1
|
Xin Y, Zhou S, Chu T, Zhou Y, Xu A. Protective Role of Electroacupuncture Against Cognitive Impairment in Neurological Diseases. Curr Neuropharmacol 2025; 23:145-171. [PMID: 38379403 PMCID: PMC11793074 DOI: 10.2174/1570159x22999240209102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 02/22/2024] Open
Abstract
Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer's disease, vascular cognitive impairment, chronic pain, and Parkinson's disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Lou H, Yao J, Zhang Y, Wu X, Sun L, Wang Y, Cong D. Potential effect of acupuncture on mitochondrial biogenesis, energy metabolism and oxidation stress in MCAO rat via PGC-1α/NRF1/TFAM pathway. J Stroke Cerebrovasc Dis 2024; 33:107636. [PMID: 38346661 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 09/08/2024] Open
Abstract
PURPOSE To explore possible mechanism(s) underlying beneficial effects of acupuncture treatment for alleviating focal cerebral infarction-induced neuronal injury, mitochondrial biogenesis, energy metabolism, oxidative stress and dendrite regeneration were evaluated in rats with experimentally induced cerebral ischemia and dendron reperfusion. MATERIALS AND METHODS Rats were randomly assigned to three groups (sham-operated, operated group without acupuncture, operated group with acupuncture). RT-PCR and Western blotting were used to assess variations of hippocampal cell mitochondrial DNA (mtDNA) copy number and mRNA and protein expression levels associated with key mitochondrial biogenesis proteins, namely peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiration factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). To evaluate mitochondrial oxidative phosphorylation and respiratory function in ischemic tissues, oxidative phosphorylation protein complex expression levels were assessed via Western blot analysis, mitochondrial membrane potential (MMP) was assessed via confocal microscopy and flow cytometry and adenosine triphosphate (ATP) concentration was assessed using an enzymatic fluorescence-based assay. Immunofluorescence staining was used to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). Additionally, oxidative stress levels were assessed based on superoxide dismutase (SOD) activity, lipid oxidation levels (malondialdehyde, MDA) and glutathione (GSH) levels. Meanwhile, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl staining, transmission electron microscopy observation and neuro behavioral status were used to determine cerebral infarction volume and extent of brain injury. RESULTS Acupuncture treatment effectively stimulated mRNA-level and protein-level expression associated with PGC-1α, NRF-1 and TFAM and increased levels of electron transport chain complexes I, IV and V, thereby increasing the ATP concentration, maintaining mitochondrial membrane potential, and promoting dendron regeneration levels. Meanwhile, in hippocampal neurons SOD activity and the glutathione/glutathione disulfide (GSH/GSSG) ratio increased and MDA level decreased. CONCLUSION Acupuncture treatment after ischemic injury promoted mitochondrial biogenesis, as reflected by beneficially increased mitochondrial oxidative phosphorylation complex protein levels and brain tissue energy supply, while preventing oxidative stress injury. These results should guide future explorations to elucidate acupuncture-based mechanisms for alleviating neuronal injury triggered by acute cerebral ischemia.
Collapse
Affiliation(s)
- Huijuan Lou
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Junjie Yao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun, Jilin Province 130117, PR China
| | - Yuxin Zhang
- Research center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Xingquan Wu
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Liwei Sun
- Research center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Yufeng Wang
- Department of Science and Technology, Changchun University of Chinese Medicine,1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Deyu Cong
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China.
| |
Collapse
|
3
|
Zhao J, Luo J, Deng C, Fan Y, Liu N, Cao J, Chen D, Diao Y. Volatile oil of Angelica sinensis Radix improves cognitive function by inhibiting miR-301a-3p targeting Ppp2ca in cerebral ischemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117621. [PMID: 38154524 DOI: 10.1016/j.jep.2023.117621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica Sinensis Radix (ASR) is a commonly used Chinese medicine known for its effects on tonifying blood, promoting blood circulation, and alleviating pain associated with menstrual regulation. Additionally, it has been used in the treatment of vascular cognitive impairment (VCI). The primary pharmacodynamic agent within ASR is volatile oil of Angelica Sinensis Radix (VOASR), which has demonstrated efficacy in combating cognitive impairment, although its mechanism remains unclear. OBJECTIVE This study aimed to elucidate the potential molecular mechanisms underlying VOASR's improvement of cognitive function in cerebral ischemic mice. METHODS A model of cerebral ischemic mice was established through unilateral common carotid artery occlusion (UCCAO) surgery, followed by intervention with VOASR. Cognitive function was assessed using the Morris water maze (MWM) test, while RT-qPCR was utilized to measure the differential expression of miR-301a-3p in the hippocampus. To evaluate cognitive function and hippocampal protein differences, wild-type mice and miR-301a-3p knockout mice were subjected to the MWM test and iTRAQ protein profiling. The relationship between miR-301a-3p and potential target genes was validated through a Dual-Luciferase Reporter experiment. RT-qPCR and Western blot were employed to determine the differential expression of Ppp2ca and synaptic plasticity-related proteins in the mouse hippocampus. RESULTS Intervention with VOASR significantly improved cognitive impairment in cerebral ischemic mice and reduced the expression of miR-301a-3p in the hippocampus. Our findings suggest that miR-301a-3p may regulate cognitive function by targeting Ppp2ca. Furthermore, VOASR intervention led to an increase in the expression of Ppp2ca and synaptic plasticity-related proteins. CONCLUSION Our study indicates that VOASR may be involved in regulating cognitive function by inhibiting miR-301a-3p, consequently increasing the expression of Ppp2ca and synaptic plasticity proteins. These results provide a new target and direction for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Zhao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jing Luo
- Shenzhen Hospital of Integrated Traditional and Western Medicine, ShenZhen, 518000, China.
| | - Cuili Deng
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yueying Fan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Na Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jiahui Cao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dongfeng Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuanming Diao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Mohammadi AH, Karimian M, Mirzaei H, Milajerdi A. Epigenetic modifications and obsessive-compulsive disorder: what do we know? Brain Struct Funct 2023:10.1007/s00429-023-02649-4. [PMID: 37204485 DOI: 10.1007/s00429-023-02649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a chronic, severe disabling neuropsychiatric disorder whose pathophysiology is not yet well defined. Generally, the symptom onset occurs during pre-adult life and affects subjects in different life aspects, including professional and social relationships. Although robust evidence indicates the presence of genetic factors in the etiopathology of OCD, the entirely mechanisms are not totally clarified. Thus, the possible interactions between genes and environmental risk factors mediated by epigenetic mechanisms should be sought. Therefore, we provide a review of genetic and epigenetic mechanisms related to OCD with a deep focus on the regulation of critical genes of the central nervous system seeking possible potential biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Yoon S, Iqbal H, Kim SM, Jin M. Phytochemicals That Act on Synaptic Plasticity as Potential Prophylaxis against Stress-Induced Depressive Disorder. Biomol Ther (Seoul) 2023; 31:148-160. [PMID: 36694423 PMCID: PMC9970837 DOI: 10.4062/biomolther.2022.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
Depression is a neuropsychiatric disorder associated with persistent stress and disruption of neuronal function. Persistent stress causes neuronal atrophy, including loss of synapses and reduced size of the hippocampus and prefrontal cortex. These alterations are associated with neural dysfunction, including mood disturbances, cognitive impairment, and behavioral changes. Synaptic plasticity is the fundamental function of neural networks in response to various stimuli and acts by reorganizing neuronal structure, function, and connections from the molecular to the behavioral level. In this review, we describe the alterations in synaptic plasticity as underlying pathological mechanisms for depression in animal models and humans. We further elaborate on the significance of phytochemicals as bioactive agents that can positively modulate stress-induced, aberrant synaptic activity. Bioactive agents, including flavonoids, terpenes, saponins, and lignans, have been reported to upregulate brain-derived neurotrophic factor expression and release, suppress neuronal loss, and activate the relevant signaling pathways, including TrkB, ERK, Akt, and mTOR pathways, resulting in increased spine maturation and synaptic numbers in the neuronal cells and in the brains of stressed animals. In clinical trials, phytochemical usage is regarded as safe and well-tolerated for suppressing stress-related parameters in patients with depression. Thus, intake of phytochemicals with safe and active effects on synaptic plasticity may be a strategy for preventing neuronal damage and alleviating depression in a stressful life.
Collapse
Affiliation(s)
- Soojung Yoon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Hamid Iqbal
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sun Mi Kim
- Department of Psychiatry, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea,Department of Psychiatry, Chung-Ang University Hospital, Seoul 06973, Republic of Korea
| | - Mirim Jin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea,Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea,Corresponding Author E-mail: , Tel: +82-32-899-6080, Fax: +82-32-899-6029
| |
Collapse
|
6
|
Zhang Y, Yin YL, Jin ZY, Hu QP, Wu XG. Electroacupuncture Activates Neuroplasticity in the Motor Cortex and Corticospinal Tract via the mTOR Pathway in a Rat P-MCAO Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3470685. [PMID: 36440366 PMCID: PMC9683956 DOI: 10.1155/2022/3470685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 10/14/2023]
Abstract
Electroacupuncture (EA) combines traditional Chinese medicine acupuncture theory with modern scientific technology. It is a promising therapy for the treatment of cerebrovascular diseases such as cerebral infarction. A large number of clinical studies have shown that EA promotes recovery of neurological function after cerebral infarction, however, the underlying mechanisms behind its effects remain unclear. We tested whether EA stimulation of the Zusanli (ST36) and Neiguan (PC6) acupoints activates neuroplasticity in rats with ischemic stroke and whether this involves the regulation of axonal regeneration through the mTOR pathway. 24 h after permanent middle cerebral artery occlusion (p-MCAO) in rats, EA treatment was started for 20 min, daily, for 14 days. We found that EA significantly reduced Modified Neurological Severity Scores (mNSS), cerebral infarct volume, and apoptosis of neuronal cells. EA also significantly increased the expression of the neuroplasticity-associated proteins GAP-43 and SYN and upregulated the phosphorylation levels of AKT, mTOR, S6, and PTEN to promote CST axon sprouting in the spinal cord at C1-C4 levels. The positive effects of EA were blocked by the administration of the mTOR inhibitor Rapamycin. In short, we found that EA of the Zusanli (ST36) and Neiguan (PC6) acupoints in p-MCAO rats induced neuroprotective and neuroplastic effects by regulating the mTOR signaling pathway. It promoted neuroplasticity activated by axon regeneration in the contralateral cortex and corticospinal tract. Activation of such endogenous remodeling is conducive to neurological recovery and may help explain the positive clinical effects seen in patients with infarcts.
