pathways. The findings provide important insight of the mechanism of WED in treating DSS induced colitis through lipidomic perspective.
Collapse
Affiliation(s)
- Yuanyuan Gou
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Zichen Wang
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Liping Zhou
- Evaluation and Monitoring Center of Occupational Health, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, PR China
| | - Jinpan Du
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Jiaxin Huang
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Jing Li
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Xuyu Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510089, PR China
| | - Su Guan
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
8
|
Rai K, Yadav K, Das M, Chaudhary S, Naik K, Singh P, Dubey AK, Yadav SK, Agrawal SB, Parmar AS. Effect of carbon quantum dots derived from extracts of UV-B-exposed Eclipta alba on alcohol-induced liver cirrhosis in Golden Hamster. Photochem Photobiol Sci 2023:10.1007/s43630-023-00396-3. [PMID: 36826694 DOI: 10.1007/s43630-023-00396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
The Eclipta alba plant is considered hepatoprotective, owing to its phytoconstituents wedelolactone. In the current study, effect of elevated ultraviolet-B (eUV-B) radiation was investigated on biochemical, phytochemical, and antioxidative enzymatic activities of E. alba (Bhringraj) plant. The UV-B exposure resulted in an increase in oxidative stress, which has caused an imbalance in phytochemical, biochemical constituents, and induced antioxidative enzymatic activities. It was observed that the UV-B exposure promoted wedelolactone yield by 23.64%. Further, the leaf extract of UV-B-exposed plants was used for the synthesis of carbon quantum dots (CQDs) using low cost, one-step hydrothermal technique and its biocompatibility was studied using in vitro MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on HepG2 liver cell line. It revealed no toxicity in any treatment groups in comparison to the control. Both CQDs and leaf extract were orally administered to the golden hamster suffering from alcohol-induced liver cirrhosis. In the morphometric study, it was clearly observed that a combination of UV-B-exposed leaf extract and synthesized CQDs delivered the best result with maximum recovery of liver tissues. The present study reveals the positive impact of UV-B exposure on the medicinally important plant, increased yield of wedelolactone, and its enhanced hepatoprotective efficacy for the treatment of damaged liver tissues.
Collapse
Affiliation(s)
- Kshama Rai
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Kanchan Yadav
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Megha Das
- Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India
| | - Kaustubh Naik
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Priya Singh
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Sanjeev Kumar Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
9
|
Mondal P, Natesh J, Penta D, Meeran SM. Extract of Murraya koenigii selectively causes genomic instability by altering redox-status via targeting PI3K/AKT/Nrf2/caspase-3 signaling pathway in human non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154272. [PMID: 35728387 DOI: 10.1016/j.phymed.2022.154272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. Dietary bioactives have been used as alternative therapeutics to overcome various adverse effects caused by chemotherapeutics. Curry leaves are a widely used culinary spice and different parts of this plant have been used in traditional medicines. Curry leaves are a rich source of multiple bioactives, especially polyphenols and alkaloids. Therefore, extraction processes play a key role in obtaining the optimum yield of bioactives and their efficacy. PURPOSE We aim to select an extraction process that achieves the optimum yield of bioactives in curry leaves crude extract (CLCE) with minimum solvent usage and in a shorter time. Further, to investigate the anticancer properties of CLCE and its mechanism against lung cancer. METHODS Different extraction processes were performed and analyzed polyphenol content. The bioactives and essential oils present in curry leaves were identified through LC-MS/MS and GC-MS analysis. The cytotoxicity of microwave-assisted CLCE (MA-CLCE) was investigated through MTT and colony-forming assays. The DNA damage was observed by comet assay. The apoptotic mechanisms of MA-CLCE were investigated by estimating ROS