1
|
Capalbo S, Polyakova A, El Imane Z, Khan I, Kawai T, Shindo S, Salinas M. A Comprehensive Review of Contemporary Bioreactors for Vascular Inflammation Studies. Inflammation 2025:10.1007/s10753-024-02231-y. [PMID: 39903422 DOI: 10.1007/s10753-024-02231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025]
Abstract
The field of vascular biology has advanced significantly with bioreactor systems, which have become essential tools for investigating the mechanisms of vascular inflammatory diseases such as atherosclerosis, vasculitis, and aneurysms. These bioreactors allow researchers to recreate specific vascular environments, providing a controlled setting for studying the effects of blood flow, mechanical stress, and biochemical factors on vascular tissues. Through these systems, researchers can explore how physical and chemical cues contribute to disease processes and cellular responses, enhancing our understanding of disease progression. Bioreactor studies have demonstrated that hemodynamic forces, particularly shear stress, influence endothelial cell behavior and play a role in vascular pathologies. For instance, in atherosclerosis, disturbed flow patterns are associated with endothelial dysfunction and plaque development. By simulating these conditions, bioreactors provide insight into the effects of mechanical forces on vascular wall biology, highlighting how altered flow can contribute to disease. Bioreactors also support studies on the impacts of pulsatile flow and circumferential stress, allowing a closer approximation of physiological environments. Beyond flow dynamics, these systems facilitate investigation into how vascular cells respond to biochemical signals, inflammatory markers, and therapeutic interventions. This integrated approach allows for a more complete picture of the factors involved in vascular disease. Recent advancements, such as vessel-on-a-chip models and artery-mimicking setups, extend the capabilities of bioreactors by enabling researchers to model a broader range of conditions relevant to human physiology. In vasculitis studies, bioreactors help explore immune interactions with endothelial cells, especially with stem cell-derived cells that replicate patient-specific responses. Bioreactors also play a role in vascular tissue engineering, particularly in assessing materials and scaffold-free designs that may reduce inflammation in vascular grafts. These efforts contribute to the ongoing search for more compatible graft materials, with the potential to improve outcomes in clinical applications. This review provides a comprehensive overview of bioreactor technologies applied in vascular inflammation research, examining their designs, applications, and contributions to disease modeling. Organized into sections on bioreactor configurations, flow dynamics, biochemical interactions, and tissue engineering applications, the review concludes by discussing recent innovations and highlighting directions for future research, underscoring the role of bioreactors in bridging laboratory studies with insights into vascular disease.
Collapse
Affiliation(s)
- Solana Capalbo
- Nova Southeastern University, College of Computing and Engineering, Davie, FL, USA
| | | | - Zayd El Imane
- Nova Southeastern University, College of Computing and Engineering, Davie, FL, USA
| | - Izza Khan
- Nova Southeastern University, College of Computing and Engineering, Davie, FL, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, Nova Southeastern University College of Dental Medicine, Fort Lauderdale, FL, USA
| | - Satoru Shindo
- Department of Oral Science and Translational Research, Nova Southeastern University College of Dental Medicine, Fort Lauderdale, FL, USA
| | - Manuel Salinas
- Nova Southeastern University, College of Computing and Engineering, Davie, FL, USA.