Collapse
Affiliation(s)
- You Zhang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ya-Long Yin
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Zi-Yan Jin
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Qi-Ping Hu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xin-gui Wu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| |
Collapse
|
7
|
Qin S, Zhang Z, Zhao Y, Liu J, Qiu J, Gong Y, Fan W, Guo Y, Guo Y, Xu Z, Guo Y. The impact of acupuncture on neuroplasticity after ischemic stroke: a literature review and perspectives. Front Cell Neurosci 2022; 16:817732. [PMID: 36439200 PMCID: PMC9685811 DOI: 10.3389/fncel.2022.817732] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/24/2022] [Indexed: 09/07/2023] Open
Abstract
Ischemic stroke is common in the elderly, and is one of the main causes of long-term disability worldwide. After ischemic stroke, spontaneous recovery and functional reconstruction take place. These processes are possible thanks to neuroplasticity, which involves neurogenesis, synaptogenesis, and angiogenesis. However, the repair of ischemic damage is not complete, and neurological deficits develop eventually. The WHO recommends acupuncture as an alternative and complementary method for the treatment of stroke. Moreover, clinical and experimental evidence has documented the potential of acupuncture to ameliorate ischemic stroke-induced neurological deficits, particularly sequelae such as dyskinesia, spasticity, cognitive impairment, and dysphagia. These effects are related to the ability of acupuncture to promote spontaneous neuroplasticity after ischemic stroke. Specifically, acupuncture can stimulate neurogenesis, activate axonal regeneration and sprouting, and improve the structure and function of synapses. These processes modify the neural network and function of the damaged brain area, producing the improvement of various skills and adaptability. Astrocytes and microglia may be involved in the regulation of neuroplasticity by acupuncture, such as by the production and release of a variety of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Moreover, the evidence presented indicates that acupuncture promotes neuroplasticity by modulating the functional reconstruction of the whole brain after ischemia. Therefore, the promotion of neuroplasticity is expected to become a new target for acupuncture in the treatment of neurological deficits after ischemic stroke, and research into the mechanisms responsible for these actions will be of significant clinical value.
Collapse
Affiliation(s)
- Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zichen Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Fan
- Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Acupuncture Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Acupuncture Interventions for Alzheimer’s Disease and Vascular Cognitive Disorders: A Review of Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6080282. [PMID: 36211826 PMCID: PMC9534683 DOI: 10.1155/2022/6080282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Cognitive impairment (CI) related to Alzheimer's disease (AD) and vascular cognitive disorders (VCDs) has become a key problem worldwide. Importantly, CI is a neuropsychiatric abnormality mainly characterized by learning and memory impairments. The hippocampus is an important brain region controlling learning and memory. Recent studies have highlighted the effects of acupuncture on memory deficits in AD and VCDs. By reviewing the literature published on this topic in the past five years, the present study intends to summarize the effects of acupuncture on memory impairment in AD and VCDs. Focusing on hippocampal synaptic plasticity, we reviewed the mechanisms underlying the effects of acupuncture on memory impairments through regulation of synaptic proteins, AD characteristic proteins, intestinal microbiota, neuroinflammation, microRNA expression, orexin system, energy metabolism, etc., suggesting that hippocampal synaptic plasticity may be the common as well as the core link underlying the above mechanisms. We also discussed the potential strategies to improve the effect of acupuncture. Additionally, the effects of acupuncture on synaptic plasticity through the regulation of vascular–glia–neuron unit were further discussed.
Collapse
|
9
|
Mohammadi AH, Seyedmoalemi S, Moghanlou M, Akhlagh SA, Talaei Zavareh SA, Hamblin MR, Jafari A, Mirzaei H. MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy. Mol Neurobiol 2022; 59:5084-5102. [PMID: 35666404 DOI: 10.1007/s12035-022-02907-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Synaptic plasticity is the ability of synapses to weaken or strengthen over time, in response to changes in the activity of the neurons. It is orchestrated by a variety of genes, proteins, and external and internal factors, especially epigenetic factors. MicroRNAs (miRNAs) are well-acknowledged epigenetic modulators that regulate the translation and degradation of target genes in the nervous system. Increasing evidence has suggested that a number of miRNAs play important roles in modulating various aspects of synaptic plasticity. The deregulation of miRNAs could be associated with pathological alterations in synaptic plasticity, which could lead to different CNS-related diseases. Herein, we provide an update on the role of miRNAs in governing synaptic plasticity. In addition, we also summarize recent researches on the role of miRNAs in drug addiction, and their targets and mechanism of action. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel biomarkers and new therapeutic strategies for the diagnosis and treatment of plasticity-related diseases and drug addiction.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyedvahid Seyedmoalemi
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Lu T, Li H, Zhou Y, Wei W, Ding L, Zhan Z, Liu W, Tao J, Xue X. Neuroprotective effects of alisol A 24-acetate on cerebral ischaemia-reperfusion injury are mediated by regulating the PI3K/AKT pathway. J Neuroinflammation 2022; 19:37. [PMID: 35130910 PMCID: PMC8822821 DOI: 10.1186/s12974-022-02392-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroinflammation and apoptosis are involved in the pathogenesis of ischaemic stroke. Alisol A 24-acetate (24A) exerts a strong inhibitory effect on inflammation and cell apoptosis. The neuroprotective effect of 24A on global cerebral ischaemia/reperfusion (GCI/R) injury remains unclear. METHODS GCI/R mice were used to investigate the neuroprotective effect of 24A. Modified neurological deficit scores, Morris water maze and object recognition tests were used to evaluate behaviours. Metabolism in brain regions was detected using magnetic resonance spectroscopy (MRS), and changes in microglia, astrocytes and neurons were detected. Inflammation and apoptosis were measured. RESULTS The results showed that 24A suppressed neurological deficits scores and improved GCI/R induced cognitive dysfunction. It was also observed that 24A could alleviate neuroinflammation, which manifested as 24A inhibited microglia and astrocytes proliferation, downregulated the expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) in the GCI/R mice brain. The apoptosis of neurons reduced, and dendritic spines of hippocampal neurons increased in the presence of 24A. In addition, 24A could up-regulate the expression of phosphorylated phosphoinositide 3-kinases (p-PI3K) and phosphorylated protein kinase B (p-AKT) in GCI/R mice brain, and all the morphological, neurological, and biochemical changes of 24A treatment were abolished by the application of PI3K/AKT pathway inhibitor LY294002. CONCLUSIONS Taken together, our study indicated that 24A alleviated GCI/R injury by inhibiting neuroinflammation and apoptosis through the regulation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Taotao Lu
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No. 13 Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Huihong Li
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No. 13 Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Yangjie Zhou
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China.,Fujian Key Laboratory of Rehabilitation Techniques, Fuzhou, 350112, China
| | - Wei Wei
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No. 13 Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China.,Fujian Key Laboratory of Rehabilitation Techniques, Fuzhou, 350112, China
| | - Linlin Ding
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Zengtu Zhan
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No. 13 Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China.,Fujian Key Laboratory of Rehabilitation Techniques, Fuzhou, 350112, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Xiehua Xue
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No. 13 Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China. .,Fujian Key Laboratory of Rehabilitation Techniques, Fuzhou, 350112, China.
| |
Collapse
|
11
|
Lupanova KV, Snopkov PS, Mikhailova AA, Sidyakina IV. [Methods to restore fine motor skills in stroke patients]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:56-64. [PMID: 36511468 DOI: 10.17116/kurort20229906256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The review article considers the problem of nonmedical post-stroke rehabilitation, in particular the restoration of fine motor skills in patients in the early period of the disease. A review and analysis of various randomized controlled trials concerning the use of various rehabilitation methods both in monotherapy and in their combined application is carried out, and modern technical devices, with the use of computer technology and biofeedback, are reviewed. Proceeding from the presented literature data and their analysis, there are certain grounds for introducing modern apparatus complexes and robotized devices for fine motor skills restoration in post-stroke patients, especially in the early period, into the multimodal rehabilitation system. However, further research in this direction is needed to achieve a sustained positive result.
Collapse
Affiliation(s)
- K V Lupanova
- Biomedical University of Innovation and Continuing Education of the Burnazyan Federal Medical Biophysical Center, Moscow, Russia
| | - P S Snopkov
- Clinical Hospital in Otradnoe of the Medsi Group of Companies JSC, Moscow, Russia
| | - A A Mikhailova
- Clinical Hospital in Otradnoe of the Medsi Group of Companies JSC, Moscow, Russia.,Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| | - I V Sidyakina
- Biomedical University of Innovation and Continuing Education of the Burnazyan Federal Medical Biophysical Center, Moscow, Russia.,Clinical Hospital in Otradnoe of the Medsi Group of Companies JSC, Moscow, Russia
| |
Collapse
|
12
|
Jun G, Yong Y, Lu L, Gao H, Yin Z, Wei P, Sun L, Ruan W, Zou Y, He H, Song W, Tong Q, Wang X, Wang Y, Song J. Electroacupuncture treatment ameliorated the long-term cognitive impairment via activating eNOS/NO pathway and related Aβ downregulation in sepsis-survivor mice. Physiol Behav 2022; 243:113646. [PMID: 34780728 DOI: 10.1016/j.physbeh.2021.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Sepsis is a major challenge in intensive care unit worldwide and the septic survivors are left with long-term cognitive deficits. This work aims to explore the effects of electroacupuncture (EA) on long-term cognitive function and its underlying mechanism in sepsis-survivor mice. METHODS Sepsis was induced by cecal ligation and puncture in C57BL/6 male mice. Seven days post-surgery, sepsis-survivor mice were treated with EA or nonacupoint EA for 17 days twice daily. Then, cognitive function was evaluated by Morris water maze task. The hippocampus tissue were collected from the mice at 30 days post-surgery. The level of nitric oxide and the expression of endothelial nitric oxide (eNOS), phospho-eNOS (p-eNOS), and amyloid β-peptide (Aβ) were measured. RESULTS Compared with the sham-operated control, sepsis-survivors had significant cognitive deficits evidenced by the increased time of escape latency and reduced crossing number in Morris water maze task, as well as lower NO and p-eNOS level and higher Aβ level. EA treatment at GV20 and ST36 acupoints but not at a nonacupoint improved the cognitive function, increased the NO and p-eNOS level, and decreased Aβ generation; while eNOS inhibitor (l-NAME) undermined the efficacy of EA treatment. CONCLUSION In conclusion, repeated EA treatment could ameliorate the long-term cognitive impairment via manipulating the expression of p-eNOS and related Aβ in sepsis-survivor mice.
