1
|
Salem GA, Aref M, El-Malkey NF, Alqahtani HA, Abd-Almotaleb NA, Nassan MA, Elsherbiny H. Exercise induced irisin mitigates hepatitis in anabolic-androgenic steroids treated rats via modulation of PGC-1-α/PPARγ/Nrf2 and NRF2/NF-κB/TLR4 signaling. Tissue Cell 2025; 95:102829. [PMID: 40054305 DOI: 10.1016/j.tice.2025.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 05/15/2025]
Abstract
Irisin, a myokine released during exercise, has been shown to exert protective effects against metabolic and inflammatory disorders. Its role in mitigating hepatic damage induced by anabolic-androgenic steroids (AAS) remains largely unexplored. This study was conducted to examine the effects of exercise on irisin level and its capability to prevent hepatotoxicity caused by anabolic androgenic steroids (AAS) in rat model. The fifty-two male rats were divided into four groups: control, AAS treated (15 mg/kg/day S.C/8 W), exercised, and exercised- AAS treated. The following procedures were carried out: liver function tests, serum irisin, tissue inflammatory and oxidative stress markers, macro and micromorphological evaluation, and the examination of nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-gamma (PPARγ) and its coactivator-1α (PGC1α) by immunohistochemistry. The liver tissue's expression of nuclear factor kappa B (NF-κB), Toll-like receptor-4 (TLR4), and Nrf2 mRNA was also assessed. After administering AAS to animals, aerobic exercise was found to significantly improve liver function tests, inflammation, and oxidative stress, reduce liver weight, improve morphological and histological changes, and improve the hepatic injury score. Furthermore, there was a notable rise in serum irisin, hepatic PPARγ, PGC1α, and Nrf2 immune-expressions and Nrf2 mRNA expression, while NF-κB and TLR4 mRNA expressions were significantly decreased. In conclusion, the irisin/PGC1α/PPARγ/Nrf2 and Nrf2/NF-κB/TLR4 signaling pathways may be modulated by aerobic exercise, which also reduces the liver's oxidative stress and inflammatory reactions to AAS treatment.
Collapse
Affiliation(s)
- Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia 44519, Egypt.
| | - Mohamed Aref
- Department of Anatomy and embryology, Faculty of Veterinary medicine, Zagazig University, El-Sharkia 44519, Egypt.
| | - Nanees F El-Malkey
- Department of Medical physiology, Faculty of medicine, Zagazig University, Zagazig, El-Sharkia 44519, Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Noha Ali Abd-Almotaleb
- Department of Medical Anatomy, Faculty of Medicine, Zagazig University, El-Sharkia 44519, Egypt
| | - Mohamed A Nassan
- Department of clinical laboratory sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hadeel Elsherbiny
- Department of Medical physiology, Faculty of medicine, Zagazig University, Zagazig, El-Sharkia 44519, Egypt
| |
Collapse
|
2
|
Shi JX, Wang ZY, Wang SW, Shen Q, Tan X. Exercise-mediated muscle-hypothalamus crosstalk: Improvement for cognitive dysfunction caused by disrupted circadian rhythm. Life Sci 2025; 373:123657. [PMID: 40306358 DOI: 10.1016/j.lfs.2025.123657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
In contemporary societal evolution, the increasing disruption of the natural sleep-wake cycle, attributable to factors such as shift work and overexposure to artificial light, has been paralleled by a marked escalation in the incidence of cognitive impairments and the prevalence of neurodegenerative diseases. Current management strategies for cognitive impairments include pharmacological and non-pharmacological interventions. Pharmacological interventions for cognitive impairments typically involve medications to manage cognitive symptoms and improve neurological functions. However, these drugs show limited long-term efficacy in slowing disease progression and may cause side effects. Given the widespread occurrence of cognitive dysfunction, it is crucial to develop accessible non-pharmacological interventions. Physical activity and exercise have emerged as pivotal lifestyle determinants known to exert a modulatory effect on the risk profile for cognitive dysfunction caused by disrupted circadian rhythms. The skeletal muscle, a dynamic tissue, undergoes a profound morphological and metabolic reconfiguration in response to physical exertion, along with the secretion of myokines. Additionally, the hypothalamus, particularly the ventromedial nuclei, arcuate nuclei, and the suprachiasmatic nucleus, have crucial functions in regulating physical activity, influencing energy metabolism, and managing circadian cycles. Nevertheless, the communication between the hypothalamus and skeletal muscle during exercise is not fully understood. This narrative review integrates current knowledge on the interaction between the hypothalamus and skeletal muscle during exercise, emphasizing its neuroendocrine effects and potential therapeutic implications for alleviating cognitive dysfunction associated with disrupted circadian rhythms.