production, depolarization of mitochondrial membrane potential (MMP), and apoptotic proteins. The glutathione assay estimated the antioxidant potential of MA-CLCE in normal cells. RESULTS Generally, conventional extraction methods require high temperatures, extra energy input, and time. Recently, green extraction processes are getting wider attention as alternative extraction methods. This study compared different extraction processes and found that the microwave-assisted extraction (MAE) method yields the highest polyphenols from curry leaves among other extraction processes with minimum processing. The MA-CLCE functions as an antioxidant under normal physiological conditions but pro-oxidant to cancer cells. MA-CLCE scavenges free radicals and enhances the intracellular GSH level in alveolar macrophages in situ. We found that MA-CLCE selectively inhibits cell proliferation and induces apoptosis in cancer cells by altering cellular redox status. MA-CLCE induces chromatin condensation and genotoxicity through ROS-induced depolarization of MMP. The depolarization of MMP causes the release of cytochrome c into the cytosol and activates the apoptotic pathway in lung cancer cells. However, pretreatment with ascorbic acid, an antioxidant, inhibits the MA-CLCE-induced apoptosis by reducing ROS production, which impedes mitochondrial membrane disruption, preventing BAX/BCL-2 expression alteration. Simultaneously, MA-CLCE downregulates the expression of survival signaling regulator PI3K/AKT, which modulates Nrf-2. MA-CLCE also diminishes intracellular antioxidant proficiency by suppressing Nrf-2 expression, followed by HO-1 expressions. CONCLUSION Among several extraction methods, MA-CLCE is rich in several bioactives, especially polyphenols, alkaloids, and essential oils. Here, we reported for the first time that MA-CLCE functions as a pro-oxidant to lung cancer cells and acts as an antioxidant to normal cells by regulating different cellular programs and signaling pathways. Therefore, it can be further developed as a promising phytomedicine against lung cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, Laboratory of Nutritional Epigenetics, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, Laboratory of Nutritional Epigenetics, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, Laboratory of Nutritional Epigenetics, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, Laboratory of Nutritional Epigenetics, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Bhattacharyya S, Law S. Environmental pollutant N-N'ethylnitrosourea-induced leukemic NLRP3 inflammasome activation and its amelioration by Eclipta prostrata and its active compound wedelolactone. ENVIRONMENTAL TOXICOLOGY 2022; 37:322-334. [PMID: 34726823 DOI: 10.1002/tox.23400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Environmental exposure of N-nitroso compounds (NOCs) from various sources like tobacco smoke, pesticides, smoked meat, and rubber manufacturing industries has been an alarming cause of carcinogenesis. Neonatal exposure to the carcinogenic N-N'ethylnitrosourea (ENU), a NOC has been established to cause leukemogenesis. Our world is constantly battling against cancer with consistent investigations of new anti-cancer therapeutics. Plant derived compounds have grasped worldwide attention of researchers for their promising anti-cancer potentials. Eclipta prostrata is one such ayurvedic herb, renowned for its anti-inflammatory properties. Currently, it has been explored in various cancer cell lines to establish its anti-cancer effect, but rarely in in-vivo cancer models. Wedelolactone (WDL), the major coumestan of E. prostrata is recognized as an inhibitor of IKK, a master regulator of the NF-kB inflammatory pathway. As persistent inflammation and activated inflammasome contribute to leukemogenesis, we tried to observe anti-leukemogenic efficacy of E. prostrata and its active compound WDL on the marrow cells of ENU induced experimental leukemic mice. Treatment groups were administered an oral gavage at a dose of 1200 mg/kg and 50 mg/kg b.w of crude extract and WDL respectively for 4 weeks. Various parameters like hemogram, survivability, cytological and histological investigations, migration assay, cell culture, flowcytometry and confocal microscopy were taken into consideration pre- and post-treatment. Interestingly, the plant concoction portrayed maximum effects in comparison to WDL alone. The study suggests E. prostrata and WDL as vital complementary adjuncts for anti-inflammasome mechanism in ENU-induced leukemia.