Collapse
Affiliation(s)
- Guo Jun
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yue Yong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Liyue Lu
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Hao Gao
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zhiyu Yin
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Pan Wei
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Long Sun
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wenqing Ruan
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yinghua Zou
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - He He
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wei Song
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Qiuyu Tong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Yongqiang Wang
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Jiangang Song
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| |
Collapse
|
13
|
Shi Y, Dai Q, Ji B, Huang L, Zhuang X, Mo Y, Wang J. Electroacupuncture Pretreatment Prevents Cognitive Impairment Induced by Cerebral Ischemia-Reperfusion via Adenosine A1 Receptors in Rats. Front Aging Neurosci 2021; 13:680706. [PMID: 34413765 PMCID: PMC8369428 DOI: 10.3389/fnagi.2021.680706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
A previous study has demonstrated that pretreatment with electroacupuncture (EA) induces rapid tolerance to focal cerebral ischemia. In the present study, we investigated whether adenosine receptor 1 (A1 R) is involved in EA pretreatment-induced cognitive impairment after focal cerebral ischemia in rats. Two hours after EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion for 120 min in male Sprague-Dawley rats. The neurobehavioral score, cognitive function [as determined by the Morris water maze (MWM) test], neuronal number, and the Bax/Bcl-2 ratio was evaluated at 24 h after reperfusion in the presence or absence of CCPA (a selective A1 receptor agonist), DPCPX (a selective A1 receptor antagonist) into left lateral ventricle, or A1 short interfering RNA into the hippocampus area. The expression of the A1 receptor in the hippocampus was also investigated. The result showed that EA pretreatment upregulated the neuronal expression of the A1 receptor in the rat hippocampus at 90 min. And EA pretreatment reversed cognitive impairment, improved neurological outcome, and inhibited apoptosis at 24 h after reperfusion. Pretreatment with CCPA could imitate the beneficial effects of EA pretreatment. But the EA pretreatment effects were abolished by DPCPX. Furthermore, A1 receptor protein was reduced by A1 short interfering RNA which attenuated EA pretreatment-induced cognitive impairment.
Collapse
Affiliation(s)
- Yiyi Shi
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Ji
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luping Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed Pharmacother 2021; 140:111753. [PMID: 34044272 PMCID: PMC8222190 DOI: 10.1016/j.biopha.2021.111753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have critical role in the pathophysiology as well as recovery after ischemic stroke. ncRNAs, particularly microRNAs, and the long non-coding RNAs (lncRNAs) are critical for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. Moreover, exosomes have been considered as nanocarriers capable of transferring various cargos, such as lncRNAs and miRNAs to recipient cells, with prominent inter-cellular roles in the mediation of neuro-restorative events following strokes and neural injuries. In this review, we summarize the pathogenic role of ncRNAs and exosomal ncRNAs in the stroke.
Collapse
|
15
|
Electroacupuncture Attenuates Ischemic Brain Injury and Cellular Apoptosis via Mitochondrial Translocation of Cofilin. Chin J Integr Med 2021; 27:705-712. [PMID: 33709239 DOI: 10.1007/s11655-021-3335-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the potential mechanisms of electroacupuncture (EA) to prevent ischemic stroke. METHODS The method of middle cerebral artery occlusion (MCAO) was employed to establish a rat model of ischemic stroke. Seventy-eight Sprague-Dawley rats were divided into the sham group, MCAO + EA control (EC) group, and MCAO + EA (EA) group according to a random number table (n=26 per group). EA was applied to the acupoints of Baihui (DU 20) and Shenting (DU 24) 5 min and 6 h, respectively after the onset of MCAO. Rats in the sham and EC groups received only light isoflurane anesthesia for 30 min after MCAO. The neuroprotective effects of EA were evaluated by rota-rod test, neurological deficit scores and infarct volumes. Additionally, Nissl staining and immunostaining were performed to examine brain damage, rod formation, cellular apoptosis, and neuronal loss induced by ischemia. The activities of caspase-3, and expression levels of cofilin and p-cofilin in mitochondria and cytoplasm after ischemic injury were determined by Western blot. RESULTS Compared with the EC group, EA significantly improved neuromotor function and cognitive ability after ischemic stroke (P<0.05 or P<0.01). Therapeutic use of EA also resulted in a significant decrease of cofilin rod formation and microtubule-associated protein-2 (MAP2) degradation in the cortical penumbra area compared with the EC rats (P<0.01). Furthermore, Western blot analysis showed that EA stimulation significantly inhibited mitochondrial translocation of cofilin and caspase-3 cleavage (P<0.05 or P<0.01). Additionally, brain damage (infarct volume and neuropathy), cellular apoptosis and neuronal loss induced by ischemia were remarkably suppressed by EA in the cortical penumbra of rats (P<0.05 or P<0.01). CONCLUSION EA treatment after ischemic stroke may attenuate ischemic brain injury and cellular apoptosis through the regulation of mitochondrial translocation of cofilin, a novel mechanism of EA therapy.
Collapse
|
16
|
Zhou L, Wang Y, Qiao J, Wang QM, Luo X. Acupuncture for Improving Cognitive Impairment After Stroke: A Meta-Analysis of Randomized Controlled Trials. Front Psychol 2020; 11:549265. [PMID: 33424671 PMCID: PMC7793937 DOI: 10.3389/fpsyg.2020.549265] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: This meta-analysis evaluated the efficacy of acupuncture in improving cognitive impairment of post-stroke patients. Design: Randomized controlled trials (RCTs) investigating the effects of acupuncture compared with no treatment or sham acupuncture on post-stroke cognitive impairment (PSCI) before December 2019 were identified from databases (PubMed, EMBASE, Ovid library, Cochrane Library, Chinese National Knowledge Infrastructure, VIP Chinese Periodical Database, Wanfang Database, and SinoMed). The literature searching and data extracting were independently performed by two investigators. Study quality was assessed using the Cochrane Handbook for Systematic Reviews of Interventions. Meta-analyses were performed for the eligible RCTs with Revman 5.3 software. Results: Thirty-seven RCTs (2,869 patients) were included in this meta-analysis. Merged Random-effects estimates of the gain of MMSE (Mini-Mental State Examination) or MoCA (Montreal Cognitive Assessment) were calculated for the comparison of acupuncture with no acupuncture or sham acupuncture. Following 2-8 weeks of intervention with acupuncture, pooled results demonstrated significant effects of acupuncture in improving PSCI assessed by MMSE (MD [95% CI] = 2.88 [2.09, 3.66], p < 0.00001) or MoCA (MD [95% CI] = 2.66 [1.95, 3.37], p < 0.00001). Conclusion: The results suggest that acupuncture was effective in improving PSCI and supported the needs of more rigorous design with large-scale randomized clinical trials to determine its therapeutic benefits.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yao Wang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Shenzhen, China
| | - Jun Qiao
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Boston, MA, United States
| | - Xun Luo
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Shenzhen, China.,Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| |
Collapse
|
17
|
Belskaya GN, Stepanova SB, Makarova LD, Sergienko DA, Krylova LG, Antimonova KV. [Acupuncture in the prevention and treatment of stroke: a review of foreign studies]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2020; 97:68-77. [PMID: 32356637 DOI: 10.17116/kurort20209702168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acupuncture has been recommended by the World Health Organization (WHO) as an alternative and complementary method for treating stroke and a way to increase the effectiveness of rehabilitation. The data available in the literature suggest that acupuncture has a beneficial effect on the status of patients with stroke. The mechanism of action of acupuncture for stroke includes the following components: 1) stimulation of neurogenesis and cell proliferation in the CNS; 2) regulation of cerebral blood flow; 3) antiapoptosis; 4) regulation of neurotransmitters; 5) improvement of the neuronal synaptic function, stimulation of long-term potentiation; 6) stimulation of neuroplasticity; and 7) decrease in blood-brain barrier permeability. Acupuncture has been proven to have a positive impact on the restoration of stroke-related dysfunctions, such as motor disorders, spasticity, cognitive impairment, and dysphagia. The most commonly used acupuncture points for the treatment of motor disorders are GV20, GB20, LI4, ST36, SP6, LI11, GB39, and motor scalp area; those for the treatment of cognitive dysfunction are GV20 and EX-HN-1, and those for the treatment of dysphagia are GV20, GV16, and CV23. A review of the literature indicates that studies of the clinical potential of acupuncture in the treatment of complications and the prevention of stroke are insufficient. It is assumed that the international community's recent interest in acupuncture methods used in the treatment of stroke will lead to the emergence of new studies and publications.
Collapse
Affiliation(s)
- G N Belskaya
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - S B Stepanova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - L D Makarova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - D A Sergienko
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - L G Krylova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - K V Antimonova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| |
Collapse
|
18
|
Panta A, Montgomery K, Nicolas M, Mani KK, Sampath D, Sohrabji F. Mir363-3p Treatment Attenuates Long-Term Cognitive Deficits Precipitated by an Ischemic Stroke in Middle-Aged Female Rats. Front Aging Neurosci 2020; 12:586362. [PMID: 33132904 PMCID: PMC7550720 DOI: 10.3389/fnagi.2020.586362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 01/29/2023] Open
Abstract
Cognitive impairment and memory loss are commonly seen after stroke and a third of patients will develop signs of dementia a year after stroke. Despite a large number of studies on the beneficial effects of neuroprotectants, few studies have examined the effects of these compounds/interventions on long-term cognitive impairment. Our previous work showed that the microRNA mir363-3p reduced infarct volume and sensory-motor impairment in the acute stage of stroke in middle-aged females but not males. Thus, the present study determined the impact of mir363-3p treatment on stroke-induced cognitive impairment in middle-aged females. Sprague–Dawley female rats (12 months of age) were subjected to middle cerebral artery occlusion (MCAo; or sham surgery) and injected (iv) with mir363-3p mimic (MCAo + mir363-3p) or scrambled oligos (MCAo + scrambled) 4 h later. Sensory-motor performance was assessed in the acute phase (2–5 days after stroke), while all other behaviors were tested 6 months after MCAo (18 months of age). Cognitive function was assessed by the novel object recognition test (declarative memory) and the Barnes maze (spatial memory). The MCAo + scrambled group showed reduced preference for a novel object after the stroke and poor learning in the spatial memory task. In contrast, mir363-3p treated animals were similar to either their baseline performance or to the sham group. Histological analysis showed significant deterioration of specific white matter tracts due to stroke, which was attenuated in mir363-3p treated animals. The present data builds on our previous finding to show that a neuroprotectant can abrogate the long-term effects of stroke.