Collapse
Affiliation(s)
- Jun-Xiao Shi
- School of Basic Medical Science, Naval Medical University, Shanghai 200433, China
| | - Zi-Yuan Wang
- School of Basic Medical Science, Naval Medical University, Shanghai 200433, China
| | - Sheng-Wen Wang
- School of Basic Medical Science, Naval Medical University, Shanghai 200433, China
| | - Qi Shen
- Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Xing Tan
- Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
3
|
Kim E, Tanzi RE, Choi SH. Therapeutic potential of exercise-hormone irisin in Alzheimer's disease. Neural Regen Res 2025; 20:1555-1564. [PMID: 38993140 PMCID: PMC11688551 DOI: 10.4103/nrr.nrr-d-24-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Shero JA, Lindholm ME, Sandri M, Stanford KI. Skeletal Muscle as a Mediator of Interorgan Crosstalk During Exercise: Implications for Aging and Obesity. Circ Res 2025; 136:1407-1432. [PMID: 40403102 PMCID: PMC12101524 DOI: 10.1161/circresaha.124.325614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 05/24/2025]
Abstract
Physical exercise is critical for preventing and managing chronic conditions, such as cardiovascular disease, type 2 diabetes, hypertension, and sarcopenia. Regular physical activity significantly reduces cardiovascular and all-cause mortality. Exercise also enhances metabolic health by promoting muscle growth, mitochondrial biogenesis, and improved nutrient storage while preventing age-related muscle dysfunction. Key metabolic benefits include increased glucose uptake, enhanced fat oxidation, and the release of exercise-induced molecules called myokines, which mediate interorgan communication and improve overall metabolic function. These myokines and other exercise-induced signaling molecules hold promise as therapeutic targets for aging and obesity-related conditions.
Collapse
Affiliation(s)
- Julia A. Shero
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Maléne E. Lindholm
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
5
|
Wu J, Tang J, Huang D, Wang Y, Zhou E, Ru Q, Xu G, Chen L, Wu Y. Study on the comorbid mechanisms of sarcopenia and late-life depression. Behav Brain Res 2025; 485:115538. [PMID: 40122287 DOI: 10.1016/j.bbr.2025.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The increasing global aging population has brought greater focus to age-related diseases, particularly muscle-brain comorbidities such as sarcopenia and late-life depression. Sarcopenia, defined by the gradual loss of muscle mass and function, is notably prevalent among older individuals, while late-life depression profoundly affects their mental health and overall well-being. Epidemiological evidence suggests a high co-occurrence of these two conditions, although the precise biological mechanisms linking them remain inadequately understood. This review synthesizes the existing body of literature on sarcopenia and late-life depression, examining their definitions, prevalence, clinical presentations, and available treatments. The goal is to clarify the potential connections between these comorbidities and offer a theoretical framework for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jiale Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Jun Tang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Di Huang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yu Wang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Enyuan Zhou
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
6
|
Minuti A, Raffaele I, Scuruchi M, Lui M, Muscarà C, Calabrò M. Role and Functions of Irisin: A Perspective on Recent Developments and Neurodegenerative Diseases. Antioxidants (Basel) 2025; 14:554. [PMID: 40427436 PMCID: PMC12108254 DOI: 10.3390/antiox14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Irisin is a peptide derived from fibronectin type III domain-containing protein 5 (FNDC5) and is primarily produced by muscle fibers under the regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) during exercise. Irisin has been the subject of extensive research due to its potential as a metabolic regulator and its antioxidant properties. Notably, it has been associated with protective actions within the brain. Despite growing interest, many questions remain regarding the molecular mechanisms underlying its effects. This review summarizes recent findings on irisin, highlighting its pleiotropic functions and the biological processes and molecular cascades involved in its action, with a particular focus on the central nervous system. Irisin plays a crucial role in neuron survival, differentiation, growth, and development, while also promoting mitochondrial homeostasis, regulating apoptosis, and facilitating autophagy-processes essential for normal neuronal function. Emerging evidence suggests that irisin may improve conditions associated with non-communicable neurological diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and multiple sclerosis. Given its diverse benefits, irisin holds promise as a novel therapeutic agent for preventing and treating neurological diseases.
Collapse
Affiliation(s)
- Aurelio Minuti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Ivana Raffaele
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Maria Lui
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Claudia Muscarà
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| | - Marco Calabrò
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (A.M.); (M.C.)
| |
Collapse
|
7
|
Titisari N, Ahmad H, Samsulrizal N, Fauzi A, Abdul Razak IS. The mechanism underlying streptozotocin injection for the development of a nontransgenic Alzheimer's disease animal model. Open Vet J 2025; 15:594-600. [PMID: 40201829 PMCID: PMC11974322 DOI: 10.5455/ovj.2025.v15.i2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 04/10/2025] Open
Abstract
Streptozotocin (STZ) is a widely used chemical agent in biomedical research. It is primarily known for its ability to induce high blood glucose levels in animal models by selectively destroying pancreatic beta cells. Nonetheless, many studies have also used STZ to generate animal models of diabetic complications, such as Alzheimer's disease (AD) animal models. STZ induction promotes hyperglycemia, which activates numerous mechanism pathways that result in the production of pathogenic AD characteristics, including beta-amyloid accumulation and neurofibrillary tangles. Numerous theories exist to elucidate the mechanisms underlying diabetes and AD; however, studies on the potential of an animal model of STZ-induced AD remain limited. Thus, this review summarizes the pathogenesis associated with STZ exposure, particularly in AD animal model studies related to diabetes. More specifically, this study will discuss the relationship between increased blood glucose levels after STZ injection and the process of beta-amyloid formation and insulin dysfunction in the brain.