Collapse
Affiliation(s)
- Subhashree Bhattacharyya
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
12
|
Maheswari P, Harish S, Ponnusamy S, Muthamizhchelvan C. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO 2 nanoparticles for antibacterial and anticancer activities. Bioprocess Biosyst Eng 2021; 44:1593-1616. [PMID: 34075470 DOI: 10.1007/s00449-020-02491-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
Titanium dioxide nanoparticles exhibit good anticancer and antibacterial activities. They are known to be environmentally friendly, stable, less toxic, and have excellent biocompatibility nature. Due to these properties, they are well suited for biological applications particularly in biomedical applications such as drug delivery and cancer therapy. In this research article, three medicinal herbs namely, Plectranthus amboinicus (Karpooravalli), Phyllanthus niruri (Keezhanelli), and Euphorbia hirta (Amman Pacharisi), were used to modify the surface of the TiO2 nanoparticles. The synthesized nanoparticles were subjected to various characterization techniques. The samples are then subjected to MTT assay to determine cell viability. KB oral cancer cells are used for the determination of the anticancer nature of the pure and bio modified nanoparticles. It is observed that Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nanoparticles exhibit excellent anticancer activities among other bio modified and pure samples. The samples are then examined for antibacterial activities against three Gram-negative bacterial strains namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and two Gram-positive bacterial strains namely, Staphylococcus aureus and Streptococcus mutans, respectively. Among the modified and pure samples, Plectranthus amboinicus showed good antibacterial activity against Gram-positive and Gram-negative bacteria. In the Flow cytometry analysis, the generation of p53 protein expression from Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles shows the anti-cancerous nature of the sample. Then to determine the toxic nature of the Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles against normal cells, the NPs were subjected to MTT assay against normal L929 cells, and it was found to be safer and less toxic towards the normal cells.
Collapse
Affiliation(s)
- P Maheswari
- Department of Nautical Science, VELS Institute of Science, Technology and Advanced Studies, Thalambur, 603 103, India.,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - S Harish
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, 432-8011, Japan. .,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - S Ponnusamy
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - C Muthamizhchelvan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| |
Collapse
|
13
|
A high-performance thin-layer chromatography method for the simultaneous determination of quercetin and gallic acid in Eclipta alba and Guiera senegalensis. JPC-J PLANAR CHROMAT 2021. [DOI: 10.1007/s00764-021-00084-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Nelson VK, Sahoo NK, Sahu M, Sudhan HH, Pullaiah CP, Muralikrishna KS. In vitro anticancer activity of Eclipta alba whole plant extract on colon cancer cell HCT-116. BMC Complement Med Ther 2020; 20:355. [PMID: 33225921 PMCID: PMC7681951 DOI: 10.1186/s12906-020-03118-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDS Colon cancer is the third most deadly and one of the most diagnosed diseases in the world. Although routine screening and early detection during last decades has improved the survival, colon cancer still claims hundreds of thousands lives each year worldwide. Surgery and chemotherapy is mainstay of current treatment, nevertheless toxicity associated with this treatment underscores the urgency of demand of a better therapeutics. Close to 50% of current chemotherapeutic drugs are direct or indirect descendants compounds isolated from medicinal plants, which indicate plants are great potential sources of novel therapeutics. In our literature review we found Eclipta alba to posses many pharmacological activities, including those with anticancer potentials. However, no study on anticancer activity of this kind has been reported. METHODS Phytochemicals were extracted by maceration method from shade dried whole plant of Eclipta alba using methanol as a solvent. The anticancer effect of extract was investigated on various cancer cell lines like human colorectal carcinoma (HCT-116), human prostate cancer (PC-3), Michigan cancer foundation-breast cancer (MCF-7) and renal cell carcinoma (RCC-45). We have also studied the effects on normal human embryonic lung fibroblast cell (WI-38) using MTT (methyl thiazoldiphenyltetrazolium bromide) assay, clonogenic (colony formation) and migration assay. Finally obtained results were analyzed using ANNOVA and Dunnett's test. RESULTS Results obtained from MTT assay revealed that the methanolic extract of Eclipta alba carried significant (p < 0.005) specificity against HCT-116 cells as compared to the other cancer cells. This extract also showed minimal or nontoxicity to WI-38 cells. Migration as well as clonogenic assays also confirmed the anticancer potential of the extract against HCT-116 cells. CONCLUSION This is a unique finding of its kind because the specific anticancer effect with minimal toxicity on normal cells has not been reported on Eclipta alba extract. Finally this finding opens up a great possibility to develop a novel antitumor drug candidate against deadly colon cancer in the future.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education & Research (Autonomous), Anantapuramu, Andhra Pradesh, 515721, India.