Collapse
Affiliation(s)
- Aditya Panta
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Karienn Montgomery
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Marissa Nicolas
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Kathiresh K Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Dayalan Sampath
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
19
|
Xiong J, Wang H, Mu F, Liu Z, Bao Y, Sun Y. MiR-125b-5p Inhibitor Might Protect Against Sevoflurane-induced Cognitive Impairments by Targeting LIMK1. Curr Neurovasc Res 2020; 16:382-391. [PMID: 31490755 DOI: 10.2174/1567202616666190906145936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE Research has shown that exposure to anesthesia might increase the risks of cognitive impairments and learning difficulties. MiR-125b-5p contributed to anesthesia-induced hippocampal apoptosis. However, the role of miR-125b-5p in sevoflurane-induced cognitive impairments remains unclear. METHODS Firstly, sevoflurane was used to establish a rat model and cognitive impairment was detected by the Morris water maze (MWM) test. The hippocampus was observed by HE staining. The lentivirus-miR-125b-5p antagomiR was transfected into rats to decrease miR-125b-5p. The interaction between miR-125b-5p and LIM domain kinase 1 (LIMK1) was confirmed by the luciferase reporter assay. The mRNA and expression levels of related genes and mRNA were examined by the Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot. RESULTS Sevoflurane induced the cognitive dysfunction presenting with longer latency time and few platform crossings in rats. Moreover, miR-125b-5p was observed to be up-regulated in both sevoflurane-anesthesia rats and sevoflurane-treated SH-SY5Y cells. More importantly, a decrease in miR-125b-5p could prevent sevoflurane-induced hippocampal apoptosis and inflammation in rats. Moreover, LIMK1 was the target gene of miR-125b-5p. Interestingly, si-LIMK1 could restore the sevoflurane-induced cell apoptosis in SH-SY5Y cells, which was alleviated by miR-125b-5p inhibitor. Finally, the miR-125b-5p inhibitor shortened the time to find the platform and increased the number of platform crossings compared to sevoflurane-anesthesia rats in the Morris water maze test. At the same time, the expression of LIMK1 was dramatically increased. CONCLUSION Altogether, these findings suggested that miR-125b-5p inhibitor could protect against the sevoflurane-induced cognitive impairments by targeting LIMK1.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing City, 100093, China
| | - Huijun Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing City, 100730, China
| | - Feng Mu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing City, 100093, China
| | - Zhanxue Liu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing City, 100093, China
| | - Yin Bao
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing City, 100730, China
| | - Yongxing Sun
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing City, 100093, China
| |
Collapse
|
20
|
Yue J, Zhang B, Wang H, Hou X, Chen X, Cheng M, Wen S. Dysregulated plasma levels of miRNA-132 and miRNA-134 in patients with obsessive-compulsive disorder. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:996. [PMID: 32953796 PMCID: PMC7475501 DOI: 10.21037/atm-20-5217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Obsessive-compulsive disorder (OCD) is a severe, chronic, disabling neuropsychiatric disorder, the pathophysiology of which has yet to be fully understood. In this study, we aimed to detect the levels of miRNA-132 and miRNA-134 in the plasma of patients with OCD and to analyze the factors influencing OCD. Methods The levels of miRNA-132 and miRNA-134 in peripheral blood of 30 patients with OCD and 32 normal controls were detected by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Patients were assessed using clinical scales, including the Hamilton Anxiety Rating Scale (HAMA), Hamilton Depression Rating Scale (HAMD), and Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Results The plasma levels of miRNA-132 and miRNA 134 in the OCD group were significantly higher than those in the control group (P<0.05). There was no significant correlation between the plasma levels of miR-132 and miR-134 in the OCD group and general demographic (gender, age, and education level) and clinical characteristics (duration of disease, HAMA, HAMD, and Y-BOCS scores). Conclusions Patients with OCD have abnormal plasma levels of miRNA-132 and miRNA-134, which may influence the number of dendrites in the cerebral cortex and formation of synapses. Therefore, miRNA-132 and miRNA-134 plasma levels should be considered as potential biomarkers for OCD detection.
Collapse
Affiliation(s)
- Jihui Yue
- Department of Psychiatry, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Baoli Zhang
- Mental Health Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Wang
- Department of Psychiatry, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xuejiao Hou
- Department of Psychiatry, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xingyu Chen
- Department of Psychiatry, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Minfeng Cheng
- Department of Psychiatry, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shenglin Wen
- Department of Psychiatry, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
21
|
Li X, Zhao J, Li Z, Zhang L, Huo Z. Applications of Acupuncture Therapy in Modulating the Plasticity of Neurodegenerative Disease and Depression: Do MicroRNA and Neurotrophin BDNF Shed Light on the Underlying Mechanism? Neural Plast 2020; 2020:8850653. [PMID: 33029119 PMCID: PMC7527896 DOI: 10.1155/2020/8850653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 09/05/2020] [Indexed: 02/08/2023] Open
Abstract
As the global population ages, the incidence of neurodegenerative diseases has risen. Furthermore, it has been suggested that depression, especially in elderly people, may also be an indication of latent neurodegeneration. Stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) are usually accompanied by depression. The urgent challenge is further enforced by psychiatric comorbid conditions, particularly the feeling of despair in these patients. Fortunately, as our understanding of the neurobiological substrates of maladies affecting the central nervous system (CNS) has increased, more therapeutic options and novel potential biological mechanisms have been presented: (1) Neurodegenerative diseases share some similarities in their pathological characteristics, including changes in neuron structure or function and neuronal plasticity. (2) MicroRNAs (miRNAs) are small noncoding RNAs that contribute to the pathogenesis of diverse neurological disease. (3) One ubiquitous neurotrophin, brain-derived neurotrophic factor (BDNF), is crucial for the development of the nervous system. Accumulating data have indicated that miRNAs not only are related to BDNF regulation but also can directly bind with the 3'-UTR of BDNF to regulate BDNF and participate in neuroplasticity. In this short review, we present evidence of shared biological substrates among stroke, AD, PD, and depression and summarize the possible influencing mechanisms of acupuncture on the neuroplasticity of these diseases. We discuss neuroplasticity underscored by the roles of miRNAs and BDNF, which might further reveal the potential biological mechanism of neurodegenerative diseases and depression by acupuncture.
Collapse
Affiliation(s)
- Xia Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zejun Huo
- Department of Chinese Medicine, Peking University 3rd Hospital, Beijing 100191, China
| |
Collapse
|
22
|
Choe N, Shin S, Joung H, Ryu J, Kim Y, Ahn Y, Kook H, Kwon D. The microRNA miR-134-5p induces calcium deposition by inhibiting histone deacetylase 5 in vascular smooth muscle cells. J Cell Mol Med 2020; 24:10542-10550. [PMID: 32783377 PMCID: PMC7521311 DOI: 10.1111/jcmm.15670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022] Open
Abstract
Calcium deposition in vascular smooth muscle cells (VSMCs) is a form of ectopic ossification in blood vessels. It can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that the microRNA miR-134-5p potentiates inorganic phosphate (Pi)-induced calcium deposition in VSMCs by inhibiting histone deacetylase 5 (HDAC5). Using miRNA microarray analysis of Pi-treated rat VSMCs, we first selected miR-134-5p for further evaluation. Quantitative RT-PCR confirmed that miR-134-5p was increased in Pi-treated A10 cells, a rat VSMC line. Transfection of miR-134-5p mimic potentiated the Pi-induced increase in calcium contents. miR-134-5p increased the amounts of bone runt-related transcription factor 2 (RUNX2) protein and bone morphogenic protein 2 (BMP2) mRNA in the presence of Pi but decreased the expression of osteoprotegerin (OPG). Bioinformatic analysis showed that the HDAC5 3'untranslated region (3'UTR) was one of the targets of miR-134-5p. The luciferase construct containing the 3'UTR of HDAC5 was down-regulated by miR-134-5p mimic in a dose-dependent manner in VSMCs. Overexpression of HDAC5 mitigated the calcium deposition induced by miR-134-5p. Our results suggest that a Pi-induced increase of miR-134-5p may cause vascular calcification through repression of HDAC5.
Collapse
Affiliation(s)
- Nakwon Choe
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Sera Shin
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Hosouk Joung
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Juhee Ryu
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Young‐Kook Kim
- Department of BiochemistryChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Youngkeun Ahn
- Department of CardiologyChonnam National University HospitalGwangjuRepublic of Korea
| | - Hyun Kook
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| | - Duk‐Hwa Kwon
- Department of PharmacologyChonnam National University Medical SchoolHwasunRepublic of Korea
| |
Collapse
|
23
|
Li C, Yu TY, Zhang Y, Wei LP, Dong SA, Shi J, Du SH, Yu JB. Electroacupuncture Improves Cognition in Rats With Sepsis-Associated Encephalopathy. J Surg Res 2020; 256:258-266. [PMID: 32712439 DOI: 10.1016/j.jss.2020.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a common complication of sepsis. Although sepsis is effectively managed with the administration of antibiotics and source control, which may include surgical intervention, SAE usually leads to prolonged cognitive dysfunction affecting the quality of life of the patients. In this study, we investigated the possible effect of electroacupuncture (EA) on cognition in a model of SAE induced by cecal ligation and puncture (CLP). MATERIALS AND METHODS The rats were randomly divided into four groups: the control group, the CLP group, the CLP with EA treatment group (CLP + EA), and the CLP with sham EA treatment group (CLP + sham EA). EA at DU20, LI11, and ST36 or sham EA was performed 30 min daily for 10 consecutive days starting from 2 days before CLP. Then cognitive function was examined by the Morris water maze test. On day 14 after CLP surgery, the synaptic injury, neuron loss, and oxidative stress were studied. RESULTS Rats with EA treatment showed improved survival rate, spatial learning, and memory abilities. The dendritic spine density, the synaptic proteins, and the hippocampal neuron number were also increased after EA treatment. Furthermore, EA suppressed oxidative stress through regulating the level of malondialdehyde and superoxide dismutase and enhanced the expression of antioxidant nuclear factor erythroid-2-related factor-2 and hemeoxygenase-1. But sham EA did not have the same effect. CONCLUSIONS EA may protect against SAE-induced cognitive dysfunction by inhibiting synaptic injury, neuronal loss, and oxidative stress, and the nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 signaling pathway may be involved in this effect.