Collapse
Affiliation(s)
- Nurina Titisari
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang,Malaysia
| | | | - Ahmad Fauzi
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya,Malang, Indonesia
| | - Intan Shameha Abdul Razak
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang,Malaysia
| |
Collapse
|
8
|
Guleken Z, Dedeakayoğulları H, Kutlu E, Ceylan Z, Cebulski J, Depciuch J. Chemical composition alterations in rat brain hypothalamus induced by irisin administration using spectroscopic and machine learning techniques. Anal Biochem 2025; 696:115687. [PMID: 39419196 DOI: 10.1016/j.ab.2024.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
This study employed Fourier transform infrared (FTIR) spectroscopy to determine the chemical composition of brain tissues and the changes induced by irisin at doses of 50 mg and 100 mg. Brain tissues were collected from control rats and those administered with irisin, and key vibrational peaks were analyzed. In the 50 mg irisin group, all described vibrations decreased compared to control tissues, while the 100 mg group showed a decrease only in lipid vibrations. Comparatively, the 50 mg group had lower absorbance of phospholipids, amides, and lipid functional groups than the 100 mg group. Lower amounts of these compounds were found in treated tissues compared to controls, with higher levels in the 100 mg group. Ratios between amide peaks revealed significant differences between groups. Principal component analysis (PCA) differentiated control and irisin-treated tissues, primarily using PC1 and PC3. The decision tree model exhibited high classification accuracy, especially in the 800-1800 cm⁻1 range, with high sensitivity and specificity. FTIR spectroscopy effectively highlighted chemical changes in brain tissues due to irisin, demonstrating dose-dependent variations. The combination of PCA, ROC analysis, and decision tree modeling underscored the potential of FTIR spectroscopy for studying the biochemical effects of compounds like irisin.
Collapse
Affiliation(s)
- Zozan Guleken
- Department of Physiology, Faculty of Medicine, Gaziantep Islam, Science and Technology University, Gaziantep, Turkiye.
| | - Huri Dedeakayoğulları
- Department of Medical Biochemistry, School of Medicine, Biruni University, Istanbul, Turkiye
| | - Esra Kutlu
- Department of Pediatric Endocrinology and Diabetes, Istanbul University of Health Science Umraniye Training and Research Hospital, Istanbul, Turkiye
| | - Zeynep Ceylan
- Samsun University, Faculty of Engineering, Department of Industrial Engineering, Samsun, Turkiye
| | | | - Joanna Depciuch
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland; Institute of Nuclear Physics, PAS, 31342, Krakow, Poland.
| |
Collapse
|
9
|
Zhang J, Dong X, Pang Q, Zhang A. Irisin Alleviates Cognitive Impairment by Inhibiting AhR/NF- κB-NLRP3-Mediated Pyroptosis of Hippocampal Neurons in Chronic Kidney Disease. Mediators Inflamm 2024; 2024:2662362. [PMID: 39698584 PMCID: PMC11655147 DOI: 10.1155/mi/2662362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction: Cognitive impairment is a vital complication of chronic kidney disease (CKD). The effect of irisin on CKD-induced cognitive impairment remains unclear. In the present study, we aimed to investigate the role of Irisin in mitigating cognitive impairment and explore the underlying mechanisms in CKD. Methods: A CKD mice model was established by adenine. Cognitive function was assessed via the novel object recognition (NOR). Interleukin-1β (IL-1β) levels were measured by enzyme-linked immunosorbent assay (ELISA), while pyroptosis-related protein expression was analyzed using western blotting. Results: Our data showed an upregulation of cell pyroptosis in hippocampus tissues of CKD mice, accompanied by significant cognitive impairment. Pyroptosis and cognitive impairment was both improved by Irisin treatment in vivo. Additionally, irisin markedly downregulated pyroptosis levels through aryl hydrocarbon receptor (AhR)/NF-κB p65 signaling in HT-22 cells pretreated with indoxyl sulfate (IS). In vitro experiments further confirmed that pyroptosis was inhibited by AhR and NF-κB p65 inhibitors. Conclusions: We first demonstrated that irisin alleviated cognitive impairment by inhibiting AhR/NF-κB-NLRP3-mediated pyroptosis of hippocampal neurons in CKD. Overall, irisin may have the potential to serve as a critical antipyroptotic agent for improving CKD-induced cognitive impairment.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Yang J, Tan A, Li T, Chen H. Irisin alleviates the pyroptosis of β cells in T2DM by inhibiting NLRP3 inflammasome through regulating miR-19b-3p/SOCS3/STAT3 axis mediated autophagy. IUBMB Life 2024; 76:1264-1278. [PMID: 39143849 DOI: 10.1002/iub.2907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
