1
|
Yu C, Sun J, Lai X, Tan Z, Wang Y, Du H, Pan Z, Chen T, Yang Z, Ye S, Quan J, Zhou Y. Gefitinib induces apoptosis in Caco-2 cells via ER stress-mediated mitochondrial pathways and the IRE1α/JNK/p38 MAPK signaling axis. Med Oncol 2025; 42:71. [PMID: 39924616 DOI: 10.1007/s12032-025-02622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Gefitinib, a selective EGFR-tyrosine kinase inhibitor, exhibits potent cytotoxic effects on colorectal cancer cells, though its precise mechanisms are not fully understood. In this study, we demonstrated that gefitinib induces a dose-dependent cytotoxic response in Caco-2 cells, characterized by disrupted microtubule networks, impaired migration, and reduced viability. Gefitinib triggered apoptosis, as indicated by increased levels of cleaved caspase-3, PARP, and elevated late apoptosis rates. Mechanistically, gefitinib-induced endoplasmic reticulum (ER) stress, marked by the upregulation of IRE1α, CHOP, and ATF4. ER stress inhibition by 4-PBA significantly reduced apoptosis and restored mitochondrial membrane potential (MMP). Additionally, gefitinib-induced apoptosis was mediated through the mitochondrial pathway, reflected by the modulation of Bcl-2 family proteins, including the upregulation of Bax and Bim. Inhibition of the IRE1α-mediated JNK/p38 MAPK pathway further mitigated gefitinib-induced apoptosis and restored MMP. These findings highlight the critical role of ER stress and the IRE1α-JNK/p38 MAPK axis in gefitinib-induced mitochondrial apoptosis, offering potential therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Caiyuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Jinhui Sun
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Xinyi Lai
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Zhiming Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Yang Wang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Haiyan Du
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Zhaobin Pan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Tingyu Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Ziping Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
2
|
Zan G, He H, Wang X, Zhou J, Wang X, Yan H. Morin Reactivates Nrf2 by Targeting Inhibition of Keap1 to Alleviate Deoxynivalenol-Induced Intestinal Oxidative Damage. Int J Mol Sci 2025; 26:1086. [PMID: 39940854 PMCID: PMC11817132 DOI: 10.3390/ijms26031086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
As a prevalent mycotoxin found in cereal foods and feed, deoxynivalenol (DON) disrupts the orderly regeneration of intestinal epithelial tissue by interfering with the intracellular antioxidant defense system. However, the potential of mulberry leaf-derived Morin, a natural flavonoid active substance with clearing reactive oxygen species (ROS), to mitigate DON-induced intestinal oxidative damage remains unclear. Our investigation demonstrates that Morin effectively reverses the decline in growth performance and repairs damaged jejunal structures and barrier function under DON exposure. Furthermore, the proliferation and differentiation of intestinal stem cells (ISCs) is enhanced significantly after Morin intervention. Importantly, Morin increases the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) in the serum and jejunal tissue, while reducing the accumulation of ROS and malondialdehyde (MDA). Molecular interaction analysis further confirms that Morin targets inhibition of Keap1 to activate the Nrf2-mediated antioxidant system. In summary, our results suggest that Morin alleviates the oxidative damage induced by DON by regulating the Keap1/Nrf2 pathway, thereby restoring the proliferation and differentiation activity of ISC, which provides new insights into Morin mitigating DON damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Huichao Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.Z.); (H.H.); (X.W.); (J.Z.); (X.W.)
| |
Collapse
|
3
|
Jafary B, Akbarzadeh-Khiavi M, Farzi-Khajeh H, Safary A, Adibkia K. EGFR-targeting RNase A-cetuximab antibody-drug conjugate induces ROS-mediated apoptosis to overcome drug resistance in KRAS mutant cancer cells. Sci Rep 2025; 15:1483. [PMID: 39789190 PMCID: PMC11718297 DOI: 10.1038/s41598-025-85856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Antibody-drug conjugates (ADCs) are an emerging strategy in cancer therapy, enhancing precision and efficacy by linking targeted antibodies to potent cytotoxic agents. This study introduces a novel ADC that combines ribonuclease A (RNase A) with cetuximab (Cet), an anti-EGFR monoclonal antibody, through a polyethylene glycol (PEG) linker (RN-PEG-Cet), aimed to induce apoptosis in KRAS mutant colorectal cancer (CRC) via a ROS-mediated pathway. RN-PEG-Cet was successfully synthesized and characterized for its physicochemical properties, retaining full enzymatic activity in RNA degradation and high binding affinity to EGFR. In KRAS mutant SW-480 cells, RN-PEG-Cet significantly reduced cell viability at lower doses, with an IC50 of 11.7 µg/mL at 72 h. Compared to free Cet, RN-PEG-Cet demonstrated a ~ 2-fold increase in apoptosis and a ~ 3.5-fold increase in ROS production. The conjugate also disrupted the Nrf2/Keap1 pathway, with a significant upregulation of Keap1 (FC = 3.7, p ≤ 0.01) and downregulation of Nrf2 (FC = 3.3, p < 0.01), highlighting its role in impairing antioxidant defenses and promoting ROS-mediated cytotoxicity. These findings emphasize the potential of RN-PEG-Cet as a novel therapeutic approach for KRAS mutant CRC, offering superior apoptosis induction and targeted cytotoxicity compared to conventional therapies. This ADC could represent a new strategy for improving CRC treatment outcomes by effectively overcoming resistance mechanisms.