Collapse
Affiliation(s)
- Cui Li
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China; Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China
| | - Tian-Yu Yu
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China
| | - Liang-Peng Wei
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Shu-An Dong
- Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China
| | - Shi-Han Du
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Jian-Bo Yu
- Department of Anesthesiology, Tianjin NanKai Hospital, Tianjin, China.
| |
Collapse
|
24
|
Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY) 2020; 12:13187-13205. [PMID: 32620714 PMCID: PMC7377856 DOI: 10.18632/aging.103420] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury occurs when blood flow is restored in the brain, causing secondary damage to the ischemic tissues. Previous studies have shown that electroacupuncture (EA) treatment contributes to brain protection against CIR injury through modulating autophagy. Studies indicated that SIRT1-FOXO1 plays a crucial role in regulating autophagy. Here we investigated the mechanisms underlying the neuroprotective effect of EA and its role in modulating autophagy via the SIRT1-FOXO1 signaling pathway in rats with CIR injury. EA pretreatment at "Baihui", "Quchi" and "Zusanli" acupoints (2/15Hz, 1mA, 30 min/day) was performed for 5 days before the rats were subjected to middle cerebral artery occlusion, and the results indicated that EA pretreatment substantially reduced the Longa score and infarct volume, increased the dendritic spine density and lessened autophagosomes in the peri-ischemic cortex of rats. Additionally, EA pretreatment also reduced the ratio of LC3-II/LC3-I, the levels of Ac-FOXO1 and Atg7, and the interaction of Ac-FOXO1 and Atg7, but increased the levels of p62, SIRT1, and FOXO1. The above effects were abrogated by the SIRT1 inhibitor EX527. Thus, we presume that EA pretreatment elicits a neuroprotective effect against CIR injury, potentially by suppressing autophagy via activating the SIRT1-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Nan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Li-Peng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kang Jiang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiao-Lu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xian-Yun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yi-Hui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
25
|
Zhang Q, Li J, Huang S, Yang M, Liang S, Liu W, Chen L, Tao J. Functional connectivity of the retrosplenial cortex in rats with ischemic stroke is improved by electroacupuncture. Acupunct Med 2020; 39:200-207. [PMID: 32529883 DOI: 10.1177/0964528420921190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The aim of this study was to investigate the central mechanism underlying the putative beneficial effects of electroacupuncture (EA) on learning and memory ability of rats with ischemic stroke-induced cognitive deficits by resting-state functional magnetic resonance imaging (fMRI). METHODS A rat model of middle cerebral artery occlusion (MCAO)-induced cognitive deficit (MICD) was established. Rats were randomly assigned into a sham-operated control group (SC group, n = 12), untreated MICD model group (MICD group, n = 12), and MICD group receiving EA treatment at GV20 and GV24 (MICD + EA group, n = 12). RESULTS Compared to the MICD group, rats in the MICD + EA group receiving EA at GV20 and GV24 exhibited significantly shortened escape latency times and crossed the position of the platform a significantly increased number of times during the Morris water maze test on the 14th day after EA, which suggested EA could significantly improve spatial learning and memory ability. Furthermore, compared to the MICD group, functional connectivity of the left retrosplenial cortex (RSC) with the left hippocampus, left RSC, right RSC, left cingulate gyrus, right cingulate gyrus, right tegmentum of midbrain, and right visual cortex was increased in the MICD + EA group; the MICD group showed decreased functional connectivity of the left RSC with the left hippocampus, right hippocampus, left RSC, right RSC, right amygdaloid body, left visual cortex, and right visual cortex. CONCLUSION These findings suggest that EA at GV20 and GV24 might improve the learning and memory ability of MICD rats by increasing the functional connectivity between the RSC and hippocampus, cingulate gyrus and midbrain, which is encouraging for the potential treatment for cognitive impairment secondary to ischemia stroke.
Collapse
Affiliation(s)
- Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianhong Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sheng Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minguang Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China
| |
Collapse
|
26
|
Pan H, Zhao F, Yang Y, Chang N. Overexpression of long non-coding RNA SNHG16 against cerebral ischemia-reperfusion injury through miR-106b-5p/LIMK1 axis. Life Sci 2020; 254:117778. [PMID: 32407850 DOI: 10.1016/j.lfs.2020.117778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/19/2020] [Accepted: 05/09/2020] [Indexed: 11/18/2022]
Abstract
Long non-coding RNA (LncRNA) involved in types of physiological insults and diseases via regulating the responses of complex molecular, including cerebral ischemia-reperfusion (I/R) injury. LncRNA SNHG16 played a potential role in ketamine-induced neurotoxicity. In this study, we utilized an in vitro cell model of I/R to examine the specific function and mechanism of LncRNA SNHG16 in oxygen-glucose deprivation and reperfusion (OGD/R) induced SH-SY5Y cells. After in vitro treatment of OGD/R, the lower the SH-SY5Y cell survival, the higher cell the apoptosis and increased caspase-3 activity was observed. Also, OGD/R induced endoplasmic reticulum stress (ERS) through increasing GRP78 and CHOP expressions and down-regulated LncRNA SNHG16 in SH-SY5Y cells. Conversely, LncRNA SNHG16 overexpression promoted OGD/R induced SH-SY5Y cell survival, suppressed its apoptosis, and caspase-3 activity. GRP78 and CHOP expressions were significantly suppressed in LncRNA SNHG16 overexpressing cells. MiR-106b-5p expression was increased and LIMK1 expression was down-regulated in OGD/R induced SH-SY5Y cells, and these effects were reversed by LncRNA SNHG16 overexpression, respectively. Moreover, LIMK1 is a direct target of MiR-106b-5p, and knockdown of LIMK1 reversed the effects of LncRNA SNHG16 on OGD/R-induced SH-SY5Y cells biology. Altogether, these results confirmed an important neuroprotection role of LncRNA SNHG16 in OGD/R induced SH-SY5Y cells injury, and miR-106b-5p/LIMK1 signal axis was involved in the action of LncRNA SNHG16.
Collapse
Affiliation(s)
- Haojun Pan
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China
| | - Fangfang Zhao
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China
| | - Yanmin Yang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China
| | - Na Chang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan province, China..
| |
Collapse
|
27
|
Wang Z, Lin B, Liu W, Peng H, Song C, Huang J, Li Z, Chen L, Tao J. Electroacupuncture ameliorates learning and memory deficits via hippocampal 5-HT1A receptors and the PKA signaling pathway in rats with ischemic stroke. Metab Brain Dis 2020; 35:549-558. [PMID: 31515682 DOI: 10.1007/s11011-019-00489-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
Hippocampal 5-HT1A receptors and the PKA signaling pathway have been implicated in learning and memory. This study aimed to investigate whether PKA signaling mediated by 5-HT1A receptors was involved in the electroacupuncture (EA)-mediated learning and memory in a rat model of middle cerebral artery occlusion-induced cognitive deficit (MICD). Compared to no treatment or non-acupoint EA treatment, EA at DU20 and DU24 acupoints improved the neurological deficit of scores, shortened escape latency and increased the frequency of crossing the platform in the Morris water maze test. T2-weighted imaging demonstrated that the MICD rat brain lesions were mainly located in the cortex and hippocampus, and injured volumes were reduced after EA. Furthermore, we found that these behavioral changes were concomitant with the deficit of the 5HT1A and PKA signaling pathways in the hippocampus, as the activation of the 5-HT1A receptor, the reduction of PKA kinase activity, and AMPA and NMDA receptor phosphorylation occurred in the injured hippocampus at Day 14 after MICD. Additionally, EA dramatically elevated the activation of PKA. Moreover, EA significantly increased intracellular calcium concentrations regulated by the activation of NMDA receptors. Therefore, PKA kinase and NMDA receptors mediated by 5-HT1A receptors in the hippocampus might contribute to improving learning and memory during the recovery process following ischemic stroke with an EA intervention.
Collapse
Affiliation(s)
- Zhifu Wang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bingbing Lin
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hongwei Peng
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Changming Song
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| |
Collapse
|
28
|
Halasz E, Townes-Anderson E, Wang W. LIM kinases in synaptic plasticity and their potential as therapeutic targets. Neural Regen Res 2020; 15:1471-1472. [PMID: 31997806 PMCID: PMC7059582 DOI: 10.4103/1673-5374.274333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eva Halasz
- Department of Pharmacology, Physiology and Neuroscience, Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Ellen Townes-Anderson
- Department of Pharmacology, Physiology and Neuroscience, Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Weiwei Wang
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Isac S, Panaitescu AM, Iesanu MI, Zeca V, Cucu N, Zagrean L, Peltecu G, Zagrean AM. Maternal Citicoline-Supplemented Diet Improves the Response of the Immature Hippocampus to Perinatal Asphyxia in Rats. Neonatology 2020; 117:729-735. [PMID: 33326978 DOI: 10.1159/000512145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Citicoline represents a dietary source of choline, an essential nutrient, and precursor of cell membrane components, highly required during development and post-injury recovery. OBJECTIVES We previously showed that perinatal asphyxia (PA) induces hippocampal neuroinflammation and injury that are subject to epigenetic change by maternal diet. The present study investigates maternal citicoline-supplemented diet (CSD) impact on offspring hippocampal response to PA. METHODS Six-day-old Wistar rats from mothers with standard-diet or CSD were exposed to PA. The hippocampal inflammation and injury were assessed by interleukin-1 beta (IL-1b), tumor necrosis factor-alpha (TNFα), and S-100B protein (S-100B), 24-48 h post-asphyxia. The microRNAs species miR124, miR132, miR134, miR146, and miR15a were measured from the hippocampus 24 h post-asphyxia, to investigate its epigenetic response to PA and maternal diet. At maturity, the offspring's behavior was analyzed using open field (OFT), T-maze (TMT), and forced swimming (FST) tests. RESULTS Our data show that the maternal CSD decreased IL-1b (p = 0.02), TNFα (p = 0.007), and S100B (p = 0.01) at 24 h postexposure, upregulated miR124 (p = 0.03), downregulated miR132 (p = 0.002) and miR134 (p = 0.001), shortened the immobility period in FST (p = 0.01), and increased the percentage of passed trials in TMT (p = 0.01) compared to standard-diet. CONCLUSIONS Maternal CSD reduces hippocampal inflammation and S100B level, triggers epigenetic changes related to homeostatic synaptic plasticity, memory formation, and neuronal tolerance to asphyxia, decreases the depressive-like behavior, and improves the lucrative memory in offspring subjected to PA. Thus, citicoline could be valuable as a maternal dietary strategy in improving the brain response to PA.