The purpose of this study was to analyze the mechanism by which irisin affects β-cell pyroptosis in type 2 diabetes mellitus (T2DM). The in vivo T2DM model was established by raised with high-fat diet and intraperitoneally injection of streptozocin. Min6 cells were divided into four groups: negative control (NC), high glucose (HG), HG + irisin, and HG + irisin+3-MA. The cell viability was determined by CCK-8 assay. Dual-luciferase gene reporter assay was conducted to confirm the binding between miR-19b-3p and SOCS3. The expression level of FNDC5 and GSDMD was visualized using the immunofluorescence assay. The protein level of FNDC5, Beclin1, LC3II/I, NLRP3, cleaved-caspase-1, GSDMD-N, STAT3, p-STAT3, and SOCS3 was determined by Western blotting. The secretion of irisin, lactate dehydrogenase (LDH), and insulin was checked by ELISA. In vivo results showed that pathological changes in islet tissues with declined number of β cells, elevated FBG value, decreased FIN and HOMA-β value, elevated autophagy-associated proteins expressions, and activated NLRP3 signaling in T2DM mice, which were dramatically reversed by FNDC5 overexpression. Furthermore, the declined level of miR-19b-3p and p-STAT3, as well as the upregulation of SOCS3, was greatly rescued by FNDC5 overexpression. The in vitro data confirmed the binding site between SOCS3 and miR-19b-3p. SOCS3 was downregulated and p-STAT3 was upregulated in miR-19b-3p mimic-treated Min6 cells. In HG-stimulated Min6 cells, the elevated cell viability, increased production of insulin, decreased release of LDH, and inactivated NLRP3 signaling induced by irisin were abolished by miR-19b-3p inhibitor and STAT3 inhibitor. The increased level of autophagy-related proteins and activated SOCS3/STAT3 axis induced by irisin in HG-stimulated Min6 cells were abolished by miR-19b-3p inhibitor. The inhibitory effect of irisin against NLRP3 signaling in HG-stimulated Min6 cells was abrogated by 3-MA. In conclusion, irisin alleviated the pyroptosis of β cells in T2DM by inhibiting NLRP3 signaling through miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Anjun Tan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tianrong Li
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hewen Chen
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Sandoval EYH, Gómez ZJD. Irisin and neuroinflammation: Challenges and opportunities. Exp Mol Pathol 2024; 140:104941. [PMID: 39467426 DOI: 10.1016/j.yexmp.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Irisin is a myokine that is cleaved from 5-domain type III fibronectin (FNDC5), and is known for its metabolic functions as it stimulates browning of white adipose tissue; similarly, effects on the central nervous system have been described, specifically in neurodevelopmental and neuroprotection processes. The purpose of this review is to describe recent information on the effects of irisin on neuroinflammation to contribute to the knowledge about the mechanisms by which irisin and exercise could generate benefits for some neurological diseases. The review conducted found several studies describing the effect of irisin on pathways such as STAT3, p38, cAMP/PKA/CREB, as well as effects on GFAP protein expression or apoptosis processes in both in vitro and in vivo models; likewise, these pathways are associated with better BDNF expression. Despite increasing information on this topic, it is still necessary to clarify the mechanisms by which irisin has effects on neuroinflammation and this could represent an opportunity to generate more treatments for diseases such as Alzheimer's, Parkinson's or Diabetes Mellitus.
Collapse
Affiliation(s)
| | - Zulma Janeth Dueñas Gómez
- Department of Physiological Sciences, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
13
|
De Sousa RAL. Exercise-produced irisin effects on brain-related pathological conditions. Metab Brain Dis 2024; 39:1679-1687. [PMID: 39145861 DOI: 10.1007/s11011-024-01412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Exercise increases peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) expression, which in turn causes the fibronectin type III domain containing 5 (FNDC5) protein to be produced. This protein is then cleaved, primarily in skeletal muscle fibers, to produce irisin. When the mature FNDC5 is cleaved by proteases, Irisin - which is the fibronectin III domain without the signal sequence - is released. Resistance, aerobic, and high-intensity interval training (HIIT) are recognized as forms of physical exercise that raise irisin levels, and insulin receptor phosphorylation in tyrosine residues, favoring an increase in the activity of the insulin-dependent pathway (PI3K pathway) and assisting in the fight against insulin resistance, inflammation, and cognitive decline. Irisin may represent a promising option for the therapeutic targeting in several brain-related pathological conditions, like Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, type 2 diabetes, and obesity. Exercise protocols are healthy and inexpensive interventions that can help find cellular and molecular changes in several brain-related pathological conditions. Here, it was reviewed what is known about exercise-produced irisin studies involving AD, PD, epilepsy, type 2 diabetes, and obesity.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil.