Collapse
Affiliation(s)
- Bita Jafary
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Farzi-Khajeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
5
|
Zhu C, Liang S, Zan G, Wang X, Gao C, Yan H, Wang X, Zhou J. Selenomethionine Alleviates DON-Induced Oxidative Stress via Modulating Keap1/Nrf2 Signaling in the Small Intestinal Epithelium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:895-904. [PMID: 36535023 DOI: 10.1021/acs.jafc.2c07885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The small intestinal epithelium is regulated in response to various beneficial or harmful environmental information. Deoxynivalenol (DON), a mycotoxin widely distributed in cereal-based feeds, induces oxidative stress damage in the intestine due to the mitochondrial stress. As a functional nutrient, selenomethionine (Se-Met) is involved in synthesizing several antioxidant enzymes, yet whether it can replenish the intestinal epithelium upon DON exposure remains unknown. Therefore, the in vivo model C57BL/6 mice and the in vitro model MODE-K cells were treated with l-Se-Met and DON alone or in combination to confirm the status of intestinal stem cell (ISC)-driven epithelial regeneration. The results showed that 0.1 mg/kg body weight (BW) Se-Met reinstated the growth performance and integrity of jejunal structure and barrier function in DON-challenged mice. Moreover, Lgr5+ ISCs and PCNA+ mitotic cells in crypts were prominently increased by Se-Met in the presence of DON, concomitant with a significant increase in absorptive cells, goblet cells, and Paneth cells. Simultaneously, crypt-derived jejunal organoids from the Se-Met + DON group exhibited more significant growth advantages ex vivo. Furthermore, Se-Met-stimulated Keap1/Nrf2-dependent antioxidant system (T-AOC and GSH-Px) to inhibit the accumulation of ROS and MDA in the jejunum and serum. Moreover, Se-Met failed to rescue the DON-triggered impairment of cell antioxidant function after Nrf2 perturbation using its specific inhibitor ML385 in MODE-K cells. In conclusion, Se-Met protects ISC-driven intestinal epithelial integrity against DON-induced oxidative stress damage by modulating Keap1/Nrf2 signaling.
Collapse
Affiliation(s)
- Chao Zhu
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Shaojie Liang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Gengxiu Zan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiaofan Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Huichao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Jiayi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
- HenryFok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
6
|
Yang B, Yuan K, Lu M, El-Kott AF, Negm S, Sun QP, Yang L. Anti-cancer, Anti-collagenase and Anti-elastase Potentials of Some Natural Derivatives: In vitro and in silico Studies. J Oleo Sci 2023; 72:557-570. [PMID: 37121681 DOI: 10.5650/jos.ess22337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The anti-cancer activities of the compounds were evaluated against KYSE-150, KYSE-30, and KYSE-270 cell lines and also on investigated esophageal line HET 1 A as a standard. Modified inhibitory impact on enzymes of collagenase and elastase were used Thring and Moon methods, respectively. Among both compounds, both of them recorded impact on cancer cells being neutral against the control, both had IC50 lower than 100 µM and acted as a potential anticancer drug. The chemical activities of Skullcapflavone I and Skullcapflavone II against elastase and collagenase were investigated utilizing the molecular modeling study. IC50 values of Skullcapflavone I and Skullcapflavone II on collagenase enzyme were obtained 106.74 and 92.04 µM and for elastase enzyme were 186.70 and 123.52 µM, respectively. Anticancer effects of these compounds on KYSE 150, KYSE 30, and KYSE 270 esophageal cancer cell lines studied in this work. For Skullcapflavone I, IC50 values for these cell lines were obtained 14.25, 19.03, 25.10 µM, respectively. Also, for Skullcapflavone II were recorded 20.42, 34.17, 22.40 µM, respectively. The chemical activities of Skullcapflavone I and Skullcapflavone II against some of the expressed surface receptor proteins (CD44, EGFR, and PPARγ) in the mentioned cell lines were assessed using the molecular docking calculations. The calculations showed the possible interactions and their characteristics at an atomic level.