| | - Nalini Kanta Sahoo
- Marri Laxman Reddy Institute of Pharmacy, Medchal, Dundigal, Telangana, 500043, India
| | - Madhusmita Sahu
- Marri Laxman Reddy Institute of Pharmacy, Medchal, Dundigal, Telangana, 500043, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education & Research (Autonomous), Anantapuramu, Andhra Pradesh, 515721, India
| | - Chitikela P Pullaiah
- Department of Pharmacology, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | | |
Collapse
|
15
|
Feng L, Zhai YY, Xu J, Yao WF, Cao YD, Cheng FF, Bao BH, Zhang L. A review on traditional uses, phytochemistry and pharmacology of Eclipta prostrata (L.) L. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112109. [PMID: 31395303 DOI: 10.1016/j.jep.2019.112109] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrata, a traditional herbal medicine, has long been used in Asia and South America for the therapy of hemorrhagic diseases (e.g. hemoptysis, hematemesis, hematuria, epistaxis and uterine bleeding), skin diseases, respiratory disorders, coronary heart disease, hair loss, vitiligo, snake bite and those caused by the deficiency of liver and kidney. AIM OF THE REVIEW In this review, we highlight relatively comprehensive and up-to-date information of E. prostrata on traditional uses, phytochemistry, pharmacology and toxicity, along with featuring the gaps in current knowledge, aiming to provide references for future research and possible opportunities for well applications of this medicinal plant. MATERIALS AND METHODS Information on E. prostrata was gathered from scientific databases (Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed and CNKI). Information was also obtained from local books, Ph.D. theses and M.Sc. dissertations and Chinese Pharmacopoeia. The plant taxonomy was validated by the database "The Plant List". RESULTS Various phytochemical classes has been identified and isolated from the plant covering triterpenes, flavonoids, thiopenes, coumestans, steroids and others. Among these, coumestans are reported as the most common ingredients. The isolated crude extracts and individual compounds have been reported to exhibit promising pharmacological properties, such as hepatoprotective, osteoprotective, cytotoxic, hypoglycaemic, anti-inflammatory, anti-microbial, hypolipidemic, promoting hair growth, rejuvenative and neuroprotective effects. CONCLUSIONS Until now, significant progress has been witnessed in phytochemistry and pharmacology of E. prostrata. Thus, some traditional uses has been well supported and clarified by modern pharmacological studies. Moreover, E. prostrata also showed therapeutic potential in some refractory diseases such as cancer, dementia and diabetes. But, present findings are still insufficient that cannot satisfactorily explain some mechanisms of action. More well-designed studies in vitro especially in vivo are required to establish links between the traditional uses and bioactivities, discover new skeletons and activity molecules, as well as ensure safety before clinical use.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuan-Yuan Zhai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jia Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei-Feng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu-Dan Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fang-Fang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bei-Hua Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Bio-modified TiO 2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110457. [PMID: 31924033 DOI: 10.1016/j.msec.2019.110457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 10/08/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Titanium dioxide nanoparticles exhibit good anticancer and antibacterial activities. They are known to be environmentally friendly and stable, less toxic and excellent biocompatibility nature. In this paper we report the biological properties of pure TiO2 nanoparticles modified with Withania somnifera (Ashwagandha), Eclipta prostrata (Karisalankanni) and Glycyrrhiza glabra (Athimathuram) for biological applications. X-ray diffraction results revealed the anatase nature of the samples. From the TEM analyses, it is observed that there is an increase in the particle size of the bio modified samples. UV results show the red shift for the bio modified samples when compared with the pure samples. The samples are then subjected to MTT assay to determine the cell viability. KB oral cancer cells are used for the determination of anticancer nature of the pure and bio modified nanoparticles. It is observed that Withania somnifera - Eclipta prostrate modified TiO2 nanoparticles exhibit excellent anticancer activities among other bio modified and pure samples. The samples are then examined for their antibacterial activities against three Gram-negative bacterial strains namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and two Gram-positive bacterial strains namely, Staphylococcus aureus and Streptococcus mutans. Among the modified and pure samples, Withania somnifera - Eclipta prostrata showed good antibacterial nature against Gram-positive and Gram-negative bacteria.