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.
- Multicenter Graduate Program in Physiological Sciences, Laboratório Experimental de Treinamento Físico (LETFIS), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Rodovia MGT 367, Km 583, Alto da Jacuba, nº 5000, Diamantina, MG, CEP 39100-000, Brazil.
| |
Collapse
|
14
|
Cho SJ, Jung S, Lee MY, Park CH. Sex-Specific Association of Low Muscle Mass with Depression Status in Asymptomatic Adults: A Population-Based Study. Brain Sci 2024; 14:1093. [PMID: 39595856 PMCID: PMC11591987 DOI: 10.3390/brainsci14111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The objective of this study was to examine the correlation between low muscle mass (LMM) and depression, with a specific focus on identifying the sex-specific relationship between LMM and depression in a large sample. METHODS This population-based cross-sectional study involved 292,922 community-dwelling adults from 2012 to 2019. Measurements were taken using the Center for Epidemiological Studies Depression (CESD) scale and body composition analyses. Depression was defined as a CESD score ≥ 16, and severe depression as a CESD score ≥ 22. LMM was defined as an appendicular muscle mass/height2 below 7.0 kg/m2 in men and below 5.4 kg/m2 in women. Sex-based multivariable logistic regression analyzed the LMM-depression association, adjusting for confounders, with depression status and severe depression status as dependent variables. RESULTS Both men and women in the LMM group had an increased odds of depression (men, adjusted odds ratio = 1.13 [95% confidence interval = 1.03-1.12]; women, 1.07 [1.03-1.23]) and severe depression (men, 1.20 [1.05-1.36]; women, 1.10 [1.04-1.15]) compared to those in the control group. Men showed a stronger association between LMM and the presence of depression (p for interaction = 0.025) and the presence of severe depression (p for interaction = 0.025) compared to women. CONCLUSIONS Decreased muscle mass was independently associated with increased chances of depression and severe depression in both sexes, with a significantly stronger association in men compared to women. This highlights the potential significance of LMM as a predictor of depression, particularly in men.
Collapse
Affiliation(s)
- Sung Joon Cho
- Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
- Workplace Mental Health Institute, Kangbuk Samsung Hospital, Seoul 04514, Republic of Korea
| | - Sra Jung
- Department of Psychiatry, CHA University Ilsan CHA Hospital, Goyang-si 10414, Republic of Korea;
| | - Mi-Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea;
| | - Chul Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| |
Collapse
|
15
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Ahuja G, Arauz YLA, van Heuvelen MJG, Kortholt A, Oroszi T, van der Zee EA. The effects of whole-body vibration therapy on immune and brain functioning: current insights in the underlying cellular and molecular mechanisms. Front Neurol 2024; 15:1422152. [PMID: 39144715 PMCID: PMC11323691 DOI: 10.3389/fneur.2024.1422152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Whole-body vibration (WBV) therapy is a way of passive exercise in which subjects are exposed to mild and well-controlled mechanical vibrations through a vibrating platform. For a long time, studies have focused on the effects and applications of WBV to enhance musculoskeletal performance in athletes and patients suffering from musculoskeletal disorders. Recent evidence points toward the positive effect of WBV on the brain and its therapeutic potential in brain disorders. Research being done in the field gradually reveals cellular and molecular mechanisms underlying WBV affecting the body and brain. Particularly, the influence of WBV on immune and brain function is a growing field that warrants an up-to-date and integrated review. Immune function is closely intertwined with brain functioning and plays a significant role in various brain disorders. Dysregulation of the immune response is linked to conditions such as neuroinflammation, neurodegenerative diseases, and mood disorders, highlighting the crucial connection between the immune system and the brain. This review aims to explore the impact of WBV on the cellular and molecular pathways involved in immune and brain functions. Understanding the effects of WBV at a cellular and molecular level will aid in optimizing WBV protocols to improve its therapeutic potential for brain disorders.