Collapse
Affiliation(s)
- Binfeng Yang
- Department of Medical Oncology, Suzhou Ninth People's Hospital·Suzhou Ninth Hospital Affiliated to Soochow University
| | - Kaisheng Yuan
- Department of Gastroenterology, People's Hospital of Hongze District
| | - Ming Lu
- Department of General Surgery-Gastrointestinal Surgery JiLin Central Hospital
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University
- Department of Zoology, College of Science, Damanhour University
| | - Sally Negm
- Department of Life Sciences, Faculty of Science and Art Mahail, King Khalid University
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health
| | - Qiu Ping Sun
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| | - Lu Yang
- Department of Chinese Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Department of Comprehensive Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention
| |
Collapse
|
7
|
Yang Y, Wu H, Zou X, Chen Y, He R, Jin Y, Zhou B, Ge C, Yang Y. A novel synthetic chalcone derivative, 2,4,6-trimethoxy-4'-nitrochalcone (Ch-19), exerted anti-tumor effects through stimulating ROS accumulation and inducing apoptosis in esophageal cancer cells. Cell Stress Chaperones 2022; 27:645-657. [PMID: 36242757 PMCID: PMC9672279 DOI: 10.1007/s12192-022-01302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
Esophageal cancer has always been associated with poor prognosis and a low five-year survival rate. Chalcone, a flavonoid family member, has shown anti-tumor property in several types of cancer. However, few studies reported the potency and mechanisms of action of synthetic Chalcone derivatives against esophageal squamous cell carcinoma. In this study, we designed and synthesized a series of novel chalcone analogs and Ch-19 was selected for its superior anti-tumor potency. Results indicated that Ch-19 shows a dose- and time-dependent anti-tumor activity in both KYSE-450 and Eca-109 esophageal cancer cells. Moreover, treatment of Ch-19 resulted in the regression of KYSE-450 tumor xenografts in nude mice. Furthermore, we investigated the potential mechanism involved in the effective anti-tumor effects of Ch-19. As a result, we observed that Ch-19 treatment promoted ROS accumulation and caused G2/M phase arrest in both Eca-109 and KYSE-450 cancer cell lines, thereby resulting in cell apoptosis. Taken together, our study provided a novel synthetic chalcone derivative as a potential anti-tumor therapeutic candidate for treating esophageal cancer.
Collapse
Affiliation(s)
- Yan Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, Canada
| | - He Wu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiao Zou
- Department of Oncology and Hematology, The First People's Hospital of Taian, Taian, China
| | - Yongye Chen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Runjia He
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yibo Jin
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Bei Zhou
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunpo Ge
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Yun Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
8
|
Sibuh BZ, Gahtori R, Al-Dayan N, Pant K, Far BF, Malik AA, Gupta AK, Sadhu S, Dohare S, Gupta PK. Emerging trends in immunotoxin targeting cancer stem cells. Toxicol In Vitro 2022; 83:105417. [PMID: 35718257 DOI: 10.1016/j.tiv.2022.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) are self-renewing multipotent cells that play a vital role in the development of cancer drug resistance conditions. Various therapies like conventional, targeted, and radiotherapies have been broadly used in targeting and killing these CSCs. Among these, targeted therapy selectively targets CSCs and leads to overcoming disease recurrence conditions in cancer patients. Immunotoxins (ITs) are protein-based therapeutics with selective targeting capabilities. These chimeric molecules are composed of two functional moieties, i.e., a targeting moiety for cell surface binding and a toxin moiety that induces the programmed cell death upon internalization. Several ITs have been constructed recently, and their preclinical and clinical efficacies have been evaluated. In this review, we comprehensively discussed the recent preclinical and clinical advances as well as significant challenges in ITs targeting CSCs, which might reduce the burden of drug resistance conditions in cancer patients from bench to bedside.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Noura Al-Dayan
- Department of Medical Lab Sciences, Prince Sattam bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Ashish Kumar Gupta
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India
| | - Soumi Sadhu
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Sushil Dohare
- Department of Epidemiology, Faculty of Public Health & Tropical Medicine, Jazan University, Jazan, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India; Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India.