Collapse
Affiliation(s)
- Sebastian Isac
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, Bucharest, Romania
| | - Anca Maria Panaitescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mara Ioana Iesanu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Pediatric Gastroenterology, Marie Curie Children's Clinical Hospital, Bucharest, Romania
| | - Vlad Zeca
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Natalia Cucu
- Association for Epigenetics and Metabolomics, Bucharest, Romania
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gheorghe Peltecu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,
| |
Collapse
|
30
|
Xiao JM, Wang JJ, Sun LL. Effect of miR-134 against myocardial hypoxia/reoxygenation injury by directly targeting NOS3 and regulating PI3K/Akt pathway. Acta Cir Bras 2019; 34:e201900802. [PMID: 31618402 PMCID: PMC6799975 DOI: 10.1590/s0102-865020190080000002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose To reveal the function of miR-134 in myocardial ischemia. Methods Real-time PCR and western blotting were performed to measure the expression
of miR-134, nitric oxide synthase 3 (NOS3) and apoptotic-associated
proteins. Lactic dehydrogenase (LDH) assay, cell counting kit-8 (CCK-8),
Hoechst 33342/PI double staining and flow cytometry assay were implemented
in H9c2 cells, respectively. MiR-134 mimic/inhibitor was used to regulate
miR-134 expression. Bioinformatic analysis and luciferase reporter assay
were utilized to identify the interrelation between miR-134 and NOS3. Rescue
experiments exhibited the role of NOS3. The involvement of PI3K/AKT was
assessed by western blot analysis. Results MiR-134 was high regulated in the myocardial ischemia model, and miR-134
mimic/inhibitor transfection accelerated/impaired the speed of cell
apoptosis and attenuated/exerted the cell proliferative prosperity induced
by H/R regulating active status of PI3K/AKT signaling. LDH activity was also
changed due to the different treatments. Moreover, miR-134 could target NOS3
directly and simultaneously attenuated the expression of NOS3.
Co-transfection miR-134 inhibitor and pcDNA3.1-NOS3 highlighted the
inhibitory effects of miR-134 on myocardial H/R injury. Conclusion This present work puts insights into the crucial effects of the miR-134/NOS3
axis in myocardial H/R injury, delivering a potential therapeutic technology
in future.
Collapse
Affiliation(s)
- Jian-Min Xiao
- Master, Department of Cardiovascular Medicine , Daqing Oilfield General Hospital , Daqing , Heilongjiang , P.R. China . Technical procedures, interpretation of data, statistical analysis, manuscript preparation
| | - Ji-Jia Wang
- Master, Department of Cardiovascular Medicine , Daqing Oilfield General Hospital , Daqing , Heilongjiang , P.R. China . Technical procedures, interpretation of data, statistical analysis, manuscript preparation
| | - Li-Li Sun
- Master, Department of Geriatric Medicine , Daqing Oilfield General Hospital , Daqing , Heilongjiang , P.R. China . Conception and design of the study, critical revision
| |
Collapse
|
31
|
Hung CYF, Wu XY, Chung VCH, Tang ECH, Wu JCY, Lau AYL. Overview of systematic reviews with meta-analyses on acupuncture in post-stroke cognitive impairment and depression management. Integr Med Res 2019; 8:145-159. [PMID: 31304087 PMCID: PMC6600770 DOI: 10.1016/j.imr.2019.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Acupuncture has been using as an alternative non-pharmacological therapy in the management of post stroke depression and cognitive impairment but its effectiveness and safety remain controversial. We conducted an overview of systematic reviews with meta-analyses to evaluate the evidence on the effect of acupuncture in the treatment of stroke with conventional medicine intervention. Methods: Systematic reviews summarized the treatment effects of acupuncture for post stroke cognitive impairment and post stroke depression were considered eligible. Methodological quality of included systematic reviews was assessed using A MeaSurement Tool to Assess systematic Reviews 2 (AMSTAR 2). Results: Four systematic reviews on post stroke cognitive impairment and ten systematic reviews on post stroke depression with good methodological quality were included. Meta-analyses revealed that acupuncture plus cognitive rehabilitation; and acupuncture or moxibustion plus cognitive rehabilitation, versus cognitive rehabilitation demonstrated statistically significant increase in Mini-Mental State Examination scores in compared to cognitive rehabilitation after 4 weeks treatment [Pooled weighted mean difference (WMD) = 3.14, 95% confidence interval (CI) = 2.06 to 4.21, I2 = 36%]; and (Pooled WMD = 3.22, 95% CI = 2.09 to 4.34, I2 = 0%). Furthermore, acupuncture versus antidepressant demonstrated statistically significant improve depression measured by increasing in 17-item Hamilton Depression Rating Scale in comparing to cognitive rehabilitation after 2 weeks treatment (Pooled WMD= -2.34, 95% CI= -3.46 to -1.22, I2 = 5%). Acupuncture usage was not associated with increased risk of adverse events. Conclusions: Acupuncture is safe and improves cognitive function and depressive disorder without obvious serious adverse events for post stroke patients.
Collapse
Affiliation(s)
- Caroline Yik-fong Hung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- The Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Xin-yin Wu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Vincent Chi-ho Chung
- The Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, School of Public Health, Prince of Wales Hospital, Shatin, Hong Kong
| | - Endy Chun-hung Tang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- The Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Justin Che-yuen Wu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Alexander Yuk-lun Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- The Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| |
Collapse
|
32
|
Sha R, Zhang B, Han X, Peng J, Zheng C, Zhang F, Huang X. Electroacupuncture Alleviates Ischemic Brain Injury by Inhibiting the miR-223/NLRP3 Pathway. Med Sci Monit 2019; 25:4723-4733. [PMID: 31237865 PMCID: PMC6607941 DOI: 10.12659/msm.917213] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Electroacupuncture (EA) has been commonly used to treat stroke in China. However, the underlying mechanism remains largely unknown. The present study investigated the neuroprotective effects of EA in middle cerebral artery occlusion (MCAO) rats and elucidated the possible anti-inflammatory mechanisms. Material/Methods In this study, modified neurological severity scoring (mNSS) was used to assess neurological deficits, and TTC staining and brain water content were measured to evaluate the degree of brain damage. HE staining, Nissl staining, and TUNEL staining were employed to evaluate apoptotic neuronal death. Molecular biological methods were used to measure the levels of miR-233, NLRP3, caspase-1, IL-1β, and IL-18 in the peri-infarct cortex. Results Our results showed that EA treatment significantly decreased the neurological deficit score and infarct volume of MCAO rats. The level of miR-223 was increased, while the levels of NLRP3, caspase-1, IL-1β, and IL-18 were decreased in the peri-infarct cortex of EA-treated MCAO rats. However, the neuroprotective effect of EA was partially blocked by antagomir-223. Conclusions These data suggest that EA treatment can alleviate neuroinflammation by inhibiting the miR-223/NLRP3 pathway, thus playing a neuroprotective role in MCAO in rats.
Collapse
Affiliation(s)
- Rong Sha
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Bo Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jiaojiao Peng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Caixia Zheng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Fengxia Zhang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
33
|
Ghoreishy A, Khosravi A, Ghaemmaghami A. Exosomal microRNA and stroke: A review. J Cell Biochem 2019; 120:16352-16361. [PMID: 31219202 DOI: 10.1002/jcb.29130] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Blood vessels rupture or occlusion in brain results in stroke. Stroke is the major reason for mortality and dysfunction worldwide. Despite several attempts, there are no any approved therapeutic approaches for stroke subjects. The most neuroprotective agents showed the positive effects in preclinical reports, while there are no significant therapeutic impacts in the clinical trials. MicroRNAs (miRNAs) are small noncoding RNAs which involved in the modulation of a variety of cellular and molecular pathways. Given that deregulation of these molecules is related to initiation and progression of stroke. Exosomes are nano-carriers which are able to transfer different cargos such as miRNAs to recipient cells. Increasing evidence revealed that exosomal miRNAs are one of very important factors which are involved in the pathogenesis of stroke. Hence, more understanding about the role of exosomal miRNAs in stroke pathogenesis could contribute in discovering and developing new therapeutic approaches. Moreover, it has been proved the exosomal miRNAs could be used as noninvasive biomarkers in diagnosis and monitoring response to therapy in subjects with stroke. Herein for first time, we summarized different exosomal miRNAs involved in pathogenesis of stroke.
Collapse
Affiliation(s)
- Abdolreza Ghoreishy
- Department of Neurology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Khosravi
- Department of Neurology, Clinical Immunology Research Center, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Amir Ghaemmaghami
- Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
MicroRNA in Acupuncture Studies: Does Small RNA Shed Light on the Biological Mechanism of Acupuncture? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3051472. [PMID: 31118954 PMCID: PMC6500616 DOI: 10.1155/2019/3051472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/31/2019] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are the main regulators of diverse physiological processes. Recently, miRNAs have emerged as significant players related to the effect of acupuncture although the biological mechanisms connecting the function of these miRNAs with the effect of acupuncture are not well understood. In animal models of various diseases, such as neurological disease, cardiovascular disease, myopathy, and pain, a number of miRNAs were altered after administration of electroacupuncture or manual acupuncture. Nonetheless, there are a limited number of studies published so far. This paper reviewed and discussed whether miRNAs could elucidate potential biological mechanism of acupuncture in the future studies.