| |
Collapse
|
2
|
Zhou K, Luo W, Gui DD, Ren Z, Wei DH, Liu LS, Li GH, Tang ZH, Xiong WH, Hu HJ, Jiang ZS. Hydrogen sulfide attenuates atherosclerosis induced by low shear stress by sulfhydrylating endothelium NFIL3 to restrain MEST mediated endothelial mesenchymal transformation. Nitric Oxide 2024; 142:47-57. [PMID: 38049061 DOI: 10.1016/j.niox.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Endothelial-mesenchymal transition (EndMT) induced by low shear stress plays an important role in the development of atherosclerosis. However, little is known about the correlation between hydrogen sulfide (H2S), a protective gaseous mediator in atherosclerosis and the process of EndMT. METHODS We constructed a stable low-shear-stress-induced(2 dyn/cm2) EndMT model, acombined with the pretreatment method of hydrogen sulfide slow release agent(GYY4137). The level of MEST was detected in the common carotid artery of ApoE-/- mice with local carotid artery ligation. The effect of MEST on atherosclerosis development in vivo was verified using ApoE-/- mice were given tail-vein injection of endothelial-specific overexpressed and knock-down MEST adeno-associated virus (AAV). RESULTS These findings confirmed that MEST is up-regulated in low-shear-stress-induced EndMT and atherosclerosis. In vivo experiments showed that MEST gene overexpression significantly promoted EndMT and aggravated the development of atherosclerotic plaques and MEST gene knockdown significantly inhibited EndMT and delayed the process of atherosclerosis. In vitro, H2S inhibits the expression of MEST and EndMT induced by low shear stress and inhibits EndMT induced by MEST overexpression. Knockdown of NFIL3 inhibit the up regulation of MEST and EndMT induced by low shear stress in HUVECs. CHIP-qPCR assay and Luciferase Reporter assay confirmed that NFIL3 binds to MEST DNA, increases its transcription and H2S inhibits the binding of NFIL3 and MEST DNA, weakening NFIL3's transcriptional promotion of MEST. Mechanistically, H2S increased the sulfhydrylation level of NFIL3, an important upstream transcription factors of MEST. In part, transcription factor NFIL3 restrain its binding to MEST DNA by sulfhydration. CONCLUSIONS H2S negatively regulate the expression of MEST by sulfhydrylation of NFIL3, thereby inhibiting low-shear-stress-induced EndMT and atherosclerosis.
Collapse
Affiliation(s)
- Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wen Luo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Basic Medicine, Changsha Health Vocational College, Changsha, 410699, China.
| | - Dan-Dan Gui
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Guo-Hua Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Heng-Jing Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, China.
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Liu W, Song H, Xu J, Guo Y, Zhang C, Yao Y, Zhang H, Liu Z, Li YC. Low shear stress inhibits endothelial mitophagy via caveolin-1/miR-7-5p/SQSTM1 signaling pathway. Atherosclerosis 2022; 356:9-17. [PMID: 35952464 DOI: 10.1016/j.atherosclerosis.2022.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Mitophagy plays a crucial role in mitochondrial homeostasis and is closely associated with endothelial function. However, the mechanism underlying low blood flow shear stress (SS), detrimental cellular stress, regulating endothelial mitophagy is unclear. This study aimed to investigate whether low SS inhibits endothelial mitophagy via caveolin-1 (Cav-1)/miR-7-5p/Sequestosome 1 (SQSTM1) signaling pathway. METHODS Low SS in vivo modeling was induced using a perivascular SS modifier implanted in the carotid artery of mice. In vitro modeling, low and physiological SS (4 and 15 dyn/cm2, respectively) were exerted on human aortic endothelial cells using a parallel plate chamber system. RESULTS Compared with physiological SS, low SS significantly inhibited endothelial mitophagy shown by down-regulation of SQSTM1, PINK1, Parkin, and LC 3II expressions. Deficient mitophagy deteriorated mitochondrial dynamics shown by up-regulation of Mfn1 and Fis1 expression and led to decreases in mitochondrial membrane potential. Cav-1 plays a bridging role in the process of low SS inhibiting mitophagy. The up-regulated miR-7-5p expression induced by low SS was suppressed after Cav-1 was silenced. The results of dual-luciferase reporter assays showed that miR-7-5p targeted inhibiting the SQSTM1 gene. Oxidative stress reaction shown by the elevation of reactive oxygen species and O2●- and endothelial dysfunction by the decrease in nitric oxide and the increase in macrophage chemoattractant protein-1 were associated with the low SS inhibiting endothelial mitophagy process. CONCLUSIONS Cav-1/miR-7-5p/SQSTM1 signaling pathway was the mechanism underlying low SS inhibiting endothelial mitophagy that involves mitochondrial homeostasis impairment and endothelial dysfunction.