| |
Collapse
|
9
|
Gao X, Zhang Y, Mu G, Xu Y, Wang X, Tuo Y, Qian F. Protecting Effect of Bacillus coagulans T242 on HT-29 Cells Against AAPH-Induced Oxidative Damage. Probiotics Antimicrob Proteins 2022; 14:741-750. [PMID: 35501534 DOI: 10.1007/s12602-022-09917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to investigate the in vitro antioxidant potential of Bacillus coagulans T242. B. coagulans T242 showed better antioxidant activities, including the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging ability, lipid peroxidation inhibiting ability and reducing ability, than those exerted by Lactobacillus rhamnosus GG (LGG). B. coagulans T242 positively regulated the expression of the nuclear factor erythroid 2-relatedfactor 2/Kelch-like ECH-associated protein-1 (Nrf2/Keap1) pathway-related proteins (Nrf2, Keap1, heine oxygenase-1 (HO-1)); increased antioxidant enzymes (glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD)); reduced the content of malondialdehyde (MDA) level; decreased the expression of inflammatory-related cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α); and thus increased the survival rate in 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH)-damaged HT-29 cells. This study proved that B. coagulans T242 exerted antioxidative effects by quenching oxygen free radicals and activating the Nrf2 signaling pathway in HT-29 cells.
Collapse
Affiliation(s)
- Xiaoxi Gao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Liaoning, 116034, People's Republic of China
| | - Yuhong Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Liaoning, 116034, People's Republic of China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Liaoning, 116034, People's Republic of China
| | - Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Liaoning, 116034, People's Republic of China
| | - Xinmiao Wang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Liaoning, 116034, People's Republic of China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Liaoning, 116034, People's Republic of China.
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Liaoning, 116034, People's Republic of China.
| |
Collapse
|
10
|
He S, Xu J, Liu X, Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B 2021; 11:3379-3392. [PMID: 34900524 PMCID: PMC8642427 DOI: 10.1016/j.apsb.2021.03.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common cancers with high morbidity and mortality rates. EC includes two histological subtypes, namely esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC primarily occurs in East Asia, whereas EAC occurs in Western countries. The currently available treatment strategies for EC include surgery, chemotherapy, radiation therapy, molecular targeted therapy, and combinations thereof. However, the prognosis remains poor, and the overall five-year survival rate is very low. Therefore, achieving the goal of effective treatment remains challenging. In this review, we discuss the latest developments in chemotherapy and molecular targeted therapy for EC, and comprehensively analyze the application prospects and existing problems of immunotherapy. Collectively, this review aims to provide a better understanding of the currently available drugs through in-depth analysis, promote the development of new therapeutic agents, and eventually improve the treatment outcomes of patients with EC.
Collapse
Affiliation(s)
- Shiming He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jian Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
DT389-YP7, a Recombinant Immunotoxin against Glypican-3 That Inhibits Hepatocellular Cancer Cells: An In Vitro Study. Toxins (Basel) 2021; 13:toxins13110749. [PMID: 34822533 PMCID: PMC8617615 DOI: 10.3390/toxins13110749] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the high-metastatic types of cancer, and metastasis occurs in one-third of patients with HCC. To maintain the effectiveness of drug compounds on cancer cells and minimize their side effects on normal cells, it is important to use new approaches for overcoming malignancies. Immunotoxins (ITs), an example of such a new approach, are protein-structured compounds consisting of toxic and binding moieties which can specifically bind to cancer cells and efficiently induce cell death. Here, we design and scrutinize a novel immunotoxin against an oncofetal marker on HCC cells. We applied a truncated diphtheria toxin (DT389) without binding domain as a toxin moiety to be fused with a humanized YP7 scFv against a high-expressed Glypican-3 (GPC3) antigen on the surface of HCC cells. Cytotoxic effects of this IT were investigated on HepG2 (GPC3+) and SkBr3 (GPC3−) cell lines as positive- and negative-expressed GPC3 antigens. The dissociation constant (Kd) was calculated 11.39 nM and 18.02 nM for IT and YP7 scfv, respectively, whereas only IT showed toxic effects on the HepG2 cell line, and decreased cell viability (IC50 = 848.2 ng/mL). Changing morphology (up to 85%), cell cycle arrest at G2 phase (up to 13%), increasing intracellular reactive oxygen species (ROSs) (up to 50%), inducing apoptosis (up to 38% for apoptosis and 23% for necrosis), and an almost complete inhibition of cell movement were other effects of immunotoxin treatment on HepG2 cells, not on SkBr3 cell line. These promising results reveal that this new recombinant immunotoxin can be considered as an option as an HCC inhibitor. However, more extensive studies are needed to accomplish this concept.