Collapse
|
35
|
Deng JJ, Lai MY, Tan X, Yuan Q. Acupuncture protects the interstitial cells of Cajal by regulating miR-222 in a rat model of post-operative ileus. Acupunct Med 2019; 37:125-132. [PMID: 30852906 DOI: 10.1177/0964528419829755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Recovery of the interstitial cells of Cajal (ICCs) during post-operative ileus (POI) is important for the restoration of gastrointestinal (GI) motility. Acupuncture can protect ICCs, but the underlying mechanisms remain unclear. In this study, we investigated whether miR-222, c-kit and endothelial nitric oxide synthase (eNOS) are involved in the putative effects of acupuncture on ICC recovery. METHODS A POI model was established in Sprague-Dawley rats by colo-colic anastomosis, and then acupuncture was performed at bilateral ST36, SP6 and LR3 once daily for 3 consecutive days. C-kit protein expression in the colonic tissue adjacent to the incision site was determined by immunohistochemistry and Western blotting. mRNA levels of c-kit, eNOS and miR-222 were measured by real-time polymerase chain reaction (RT-PCR). RESULTS The levels of c-kit mRNA/protein and eNOS mRNA decreased, while miR-222 increased in the colonic tissues of POI model rats. Acupuncture treatment improved GI motility, inhibited the up-regulation of miR-222 and blocked the down-regulation of c-kit mRNA/protein and eNOS mRNA. The levels of miR-222 and c-kit were negatively correlated. CONCLUSION Acupuncture at ST36, SP6 and LR3 facilitates ICC recovery and improves post-operative GI motility in part through regulation of miR-222, c-kit and eNOS.
Collapse
Affiliation(s)
- Jing-Jing Deng
- 1 Department of Chinese Medicine, Guangzhou 8th People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming-Yin Lai
- 2 Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinghua Tan
- 1 Department of Chinese Medicine, Guangzhou 8th People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qing Yuan
- 2 Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
36
|
Fang Q, Zhang Y, Da P, Shao B, Pan H, He Z, Cheng C, Li D, Guo J, Wu X, Guan M, Liao M, Zhang Y, Sha S, Zhou Z, Wang J, Wang T, Su K, Chai R, Chen F. Deletion of Limk1 and Limk2 in mice does not alter cochlear development or auditory function. Sci Rep 2019; 9:3357. [PMID: 30833597 PMCID: PMC6399249 DOI: 10.1038/s41598-019-39769-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Inherited hearing loss is associated with gene mutations that result in sensory hair cell (HC) malfunction. HC structure is defined by the cytoskeleton, which is mainly composed of actin filaments and actin-binding partners. LIM motif-containing protein kinases (LIMKs) are the primary regulators of actin dynamics and consist of two members: LIMK1 and LIMK2. Actin arrangement is directly involved in the regulation of cytoskeletal structure and the maturation of synapses in the central nervous system, and LIMKs are involved in structural plasticity by controlling the activation of the actin depolymerization protein cofilin in the olfactory system and in the hippocampus. However, the expression pattern and the role of LIMKs in mouse cochlear development and synapse function also need to be further studied. We show here that the Limk genes are expressed in the mouse cochlea. We examined the morphology and the afferent synapse densities of HCs and measured the auditory function in Limk1 and Limk2 double knockout (DKO) mice. We found that the loss of Limk1 and Limk2 did not appear to affect the overall development of the cochlea, including the number of HCs and the structure of hair bundles. There were no significant differences in auditory thresholds between DKO mice and wild-type littermates. However, the expression of p-cofilin in the DKO mice was significantly decreased. Additionally, no significant differences were found in the number or distribution of ribbon synapses between the DKO and wild-type mice. In summary, our data suggest that the Limk genes play a different role in the development of the cochlea compared to their role in the central nervous system.
Collapse
Affiliation(s)
- Qiaojun Fang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518000, Shenzhen, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 29425, Charleston, South Carolina, USA
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Peng Da
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Nantong University, 226001, Nantong, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Haolai Pan
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, 200233, Shanghai, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 112008, Wenzhou, China
| | - Zuhong He
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China.,Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Dan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Jiaqi Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Xiaohan Wu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Ming Guan
- Department of Otolaryngology, Hangzhou First People's Hospital, 310006, Hangzhou, Zhejiang, China
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 29425, Charleston, South Carolina, USA
| | - Zikai Zhou
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Jian Wang
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, 200233, Shanghai, China.,School of Human Communication Disorders, Dalhousie University, B3J1Y6, Halifax, NS, Canada
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, The second Xiangya Hospital, Central South University, 410011, Changsha, Hunan Province, China
| | - Kaiming Su
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, 200233, Shanghai, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China. .,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 211189, Nanjing, China. .,Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, 518000, Shenzhen, China.
| |
Collapse
|
37
|
Brain Functional Reserve in the Context of Neuroplasticity after Stroke. Neural Plast 2019; 2019:9708905. [PMID: 30936915 PMCID: PMC6415310 DOI: 10.1155/2019/9708905] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Stroke is the second cause of death and more importantly first cause of disability in people over 40 years of age. Current therapeutic management of ischemic stroke does not provide fully satisfactory outcomes. Stroke management has significantly changed since the time when there were opened modern stroke units with early motor and speech rehabilitation in hospitals. In recent decades, researchers searched for biomarkers of ischemic stroke and neuroplasticity in order to determine effective diagnostics, prognostic assessment, and therapy. Complex background of events following ischemic episode hinders successful design of effective therapeutic strategies. So far, studies have proven that regeneration after stroke and recovery of lost functions may be assigned to neuronal plasticity understood as ability of brain to reorganize and rebuild as an effect of changed environmental conditions. As many neuronal processes influencing neuroplasticity depend on expression of particular genes and genetic diversity possibly influencing its effectiveness, knowledge on their mechanisms is necessary to understand this process. Epigenetic mechanisms occurring after stroke was briefly discussed in this paper including several mechanisms such as synaptic plasticity; neuro-, glio-, and angiogenesis processes; and growth of axon.
Collapse
|
38
|
Xing Y, Zhang M, Li WB, Dong F, Zhang F. Mechanisms Involved in the Neuroprotection of Electroacupuncture Therapy for Ischemic Stroke. Front Neurosci 2018; 12:929. [PMID: 30618558 PMCID: PMC6297779 DOI: 10.3389/fnins.2018.00929] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the main causes of death all over the world. As the combination of acupuncture and electric stimulation, electroacupuncutre is a safe and effective therapy, which is commonly applied in ischemic stroke therapy in both experimental studies and clinical settings. The review was performed via searching for related articles in the databases of OVID, PUBMED, and ISI Web of Science from their respective inceptions to May 2018. In this review, we summarized the mechanism of EA for ischemic stroke via a series of factors, consisting of apoptosis related-factors, inflammatory factors, autophagy-related factors, growth factors, transcriptional factors, cannabinoid CB1 receptors, and other factors. In summary, EA stimulation may effectively alleviate ischemic brain injury via a series of signal pathways and various other factors.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
39
|
Zhou J, Chen L, Chen B, Huang S, Zeng C, Wu H, Chen C, Long F. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurol 2018; 18:198. [PMID: 30514242 PMCID: PMC6278025 DOI: 10.1186/s12883-018-1196-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The exosomal miRNAs have been emerged as biomarkers and therapeutic targets for various diseases, however, the function of exosomal miRNAs in stroke remains largely unknown. METHODS The blood samples from acute ischemic stroke (AIS) patients and normal controls were collected. The exosomes were isolated from the blood samples, which were confirmed by electron microscopy and western blot with the specific exosomes biomarker CD9, CD63 and Tsg101. RESULTS RT-qPCR analysis showed that exosomal miR-134 was significantly increased in AIS patients within 24 h after stroke onset compared with that of control group. Highly expressed exosomal miR-134 was correlated with the National Institutes of Health Stroke Scale (NIHSS) scores, infarct volume and positively associated with the worse prognosis of the stroke patients. Additionally, the exosomal miR-134 was strong positively correlated with the expression of serum interleukin 6 (IL-6) and plasma high-sensitivity C relative protein (hs-CRP). The receiver operating characteristic (ROC) curve suggested that miR-134 might be a potential factor to discriminate AIS patients from non-stroke controls. CONCLUSIONS The exosomal miR-134 as a possible novel biomarker for the diagnosis and prognosis of stroke.
Collapse
Affiliation(s)
- Jingxia Zhou
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Lin Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Bocan Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Shaozhu Huang
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Chaosheng Zeng
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Hairong Wu
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Cong Chen
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China
| | - Faqing Long
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, People's Republic of China.
| |
Collapse
|
40
|
Oh JY, Kim YK, Kim SN, Lee B, Jang JH, Kwon S, Park HJ. Acupuncture modulates stress response by the mTOR signaling pathway in a rat post-traumatic stress disorder model. Sci Rep 2018; 8:11864. [PMID: 30089868 PMCID: PMC6082850 DOI: 10.1038/s41598-018-30337-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/25/2018] [Indexed: 01/02/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disease that can form following exposure to a traumatic event. Acupuncture has been proposed as a beneficial treatment for PTSD, but the underlying mechanisms remain unclear. The present study investigated whether acupuncture improves depression- and anxiety-like behaviors induced using a single prolonged stress (SPS) as a PTSD rat model. In addition, we investigated whether the effects were mediated by increased mTOR activity and its downstream signaling components, which contribute to protein synthesis required for synaptic plasticity in the hippocampus. We found that acupuncture at HT8 significantly alleviated both depression- and anxiety-like behaviors induced by SPS in rats, as assessed by the forced swimming, elevated plus maze, and open field tests; this alleviation was blocked by rapamycin. The effects of acupuncture were equivalent to those exerted by fluoxetine. Acupuncture regulated protein translation in the mTOR signaling pathway and enhanced the activation of synaptic proteins, PSD95, Syn1, and GluR1 in the hippocampus. These results suggest that acupuncture exerts antidepressant and anxiolytic effects on PTSD-related symptoms by increasing protein synthesis required for synaptic plasticity via the mTOR pathway in the hippocampus. Acupuncture may be a promising treatment for patients with PTSD and play a role as an alternative PTSD treatment.