Collapse
Affiliation(s)
- Weike Liu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huajing Song
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jing Xu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuqi Guo
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chunju Zhang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanli Yao
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hua Zhang
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhendong Liu
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue-Chun Li
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
4
|
Castle EL, Robinson CA, Douglas P, Rinker KD, Corcoran JA. Viral Manipulation of a Mechanoresponsive Signaling Axis Disassembles Processing Bodies. Mol Cell Biol 2021; 41:e0039921. [PMID: 34516278 PMCID: PMC8547432 DOI: 10.1128/mcb.00399-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 12/23/2022] Open
Abstract
Processing bodies (PBs) are ribonucleoprotein granules important for cytokine mRNA decay that are targeted for disassembly by many viruses. Kaposi's sarcoma-associated herpesvirus is the etiological agent of the inflammatory endothelial cancer, Kaposi's sarcoma, and a PB-regulating virus. The virus encodes kaposin B (KapB), which induces actin stress fibers (SFs) and cell spindling as well as PB disassembly. We now show that KapB-mediated PB disassembly requires actin rearrangements, RhoA effectors, and the mechanoresponsive transcription activator, YAP. Moreover, ectopic expression of active YAP or exposure of ECs to mechanical forces caused PB disassembly in the absence of KapB. We propose that the viral protein KapB activates a mechanoresponsive signaling axis and links changes in cell shape and cytoskeletal structures to enhanced inflammatory molecule expression using PB disassembly. Our work implies that cytoskeletal changes in other pathologies may similarly impact the inflammatory environment.
Collapse
Affiliation(s)
- Elizabeth L. Castle
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolyn-Ann Robinson
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pauline Douglas
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kristina D. Rinker
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical and Petroleum Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A. Corcoran
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Dawson A, Wang Y, Li Y, LeMaire SA, Shen YH. New Technologies With Increased Precision Improve Understanding of Endothelial Cell Heterogeneity in Cardiovascular Health and Disease. Front Cell Dev Biol 2021; 9:679995. [PMID: 34513826 PMCID: PMC8430032 DOI: 10.3389/fcell.2021.679995] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Endothelial cells (ECs) are vital for blood vessel integrity and have roles in maintaining normal vascular function, healing after injury, and vascular dysfunction. Extensive phenotypic heterogeneity has been observed among ECs of different types of blood vessels in the normal and diseased vascular wall. Although ECs with different phenotypes can share common functions, each has unique features that may dictate a fine-tuned role in vascular health and disease. Recent studies performed with single-cell technology have generated powerful information that has significantly improved our understanding of EC biology. Here, we summarize a variety of EC types, states, and phenotypes recently identified by using new, increasingly precise techniques in transcriptome analysis.
Collapse
Affiliation(s)
- Ashley Dawson
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Yidan Wang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Scott A. LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, United States
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
6
|
Vozzi F, Cecchettini A, Cabiati M, Mg F, Aretini P, Del Ry S, Rocchiccioli S, Pelosi G. Modulated molecular markers of restenosis and thrombosis by in-vitrovascular cells exposed to bioresorbable scaffolds. Biomed Mater 2021; 16. [PMID: 34020430 DOI: 10.1088/1748-605x/ac0401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/21/2021] [Indexed: 01/06/2023]
Abstract
Drug-eluting bioresorbable vascular scaffolds (BVSs) have emerged as a potential breakthrough for the treatment of coronary artery stenosis, providing mechanical support and drug delivery followed by complete resorption. Restenosis and thrombosis remain the primary limitations in clinical use. The study aimed to identify potential markers of restenosis and thrombosis analyzing the vascular wall cell transcriptomic profile modulation triggered by BVS at different values of shear stress (SS). Human coronary artery endothelial cells and smooth muscle cells were cultured under SS (1 and 20 dyne cm-2) for 6 h without and with application of BVS and everolimus 600 nM. Cell RNA-Seq and bioinformatics analysis identified modulated genes by direct comparison of SS conditions and Gene Ontology (GO). The results of different experimental conditions and GO analysis highlighted the modulation of specific genes as semaphorin 3E, mesenchyme homeobox 2, bone morphogenetic protein 4, (heme oxygenase 1) and selectin E, with different roles in pathological evolution of disease. Transcriptomic analysis of dynamic vascular cell cultures identifies candidate genes related to pro-restenotic and pro-thrombotic mechanisms in anin-vitrosetting of BVS, which are not adequately contrasted by everolimus addition.