Collapse
|
12
|
Ghadaksaz A, Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nejad Satari T, Amin M. ARA-linker-TGFαL3: a novel chimera protein to target breast cancer cells. Med Oncol 2021; 38:96. [PMID: 34273028 DOI: 10.1007/s12032-021-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Targeted cancer therapies based on overexpressed receptors and the fractions containing immunotoxins and bacterial metabolites are one of the well-known methods to overcome the chemotherapy resistance of cancer cells. In this paper, we designed ARA-linker-TGFαL3, using Arazyme, a Serratia proteamaculans metabolite, and a third loop segment of TGFα to target EGFR-expressing breast cancer cells. After cloning in pET28a (+), the expression of recombinant protein was optimized in Escherichia coli strain BL21 (DE3). MDA-MB-468 (EGFR positive) and MDA-MB-453 (EGFR negative) breast cancer cell lines were employed. Also, the chemotherapeutic drug, Taxotere (Docetaxel), was employed to compare cytotoxicity effects. Cell ELISA assessed the binding affinity of recombinant proteins to the receptor, and the cytotoxicity was detected by MTT and lactate dehydrogenase release assays. The interfacing with cancer cell adhesion was evaluated. Furthermore, the induction of apoptosis was examined utilizing flow cytometric analysis, and caspase-3 activity assay. Moreover, RT-PCR was conducted to study the expression of apoptosis (bax, bcl2, and casp3), angiogenesis (vegfr2), and metastasis (mmp2 and mmp9) genes. ARA-linker-TGFαL3 revealed a higher binding affinity, cytotoxicity, and early apoptosis induction in MDA-MB-468 cells compared to the effects of Arazyme while both recombinant proteins showed similar effects on MDA-MB-453. In addition, the Taxotere caused the highest cytotoxicity on cancer cells through induction of late apoptosis. Meanwhile, the expression of angiogenesis and metastasis genes was decreased in both cell lines after treatment with either ARA-linker-TGFαL3 or Arazyme. Our in vitro results indicated the therapeutic effect of ARA-linker-TGFαL3 on breast cancer cells.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taher Nejad Satari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Time series expression pattern of key genes reveals the molecular process of esophageal cancer. Biosci Rep 2021; 40:222161. [PMID: 32068233 PMCID: PMC7048673 DOI: 10.1042/bsr20191985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Esophageal cancer is one of the most poorly diagnosed and fatal cancers in the world. Although a series of studies on esophageal cancer have been reported, the molecular pathogenesis of the disease is still elusive. Aim: To investigate the molecular process of esophageal cancer comprehensively and deeply. Methods: Differential expression analysis was performed to identify differentially expressed genes (DEGs) in different stages of esophageal cancer. Then exacting gene interaction modules and hub genes were identified in module interaction network. Further, though survival analysis, methylation analysis, pivot analysis, and enrichment analysis, some important molecules and related function or pathway were identified to elucidate potential mechanism in esophageal cancer. Results: A total of 7457 DEGs and 14 gene interaction modules were identified. These module genes were significantly involved in the positive regulation of protein transport, gastric acid secretion, insulin-like growth factor receptor binding and other biological processes (BPs), as well as p53 signaling pathway, ERBB signaling pathway and epidermal growth factor receptor (EGFR) signaling pathway. Then, transcription factors (TFs) (including HIF1A) and ncRNAs (including CRNDE and hsa-mir-330-3p) significantly regulate dysfunction modules were identified. Further, survival analysis showed that GNGT2 was closely related to survival of esophageal cancer. And DEGs with strong methylation regulation ability were identified, including SST and SH3GL2. Conclusion: These works not only help us to reveal the potential regulatory factors in the development of disease, but also deepen our understanding of its deterioration mechanism.