Collapse
|
17
|
Bu H, Liu D, Cui J, Cai K, Shen F. Wnt/β-catenin signaling pathway is involved in induction of apoptosis by oridonin in colon cancer COLO205 cells. Transl Cancer Res 2019; 8:1782-1794. [PMID: 35116929 PMCID: PMC8797304 DOI: 10.21037/tcr.2019.08.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/07/2019] [Indexed: 11/20/2022]
Abstract
Background Oridonin has been demonstrated to have anticancer effect on all kinds of cancer cells and it has shown anti-tumor activity in some tumors partially via the inactivation of Wnt/β-catenin signaling pathway. The study investigated the anticancer effect of oridonin on colon carcinoma cell line COLO205 and explored underlying mechanism. Methods Cell Counting Kit-8 (CCK-8) assay was performed to assess cell viability. Flow cytometry was performed to analyze the apoptosis. The key target genes and proteins involved in Wnt/β-catenin pathway were detected by quantitative polymerase chain reaction (qPCR) and Western blotting. The xenograft tumor model of colon cancer COLO205 cell was introduced to detect anti-tumor effects in vivo. Transferase-mediated dUTP nick end labeling (TUNEL) assay was adopted to test the apoptotic cells in the tumor tissues. Results Oridonin inhibited the proliferation of colon cancer COLO205 cells in a dose-dependent and time-dependent manner. Oridonin induced apoptosis by increasing the cleavage of caspases in vitro. Furthermore, the expression levels of β-catenin and its downstream targets, including c-myc, cyclinD1 and survivin were significantly reduced. Nevertheless the knockdown of β-catenin by specific small interfering RNA (siRNA) could augment the anti-proliferative and pro-apoptotic effects by oridonin in COLO205 cells. Meanwhile, oridonin also increased protein expression level of glycogen synthase kinase 3β (GSK3β) and decreased the phosphorylation level of GSK3β. In vivo, oridonin treatment significantly suppressed tumor growth of COLO205 cell xenografts, and which was accompanied by the restrain of Wnt/β-catenin pathway. Conclusions Our present study demonstrated that the growth inhibition and apoptosis induction in colon cancer COLO205 cells by oridonin could be partially mediated through discontinuing Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Heqi Bu
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Dianlei Liu
- Department of Surgery, Women's Hospital School of Medical Zhejiang University, Hangzhou 310006, China
| | - Junhui Cui
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Ke Cai
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Feng Shen
- Department of Coloproctological Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
18
|
Enhanced identification of the in vivo metabolites of Ecliptae Herba in rat plasma by integrating untargeted data-dependent MS2 and predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion scan. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1109:99-111. [DOI: 10.1016/j.jchromb.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/04/2023]
|
19
|
Yang D, Zhang X, Zhang W, Rengarajan T. Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1303-1310. [PMID: 29849451 PMCID: PMC5965372 DOI: 10.2147/dddt.s149307] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Colorectal cancer (CRC) is among highest prevailing cancers in the whole world, especially in western countries. For a diverse of reasons, patients prefer naturally occurring dietary substances over synthetic agents to prevent cancer. Vicenin-2 is largely available in a medicinal plant Ocimum sanctum and is an apigenin form, 6,8-di-C-glucoside, which has been reported to have a range of pharmacological values which includes antioxidant, hepatoprotective, anti-inflammatory and anti-cancer. This study was aimed to analyze the anti-proliferative effect of Vicenin-2 on human colon cancer cells via the Wnt/β-catenin signaling inhibition. Methods MTT assay was used to assess the cell viability at different concentrations and time point. Vicenin-2 at a concentration of 50 µM (IC50) decreased the phosphorylated (inactive) glycogen synthase kinase-3β, cyclin D1, and non-p-β-catenin expressions in HT-29 cells, which were evidenced through western blot analysis. Results Further, Vincenin-2 reduced the T-cell factor (TCF) / Leukocyte erythroid factor (LEF) reporter activity in HT-29 cells. Vicenin-2 also promoted substantial cell cycle arrest at the G2M phase of HT-29 cells, as well induced apoptosis in HT-29 cells, as revealed through flow cytometric analysis. Furthermore, immunoblot analysis showed that Vicenin-2 treatment enhanced the expression of Cytochrome C, Bax and caspase-3 whereas suppressed the Bcl-2 expression. Conclusion Together, these results revealed that Vicenin-2 can act as a potent inhibitor of HT-29 cell proliferation and can be used as an agent against CRC.