Collapse
Affiliation(s)
- Gargi Ahuja
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Y. Laurisa Arenales Arauz
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Marieke J. G. van Heuvelen
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Tamás Oroszi
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
De Sousa RAL, Diniz-Magalhaes CO, Cruz PP, de Oliveira GHB, Prates JTAC, de Azevedo Ferreira CM, Silva RR, Cassilhas RC. Physical Exercise Inhibits Cognitive Impairment and Memory Loss in Aged Mice, and Enhances Pre- and Post-Synaptic Proteins in the Hippocampus of Young and Aged Mice. Neuromolecular Med 2024; 26:31. [PMID: 39073519 DOI: 10.1007/s12017-024-08798-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
The aim of this study was to evaluate the effects of swimming in the brain and behavior of young and aged mice. Forty-eight male C57BL/6 J mice were randomly distributed into 4 groups (n = 12 per group, 3 and 18 months old). The subdivision of the groups was: 3 months-SED, 18 months-SED, 3 months-EXE, and 18 months-EXE. SED mice did not swim, while EXE mice performed the physical exercise protocol. Training was initiated 48 h after the adaptation week. Swimming sessions consisted of 30 min, with no overload, 5 days per week, for 4 weeks. After the exercise protocol, it was revealed working and spatial memory were impaired in the 18 months-SED group. Pre- and post-synaptic proteins were enhanced in the groups that swam when compared to the 3- and 8 months-SED groups. Lipid peroxidation was greater in the aged mice that did not perform the physical exercise protocol and might have contributed to the cognitive impairment in this group. In conclusion, an aerobic physical exercise protocol, performed through regular swimming sessions, inhibited cognitive impairment, memory loss and lipid peroxidation in the aged mice, while pre- and post-synaptic proteins were enhanced in the hippocampus of young and aged mice.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Rodovia MGT 367 - Km 583, nº 5000, Bairro Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil
| | - Caique Olegário Diniz-Magalhaes
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Rodovia MGT 367 - Km 583, nº 5000, Bairro Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil
- Multicenter Post Graduation Program in Physiological Sciences (PPGMCF), Brazilian Society of Physiology, UFVJM, Diamantina, MG, Brazil
| | - Poliany Pereira Cruz
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil
- Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, MG, Brazil
| | - Gustavo Henrique Bahia de Oliveira
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil
- Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, MG, Brazil
| | - Julia Tereza Aparecida Caldeira Prates
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil
- Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, MG, Brazil
| | - Crisley Mara de Azevedo Ferreira
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil
- Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, MG, Brazil
| | - Rosiane Rosa Silva
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil
- Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, MG, Brazil
| | - Ricardo Cardoso Cassilhas
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Rodovia MGT 367 - Km 583, nº 5000, Bairro Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil.
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.
- Multicenter Post Graduation Program in Physiological Sciences (PPGMCF), Brazilian Society of Physiology, UFVJM, Diamantina, MG, Brazil.
- Post Graduation Program in Health Sciences (PPGCS), UFVJM, Diamantina, MG, Brazil.
| |
Collapse
|
18
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
19
|
Guo X, Huang X, Yang Y, Dong L, Kong D, Zhang J. FNDC5/Irisin in dementia and cognitive impairment: update and novel perspective. Braz J Med Biol Res 2024; 57:e13447. [PMID: 38985081 PMCID: PMC11249199 DOI: 10.1590/1414-431x2024e13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/23/2024] [Indexed: 07/11/2024] Open
Abstract
Epidemiological surveys show that the incidence of age-related dementia and cognitive impairment is increasing and it has been a heavy burden for society, families, and healthcare systems, making the preservation of cognitive function in an increasingly aging population a major challenge. Exercise is beneficial for brain health, and FDNC5/irisin, a new exercise-induced myokine, is thought to be a beneficial mediator to cognitive function and plays an important role in the crosstalk between skeletal muscle and brain. This review provides a critical assessment of the recent progress in both fundamental and clinical research of FDNC5/irisin in dementia and cognitive impairment-related disorders. Furthermore, we present a novel perspective on the therapeutic effectiveness of FDNC5/irisin in alleviating these conditions.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Endocrinology and Metabolism, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong, China
| | - Xiaocheng Huang
- Department of Health Examination, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
| | - Yachao Yang
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
| | - Luying Dong
- Department of Health Examination, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
| | - Dehuan Kong
- Department of Endocrinology and Metabolism, Taian City Central Hospital, Taian, Shandong, China
| | - Jianmei Zhang
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital affiliated to Shandong University, Weihai, Shandong, China
- Department of Geriatrics, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, Shandong, China
| |
Collapse
|
20
|
Sadier NS, El Hajjar F, Al Sabouri AAK, Abou-Abbas L, Siomava N, Almutary AG, Tambuwala MM. Irisin: An unveiled bridge between physical exercise and a healthy brain. Life Sci 2024; 339:122393. [PMID: 38176582 DOI: 10.1016/j.lfs.2023.122393] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
AIMS Physical exercise has been widely recognized for its positive effects on health and well-being. Recently, the impact of exercise on the nervous system has gained attention, with evidence indicating improvements in attention, memory, neurogenesis, and the release of "happiness hormones." One potential mediator of these benefits is Irisin, a myokine induced by exercise that can cross the blood-brain barrier, reduce neuroinflammation, and counteract neurodegeneration. The objective of this study is to conduct a systematic review of animal trials to summarize the neuroprotective effects of Irisin injection in mitigating neuroinflammation and neurodegeneration. MATERIALS AND METHODS Two independent reviewers screened three databases (PubMed, Embase, and Google Scholar) in November 2022. Animal studies assessing the neuroprotective effects of Irisin in mitigating neuroinflammation or counteracting neurodegeneration were included. The methodological quality of the included studies was assessed using SYRCLE's Risk of Bias tool. KEY FINDINGS Twelve studies met the inclusion criteria. Irisin injection in rodents significantly reduced neuroinflammation, cytokine cascades, and neurodegeneration. It also protected neurons from damage and apoptosis, reduced oxidative stress, blood-brain barrier disruption, and neurobehavioral deficits following disease or injury. Various mechanisms were suggested to be responsible for these neuroprotective effects. Most of the included studies presented a low risk of bias based on SYRCLE's Risk of Bias tool. Irisin injection demonstrated the potential to alleviate neuroinflammation and counteract neurodegeneration in rodent models through multiple pathways. However, further research is needed to fully understand its mechanism of action and its potential applications in clinical practice and drug discovery.