Collapse
Affiliation(s)
- F Vozzi
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - A Cecchettini
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, Pisa, Italy
| | - M Cabiati
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - Fornaro Mg
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - P Aretini
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini, 13, San Giuliano Terme, Italy
| | - S Del Ry
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - S Rocchiccioli
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - G Pelosi
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| |
Collapse
|
7
|
Role of the Platelets and Nitric Oxide Biotransformation in Ischemic Stroke: A Translative Review from Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2979260. [PMID: 32908630 PMCID: PMC7474795 DOI: 10.1155/2020/2979260] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Ischemic stroke remains the fifth cause of death, as reported worldwide annually. Endothelial dysfunction (ED) manifesting with lower nitric oxide (NO) bioavailability leads to increased vascular tone, inflammation, and platelet activation and remains among the major contributors to cardiovascular diseases (CVD). Moreover, temporal fluctuations in the NO bioavailability during ischemic stroke point to its key role in the cerebral blood flow (CBF) regulation, and some data suggest that they may be responsible for the maintenance of CBF within the ischemic penumbra in order to reduce infarct size. Several years ago, the inhibitory role of the platelet NO production on a thrombus formation has been discovered, which initiated the era of extensive studies on the platelet-derived nitric oxide (PDNO) as a platelet negative feedback regulator. Very recently, Radziwon-Balicka et al. discovered two subpopulations of human platelets, based on the expression of the endothelial nitric oxide synthase (eNOS-positive or eNOS-negative platelets, respectively). The e-NOS-negative ones fail to produce NO, which attenuates their cyclic guanosine monophosphate (cGMP) signaling pathway and-as result-promotes adhesion and aggregation while the e-NOS-positive ones limit thrombus formation. Asymmetric dimethylarginine (ADMA), a competitive NOS inhibitor, is an independent cardiovascular risk factor, and its expression alongside with the enzymes responsible for its synthesis and degradation was recently shown also in platelets. Overproduction of ADMA in this compartment may increase platelet activation and cause endothelial damage, additionally to that induced by its plasma pool. All the recent discoveries of diverse eNOS expression in platelets and its role in regulation of thrombus formation together with studies on the NOS inhibitors have opened a new chapter in translational medicine investigating the onset of acute cardiovascular events of ischemic origin. This translative review briefly summarizes the role of platelets and NO biotransformation in the pathogenesis and clinical course of ischemic stroke.
Collapse
|
8
|
Miyagi Y, Kawase Y, Kunugi S, Oomori H, Sasaki T, Sakamoto SI, Ishii Y, Morota T, Nitta T, Shimizu A. Histological properties of oscillating intracardiac masses associated with cardiac implantable electric devices. J Arrhythm 2020; 36:478-484. [PMID: 32528575 PMCID: PMC7279976 DOI: 10.1002/joa3.12346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 11/15/2022] Open
Abstract
Background There have been a few cases of echogenic cardiac implantable electric device (CIED) lead‐associated oscillating intracardiac masses (ICMs) in leads imaged by echocardiography. The histological properties of ICMs could help clarify the etiological diagnosis. Although there is extensive literature on mass size, the histological properties of such masses have not been characterized. The aim of this research was to clarify the histological features of oscillating ICMs in CIED patients. Methods Preoperative echocardiography was performed in all candidates for CIED removal. In the patients with ICMs, specimens were obtained by 3 methods: direct tissue collection during open‐heart surgery; tissue collection together with the CIED lead during transvenous extraction; and tissue collection by catheter vacuum during transvenous CIED removal. A standard histopathological examination of ICM tissue was performed. Results A total of 106 patients underwent lead removal in our institute (April 2009‐March 2018); 14 patients had an ICM (13.2%), and 7 specimens were obtained in patients with CIED lead‐related ICM. Following histological examination, 2 types of ICM were identified: one mainly composed of thickened endocardium (EN type; 3 patients), and the other mainly an aggregate of inflammatory cells as a neutrophil cell (NC type; 4 patients). Conclusions Two histological types of intracardiac masses, including a thickened endocardium type and a neutrophil cell type, were identified. These classifications might help make an accurate histological diagnosis of lead‐associated intracardiac masses.