Collapse
|
14
|
Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. BIOCHEMISTRY (MOSCOW) 2021; 85:967-1092. [PMID: 33050847 DOI: 10.1134/s0006297920090011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an integral surface protein mediating cellular response to a number of growth factors. Its overexpression and increased activation due to mutations is one of the most common traits of many types of cancer. Development and clinical use of the agents, which block EGFR activation, became a prime example of the personalized targeted medicine. However, despite the obvious success in this area, cancer cure remains unattainable in most cases. Because of that, as well as the result of the search for possible ways to overcome the difficulties of treatment, a huge number of new treatment methods relying on the use of EGFR overexpression and its changes to destroy cancer cells. Modern data on the structure, functioning, and intracellular transport of EGFR, its natural ligands, as well as signaling cascades triggered by the EGFR activation, peculiarities of the EGFR expression and activation in oncological disorders, as well as applied therapeutic approaches aimed at blocking EGFR signaling pathway are summarized and analyzed in this review. Approaches to the targeted delivery of various chemotherapeutic agents, radionuclides, immunotoxins, photosensitizers, as well as the prospects for gene therapy aimed at cancer cells with EGFR overexpression are reviewed in detail. It should be noted that increasing attention is being paid nowadays to the development of multifunctional systems, either carrying several different active agents, or possessing several environment-dependent transport functions. Potentials of the systems based on receptor-mediated endocytosis of EGFR and their possible advantages and limitations are discussed.
Collapse
Affiliation(s)
- A A Rosenkranz
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
15
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
16
|
Nrf2 Inhibitor, Brusatol in Combination with Trastuzumab Exerts Synergistic Antitumor Activity in HER2-Positive Cancers by Inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9867595. [PMID: 32765809 PMCID: PMC7387975 DOI: 10.1155/2020/9867595] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
The HER2-targeting antibody trastuzumab has shown effectiveness in treating HER2-positive breast and gastric cancers; however, its responses are limited. Currently, Nrf2 has been deemed as a key transcription factor in promoting cancer progression and resistance by crosstalk with other proliferative signaling pathways. Brusatol as a novel Nrf2 inhibitor has been deemed as an efficacious and safe drug candidate in cancer therapy. In this study, we firstly reported that brusatol exerted the growth-inhibitory effects on HER2-positive cancer cells by regressing Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways in these cells. More importantly, we found that brusatol synergistically enhanced the antitumor activity of trastuzumab against HER2-positive SK-OV-3 and BT-474 cells, which may be attributed to the inhibition of Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways. Furthermore, the synergistic effects were also observed in BT-474 and SK-OV-3 tumor xenografts. In addition, our results showed that trastuzumab markedly enhanced brusatol-induced ROS accumulation and apoptosis level, which could further explain the synergistic effects. To conclude, the study provided a new insight on exploring Nrf2 inhibition in combination with HER2-targeted trastuzumab as a potential clinical treatment regimen in treating HER2-positive cancers.
Collapse
|
17
|
Yang Y, Tian Z, Zhao X, Li Y, Duan S. A novel antitumor dithiocarbamate compound inhibits the EGFR/AKT signaling pathway and induces apoptosis in esophageal cancer cells. Oncol Lett 2020; 20:877-883. [PMID: 32566015 PMCID: PMC7285826 DOI: 10.3892/ol.2020.11638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
Dithiocarbamate has been reported to possess a potent antitumor efficacy against several types of cancer, such as ovarian cancer, breast cancer and hepatocellular carcinoma; however, only a few studies have investigated its inhibitory effect on esophageal cancer. Dipyridylhydrazone dithiocarbamate (DpdtC) is a novel dithiocarbamate derivative that was recently designed, synthesized and evaluated in our previous study. In the present study, the cell growth inhibition and apoptosis induced by DpdtC were measured using the CCK-8 and Annexin V-FITC/propidium iodide staining assays, respectively. Epidermal growth factor receptor (EGFR) signaling pathway and apoptosis related protein levels were examined by western blotting. In vivo effect of DpdtC was evaluated in nude mice bearing KYSE-450 ×enograft tumors. The aims of the present study were to further evaluate the antitumor effects of DpdtC on esophageal cancer cells (KYSE-150 and KYSE-450 cells), and to investigate its potential mechanism of action in vitro and in vivo. It was found that DpdtC significantly inhibited KYSE-150 and KYSE-450 cell proliferation by regulating the EGFR/AKT signaling pathway and inducing apoptosis. In addition, this effect was further identified in vivo; DpdtC inhibited the growth of the KYSE-450 esophageal cancer xenografts by regulating the EGFR/AKT signaling pathway. Furthermore, DpdtC did not affect the body weight in mice. Collectively, the present results suggested that DpdtC may be a promising antitumor drug candidate for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Yun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Ziyin Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Xinghua Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Shuyan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|