Collapse
Affiliation(s)
- Najwane Said Sadier
- College of Health Sciences, Abu Dhabi University, Al Ain Road, Abu Dhabi, PO Box 3838-111188, United Arab Emirates; Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon.
| | - Farah El Hajjar
- Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon.
| | - Amani Al Khayat Al Sabouri
- Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon
| | - Linda Abou-Abbas
- Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon; INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon.
| | - Natalia Siomava
- Department of Biology, Belarusian State University, Minsk, Belarus
| | - Abdulmajeed G Almutary
- College of Health Sciences, Abu Dhabi University, Al Ain Road, Abu Dhabi, PO Box 3838-111188, United Arab Emirates; Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, United Kingdom; College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| |
Collapse
|
21
|
Zhao R. Exercise mimetics: a novel strategy to combat neuroinflammation and Alzheimer's disease. J Neuroinflammation 2024; 21:40. [PMID: 38308368 PMCID: PMC10837901 DOI: 10.1186/s12974-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), characterized by the stimulation of resident immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. One way to achieve this is through exercise, which can improve brain function and protect against neuroinflammation, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated by various molecular factors that can be activated in the same way as exercise by the administration of their mimetics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimetics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their application in AD therapy.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
22
|
Kaloğlu HA, Örsel S, Erzin G. Evaluation of the Relationships between Irisin Levels and Cognitive Functions in Individuals with Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:724-731. [PMID: 37859445 PMCID: PMC10591173 DOI: 10.9758/cpn.22.1030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 03/20/2023] [Indexed: 10/21/2023]
Abstract
Objective : Irisin is a myokine that is involved in neurogenesis, neuronal proliferation, and neuronal differentiation. Many research examine the relationship between irisin and schizophrenia. In this study, we aimed to evaluate the relationship between irisin levels and cognitive functions in individuals with schizophrenia. Methods : Ninety-six individuals who were diagnosed with schizophrenia were included. The Brief Psychiatric Rating Scale (BPRS) was used to assess disease severity. To evaluate the cognitive functions of the patients, the trail-making test was evaluated with the A and B forms and the verbal memory processes scale. After a 12-hour night fast, samples of fasting blood were obtained from the participants. Results : There was no significant correlation between irisin, duration of disease, and BPRS total score. In the analysis performed, a positive correlation was found between the plasma irisin level and the error score of the trail-making test form B. Other than that, no correlation was found between irisin level and cognitive performance in schizophrenia patients. In addition, in subgroup analysis between genders, it was determined that the duration of the trail-making test B was longer in female schizophrenia patients. Conclusion : In this study, there was a positive correlation between the trail-making test B-form error scores and the irisin levels. This relationship between impaired executive functions and irisin levels may suggest that the irisin level is increased as compensation for the impairment in executive functions. More research is needed to understand the role of irisin in cognitive impairment and schizophrenia.