Collapse
Affiliation(s)
- Ju-Young Oh
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Yu-Kang Kim
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jae-Hwan Jang
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Sunoh Kwon
- Korean Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea. .,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea. .,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
41
|
Xie Y, Ma J, Wang D, Chai X, Gao C. Electro-acupuncture stimulation prevents remifentanil-induced postoperative hyperalgesia by suppressing spinal microglia in rats. Exp Ther Med 2018; 16:353-359. [PMID: 29896261 DOI: 10.3892/etm.2018.6161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to assess the effect of electro-acupuncture (EA) stimulation on remifentanil-induced postoperative hyperalgesia (RIPH) and the possible involvement of spinal microglia suppression. A model of RIPH was established using adult male Sprague-Dawley rats by administration of remifentanil at 0.08 mg/kg intravenously for 60 min. The Huantiao and Yanglingquan acupoints were stimulated continuously by EA (2 Hz, ~1 mA) for 90 min from before paw incision to the end of remifentanil administration. Sham acupoints were stimulated by EA in the sham group. Paw withdrawal threshold (PWT) and paw thermal withdrawal latency (PWL) were determined. Cluster of differentiation (CD)11b, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels in spinal cord samples were measured using immunohistochemistry and ELISA. PWT and PWL values were decreased following the administration of remifentanill; however, following EA, PWT and PWL values increased compared with the sham group (P<0.05), indicating that EA alleviates remifentanil-induced RIPH. CD11b, TNF-α, IL-1β and IL-6 levels were increased following remifentanil administration and these effects were counteracted by EA (all P<0.05). In the sham group, no significant differences were observed in PWT and PWL values or CD11b, TNF-α, IL-1β and IL-6 levels compared with the control group, suggesting that EA was responsible for the reduction in CD11b and pro-inflammatory cytokine expression following remifentanil administration. The results of the present study demonstrated that EA at the Huantiao and Yanglingquan acupoints may reduce remifentanil-induced postoperative hyperalgesia, likely by inhibiting spinal microglia via reduction of CD11b and pro-inflammatory cytokine expression. However, these results are preliminary and require further validation.
Collapse
Affiliation(s)
- Yanhu Xie
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Jun Ma
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Di Wang
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Xiaoqing Chai
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Chen Gao
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated Anhui Medical University, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
42
|
Wen T, Zhang X, Liang S, Li Z, Xing X, Liu W, Tao J. Electroacupuncture Ameliorates Cognitive Impairment and Spontaneous Low-Frequency Brain Activity in Rats with Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 27:2596-2605. [PMID: 30220306 DOI: 10.1016/j.jstrokecerebrovasdis.2018.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND To evaluate whether electroacupuncture (EA) at Baihui (DU20) and Shenting (DU24) acupoints could improve cognitive function and enhance spontaneous low-frequency brain activity in rats with ischemic stroke. METHODS Total 36 rats were randomly divided into 3 groups-the sham surgery (Sham) group, the middle cerebral artery occlusion induced cognitive deficit (MICD) group, and the MICD with EA (MICD + EA) treatment group. The rats in MICD + EA group received EA treatment at DU20 and DU24 acupoints for 14 consecutive days after the surgery. The Morris water maze test was performed to assess the spatial learning and memory ability of the rats. Magnetic resonance imaging (MRI) was used to investigate the infarction volume and spontaneous low-frequency brain activity of each group. RESULTS After EA for 14 days, the learning and memory ability of the MICD rats was improved, and the brain infarction volume was reduced. Furthermore, basing on the fMRI amplitude of low-frequency fluctuation (ALFF) analysis, the decreased ALFF of the MICD rats was found in auditory cortex, cingulate gyrus, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, prelimbic cortex, retrosplenial cortex, and sensory cortex compared with the rats in sham group. However, these suppressive regions were notably attenuated after EA treatment. CONCLUSIONS Our results suggested that EA at DU20 and DU24 acupoints could ameliorate cognitive impairment in rats with ischemic stroke, and the protective effect of EA may attribute to reactivating the cognition-related brain regions, such as hippocampus, retrosplenial cortex, cingulate gyrus, prelimbic cortex, and sensory cortex.
Collapse
Affiliation(s)
- Tao Wen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Rehabilitation Department, Hubei Province Hospital of Traditional Chinese Medicine, Wuhan, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xiufeng Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Rehabilitation Department, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Shengxiang Liang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Physical Science and Technology, Zhengzhou University, Zhengzhou, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xuemei Xing
- Rehabilitation Department, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| |
Collapse
|
43
|
Ras-Related C3 Botulinum Toxin Substrate 1 Promotes Axonal Regeneration after Stroke in Mice. Transl Stroke Res 2018; 9:506-514. [PMID: 29476448 DOI: 10.1007/s12975-018-0611-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
Abstract
Neurite plasticity is a critical aspect of brain functional recovery after stroke. Emerging data suggest that Ras-related C3 botulinum toxin substrate 1 (Rac1) plays a central role in axonal regeneration in the injured brain, specifically by stimulating neuronal intrinsic growth and counteracting the growth inhibitory signaling that leads to growth cone collapse. Therefore, we investigated the functional role of Rac1 in axonal regeneration after stroke.Delayed treatment with a specific Rac1 inhibitor, NSC 23766, worsened functional recovery, which was assessed by the pellet reaching test from day 14 to day 28 after stroke. It additionally reduced axonal density in the peri-infarct zone, assessed 28 days after stroke, with no effect on brain cavity size or on the number of newly formed cells. Accordingly, Rac1 overexpression using lentivirus promoted axonal regeneration and functional recovery after stroke from day 14 to day 28. Rac1 inhibition led to inactivation of pro-regenerative molecules, including mitogen-activated protein kinase kinase (p-MEK)1/2, LIM domain kinase (LIMK)1, and extracellular signal-regulated kinase (p-ERK)1/2 at 14 days after stroke. Inhibition of Rac1 reduced axonal length and number in cultured primary mouse cortical neurons using microfluidic chambers after oxygen-glucose deprivation (OGD) without affecting cell viability. In contrast, inhibition of Rac1 increased levels of glial fibrillary acidic protein, an extrinsic inhibitory signal for axonal growth, after stroke in vivo and in primary astrocytes after OGD.In conclusion, Rac1 signaling enhances axonal regeneration and improve post-stroke functional recovery in experimental models of stroke.
Collapse
|
44
|
Fan C, Zhu X, Song Q, Wang P, Liu Z, Yu SY. MiR-134 modulates chronic stress-induced structural plasticity and depression-like behaviors via downregulation of Limk1/cofilin signaling in rats. Neuropharmacology 2018; 131:364-376. [PMID: 29329879 DOI: 10.1016/j.neuropharm.2018.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 12/21/2022]
Abstract
Increasing evidence has suggested that depression is a neuropsychiatric condition associated with neuroplasticity within specific brain regions. However, the mechanisms by which neuroplasticity exerts its effects in depression remain largely uncharacterized. In the present study we show that chronic stress effectively induces depression-like behaviors in rats, an effect which was associated with structural changes in dendritic spines and synapse abnormalities within neurons of the ventromedial prefrontal cortex (vmPFC). Moreover, unpredictable chronic mild stress (UCMS) exposure significantly increased the expression of miR-134 within the vmPFC, an effect which was paralleled with a decrease in the levels of expression and phosphorylation of the synapse-associated proteins, LIM-domain kinase 1 (Limk1) and cofilin. An intracerebral infusion of the adenovirus associated virus (AAV)-miR-134-sponge into the vmPFC of stressed rats, which blocks mir-134 function, significantly ameliorated neuronal structural abnormalities, biochemical changes and depression-like behaviors. Chronic administration of ginsenoside Rg1 (40 mg/kg, 5 weeks), a potential neuroprotective agent extracted from ginseng, significantly ameliorated the behavioral and biochemical changes induced by UCMS exposure. These results suggest that miR-134-mediated dysregulation of structural plasticity may be related to the display of depression-like behaviors in stressed rats. The neuroprotective effects of ginsenoside Rg1, which produces an antidepressant like effect in this model of depression, appears to result from modulation of the miR-134 signaling pathway within the vmPFC.
Collapse
Affiliation(s)
- Cuiqin Fan
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Xiuzhi Zhu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Qiqi Song
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Peng Wang
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Zhuxi Liu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | - Shu Yan Yu
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China; Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China.
| |
Collapse
|
45
|
Zhang B, Dai XH, Yu XP, Zou W, Teng W, Sun XW, Yu WW, Liu H, Wang H, Sun MJ, Li M. Baihui (DU20)-penetrating- Qubin (GB7) acupuncture inhibits apoptosis in the perihemorrhagic penumbra. Neural Regen Res 2018; 13:1602-1608. [PMID: 30127121 PMCID: PMC6126129 DOI: 10.4103/1673-5374.237123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Baihui (DU20)-penetrating-Qubin (GB7) acupuncture can inhibit inflammatory reactions and activate signaling pathways related to proliferation after intracerebral hemorrhage. However, there is no research showing the relationship between this treatment and cell apoptosis. Rat models of intracerebral hemorrhage were established by injecting 60 μL of autologous blood into the right side of the caudate-putamen. Six hours later, the needle traveled subcutaneously from the Baihui acupoint to Qubin acupoint. The needle was alternately rotated (180 ± 10 turns/min) manually along clockwise and counter-clockwise directions. Stimulation lasted for 7 days, and was performed three times each for 6 minutes with 6-minute intervals between stimulations. Rats intraperitoneally receiving Sonic hedgehog pathway activator, purmorphamine (1 mg/kg per day), served as positive controls. Motor and sensory function were assessed using the Ludmila Belayev test. Extent of pathological changes were measured in the perihemorrhagic penumbra using hematoxylin-eosin staining. Apoptosis was examined by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay. Expression of smoothened (Smo) and glioma-associated homolog 1 (Gli1) was determined by western blot assay. Our results showed that Baihui-penetrating-Qubin acupuncture promoted recovery of motor and sensory function, reduced the apoptotic cell percentage in the perihemorrhagic penumbra, and up-regulated Smo and Gli1 expression. We conclude that Baihui-penetrating-Qubin acupuncture can mitigate hemorrhage and promote functional recovery of the brain in a rat model of intracerebral hemorrhage, possibly by activating the Sonic hedgehog pathway.
Collapse
Affiliation(s)
- Beng Zhang
- Heilongjiang University of Chinese Medicine; First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Hong Dai
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xue-Ping Yu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Zou
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine; Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Teng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Wei Sun
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei-Wei Yu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Hui Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Meng-Juan Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Meng Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|