Collapse
Affiliation(s)
- Yasuo Miyagi
- Department of Cardiovascular Surgery Nippon Medical School Tokyo Japan
| | - Yasuhiro Kawase
- Department of Cardiovascular Surgery Nippon Medical School Tokyo Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology Nippon Medical School Tokyo Japan
| | - Hiroya Oomori
- Department of Cardiovascular Surgery Nippon Medical School Tokyo Japan
| | - Takashi Sasaki
- Department of Cardiovascular Surgery Nippon Medical School Tokyo Japan
| | | | - Yosuke Ishii
- Department of Cardiovascular Surgery Nippon Medical School Tokyo Japan
| | - Tetsuro Morota
- Department of Cardiovascular Surgery Nippon Medical School Tokyo Japan
| | - Takashi Nitta
- Department of Cardiovascular Surgery Nippon Medical School Tokyo Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology Nippon Medical School Tokyo Japan
| |
Collapse
|
9
|
Genkel VV, Kuznetcova AS, Shaposhnik II. Biomechanical Forces and Atherosclerosis: From Mechanism to Diagnosis and Treatment. Curr Cardiol Rev 2019; 16:187-197. [PMID: 31362692 PMCID: PMC7536809 DOI: 10.2174/1573403x15666190730095153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022] Open
Abstract
The article provides an overview of current views on the role of biomechanical forces in the pathogenesis of atherosclerosis. The importance of biomechanical forces in maintaining vascular homeostasis is considered. We provide descriptions of mechanosensing and mechanotransduction. The roles of wall shear stress and circumferential wall stress in the initiation, progression and destabilization of atherosclerotic plaque are described. The data on the possibilities of assessing biomechanical factors in clinical practice and the clinical significance of this approach are presented. The article concludes with a discussion on current therapeutic approaches based on the modulation of biomechanical forces.
Collapse
Affiliation(s)
- Vadim V Genkel
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russian Federation
| | - Alla S Kuznetcova
- Department of Hospital Therapy Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russian Federation
| | - Igor I Shaposhnik
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russian Federation
| |
Collapse
|
10
|
A three-step approach identifies novel shear stress-sensitive endothelial microRNAs involved in vasculoprotective effects of high-intensity interval training (HIIT). Oncotarget 2019. [DOI: 10.18632/oncotarget.26944] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Schmitz B, Breulmann FL, Jubran B, Rolfes F, Thorwesten L, Krüger M, Klose A, Schnittler HJ, Brand SM. A three-step approach identifies novel shear stress-sensitive endothelial microRNAs involved in vasculoprotective effects of high-intensity interval training (HIIT). Oncotarget 2019; 10:3625-3640. [PMID: 31217898 PMCID: PMC6557206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/03/2019] [Indexed: 11/22/2022] Open
Abstract
Circulatory microRNAs (c-miRNAs) are regulated in response to physical activity and may exert anti-atherosclerotic effects. Since the vascular endothelium is an abundant source of c-miRNAs, we aimed to identify novel vasculoprotective exercise-induced c-miRNAs by the combined analysis of published endothelial miRNA array data followed by in vivo and in vitro validation. We identified 8 different array-based publications reporting 185 endothelial shear stress-regulated miRNAs of which 13 were identified in ≥3 independent reports. Nine miRNAs had already been associated with physical activity. Of the remaining novel miRNAs, miR-98-3p and miR-125-5p were selected for further analysis due to reported vasculoprotective effects. Analysis in two different 4-week high-intensity interval training (HIIT) groups (group 1 [n=27]: 4x30 s, group 2 [n=25]: 8x15 s; all-out running) suggested significantly elevated miR-98 and miR-125a-5p levels in response to acute exercise at baseline and at follow-up. Endothelial in vitro shear stress experiments revealed increased miR-125a-5p and miR-98-3p levels in medium of human umbilical vein endothelial cells at 30 dyn/cm2 after 20 and 60 min, respectively. Our results suggest that miR-98-3p and miR-125a-5p can be rapidly secreted by endothelial cells, which might be the source of increased c-miR-98-3p and -125a-5p levels in response to HIIT. Both miRNAs attenuate endothelial inflammation and may mediate vasculoprotective effects of physical exercise including HIIT.
Collapse
Affiliation(s)
- Boris Schmitz
- 1 Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Franziska L. Breulmann
- 1 Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Bothaynah Jubran
- 2 Institute of Anatomy and Vascular Biology, University of Muenster, Muenster, Germany
| | - Florian Rolfes
- 1 Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Lothar Thorwesten
- 1 Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Michael Krüger
- 3 Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | - Andreas Klose
- 3 Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | | | - Stefan-Martin Brand
- 1 Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| |
Collapse
|