Collapse
Affiliation(s)
- Dong Yang
- Department of Anorectal Surgery, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiling Zhang
- Department of Anorectal Surgery, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, China
| | - Wencun Zhang
- Department of Anorectal Surgery, The Fourth Hospital of Yu Lin City, Shaanxi Province, China
| | | |
Collapse
|
20
|
Choudhary D, Kothari P, Tripathi AK, Singh S, Adhikary S, Ahmad N, Kumar S, Dev K, Mishra VK, Shukla S, Maurya R, Mishra PR, Trivedi R. Spinacia oleracea extract attenuates disease progression and sub-chondral bone changes in monosodium iodoacetate-induced osteoarthritis in rats. Altern Ther Health Med 2018; 18:69. [PMID: 29463254 PMCID: PMC5819303 DOI: 10.1186/s12906-018-2117-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/26/2018] [Indexed: 01/31/2023]
Abstract
Background Spinacia oleracea is an important dietary vegetable in India and throughout the world and has many beneficial effects. It is cultivated globally. However, its effect on osteoarthritis that mainly targets the cartilage cells remains unknown. In this study we aimed to evaluate the anti-osteoarthritic and chondro-protective effects of SOE on chemically induced osteoarthritis (OA). Methods OA was induced by intra-patellar injection of monosodium iodoacetate (MIA) at the knee joint in rats. SOE was then given orally at 250 and 500 mg.kg− 1 day− 1 doses for 28 days to these rats. Anti-osteoarthritic potential of SOE was evaluated by micro-CT, mRNA and protein expression of pro-inflammatory and chondrogenic genes, clinically relevant biomarker’s and behavioural experiments. Results In vitro cell free and cell based assays indicated that SOE acts as a strong anti-oxidant and an anti-inflammatory agent. Histological analysis of knee joints at the end of the experiment by safranin-o and toluidine blue staining established its protective effect. Radiological data corroborated the findings with improvement in the joint space and irregularity of the articular and atrophied femoral condyles and tibial plateau. Micro-CT analysis of sub-chondral bone indicated that SOE had the ability to mitigate OA effects by increasing bone volume to tissue volume (BV/TV) which resulted in decrease of trabecular pattern factor (Tb.Pf) by more than 200%. SOE stimulated chondrogenic marker gene expression with reduction in pro-inflammatory markers. Purified compounds isolated from SOE exhibited increased Sox-9 and Col-II protein expression in articular chondrocytes. Serum and urine analysis indicated that SOE had the potential to down-regulate glutathione S-transferase (GST) activity, clinical markers of osteoarthritis like cartilage oligometric matrix protein (COMP) and CTX-II. Overall, this led to a significant improvement in locomotion and balancing activity in rats as assessed by Open-field and Rota rod test. Conclusion On the basis of in vitro and in vivo experiments performed with Spinacea oleracea extract we can deduce that SOE has the ability to alleviate the MIA induced deleterious effects. Electronic supplementary material The online version of this article (10.1186/s12906-018-2117-9) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
3-Bromo-4,5-dihydroxybenzaldehyde Enhances the Level of Reduced Glutathione via the Nrf2-Mediated Pathway in Human Keratinocytes. Mar Drugs 2017; 15:md15090291. [PMID: 28926995 PMCID: PMC5618430 DOI: 10.3390/md15090291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/23/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023] Open
Abstract
A natural bromophenol found in seaweeds, 3-bromo-4,5-dihydroxybenzaldehyde (BDB), has been shown to possess antioxidant effects. This study aimed to investigate the mechanism by which BDB protects skin cells subjected to oxidative stress. The effect of BDB on the protein and mRNA levels of glutathione-related enzymes and the cell survival of human keratinocytes (HaCaT cells) was investigated. BDB treatment increased the protein and mRNA levels of glutathione synthesizing enzymes and enhanced the production of reduced glutathione in HaCaT cells. Furthermore, BDB activated NF-E2-related factor 2 (Nrf2) and promoted its localization into the nucleus by phosphorylating its up-stream signaling proteins, extracellular signal–regulated kinase and protein kinase B. Thus, BDB increased the production of reduced glutathione and established cellular protection against oxidative stress via an Nrf2-mediated pathway.
Collapse
|