Collapse
Affiliation(s)
- Hatice Ayça Kaloğlu
- Department of Psychiatry, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Sibel Örsel
- Department of Psychiatry, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Gamze Erzin
- Department of Psychiatry, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
23
|
Kim E, Kim H, Jedrychowski MP, Bakiasi G, Park J, Kruskop J, Choi Y, Kwak SS, Quinti L, Kim DY, Wrann CD, Spiegelman BM, Tanzi RE, Choi SH. Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling. Neuron 2023; 111:3619-3633.e8. [PMID: 37689059 PMCID: PMC10840702 DOI: 10.1016/j.neuron.2023.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) protein in the brain. Physical exercise has been shown to reduce Aβ burden in various AD mouse models, but the underlying mechanisms have not been elucidated. Irisin, an exercise-induced hormone, is the secreted form of fibronectin type-III-domain-containing 5 (FNDC5). Here, using a three-dimensional (3D) cell culture model of AD, we show that irisin significantly reduces Aβ pathology by increasing astrocytic release of the Aβ-degrading enzyme neprilysin (NEP). This is mediated by downregulation of ERK-STAT3 signaling. Finally, we show that integrin αV/β5 acts as the irisin receptor on astrocytes required for irisin-induced release of astrocytic NEP, leading to clearance of Aβ. Our findings reveal for the first time a cellular and molecular mechanism by which exercise-induced irisin attenuates Aβ pathology, suggesting a new target pathway for therapies aimed at the prevention and treatment of AD.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyeonwoo Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA; Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Grisilda Bakiasi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph Park
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jane Kruskop
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Younjung Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sang Su Kwak
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luisa Quinti
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christiane D Wrann
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
25
|
Wang J, Zhao YT, Zhang LX, Dubielecka PM, Qin G, Chin YE, Gower AC, Zhuang S, Liu PY, Zhao TC. Irisin deficiency exacerbates diet-induced insulin resistance and cardiac dysfunction in type II diabetes in mice. Am J Physiol Cell Physiol 2023; 325:C1085-C1096. [PMID: 37694285 PMCID: PMC10635657 DOI: 10.1152/ajpcell.00232.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Irisin is involved in the regulation of a variety of physiological conditions, metabolism, and survival. We and others have demonstrated that irisin contributes critically to modulation of insulin resistance and the improvement of cardiac function. However, whether the deletion of irisin will regulate cardiac function and insulin sensitivity in type II diabetes remains unclear. We utilized the CRISPR/Cas-9 genome-editing system to delete irisin globally in mice and high-fat diet (HFD)-induced type II diabetes model. We found that irisin deficiency did not result in developmental abnormality during the adult stage, which illustrates normal cardiac function and insulin sensitivity assessed by glucose tolerance test in the absence of stress. The ultrastructural analysis of the transmission electronic microscope (TEM) indicated that deletion of irisin did not change the morphology of mitochondria in myocardium. Gene expression profiling showed that several key signaling pathways related to integrin signaling, extracellular matrix, and insulin-like growth factors signaling were coordinately downregulated by deletion of irisin. However, when mice were fed a high-fat diet and chow food for 16 wk, ablation of irisin in mice exposed to HFD resulted in much more severe insulin resistance, metabolic derangements, profound cardiac dysfunction, and hypertrophic response and remodeling as compared with wild-type control mice. Taken together, our results indicate that the loss of irisin exacerbates insulin resistance, metabolic disorders, and cardiac dysfunction in response to HFD and promotes myocardial remodeling and hypertrophic response. This evidence reveals the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.NEW & NOTEWORTHY By utilizing the CRISPR/Cas-9 genome-editing system and high-fat diet (HFD)-induced type II diabetes model, our results provide direct evidence showing that the loss of irisin exacerbates cardiac dysfunction and insulin resistance while promoting myocardial remodeling and a hypertrophic response in HFD-induced diabetes. This study provides new insight into understanding the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Plastic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Yu Tina Zhao
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Ling X Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, United States
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Y Eugene Chin
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, United States
| | - Paul Y Liu
- Department of Plastic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
| | - Ting C Zhao
- Department of Plastic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
26
|
Wang Z, Feng S, Li Q, Song Z, He J, Yang S, Yan C, Ling H. Dihydromyricetin alleviates hippocampal ferroptosis in type 2 diabetic cognitive impairment rats via inhibiting the JNK-inflammatory factor pathway. Neurosci Lett 2023; 812:137404. [PMID: 37482219 DOI: 10.1016/j.neulet.2023.137404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is frequently associated with diabetic cognitive impairment (DCI), and recent studies have shown a strong association between DCI and hippocampal ferroptosis. In this study, we administered dihydromyricetin (DHM) or JNK inhibitor SP600125, to T2DM rats and monitored changes in blood glucose levels, conducted behavioral tests, and detected changes in JNK, inflammatory factors and ferroptosis-related indicators. Our findings demonstrated that T2DM rats displayed signs of cognitive impairment (CI), with ferrozine assays indicating elevated iron content in the hippocampus. Concurrently, there was an increase in p-JNK activity and inflammatory factors IL-6 and TNF-α in the hippocampal region of these rats. Furthermore, we observed elevated levels of Fe2+, MDA, ROS, LPO, and ACSL4, along with a decrease in GPX4 and GSH, suggesting the occurrence of hippocampal ferroptosis. SP600125 application reversed these changes in the T2DM rats, although it exhibited no significant effects in the control group. Treatment with high and low doses of DHM led to a reduction in p-JNK expression, inflammatory factor-related proteins, and iron accumulation in the hippocampal region, effectively alleviating hippocampal ferroptosis in T2DM rats. No notable effects of DHM were observed in the control group. To conclude, our study suggests that DHM can potentially alleviate hippocampal ferroptosis of T2DM cognitive impairment rats, primarily by suppressing the JNK-inflammatory factor pathway in the hippocampus.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Shuidong Feng
- Department of Social Medicine and Health Service Management, School of Public Health, University of South China, Hengyang 421001, Hunan, China
| | - Qi Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhenjiang Song
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Jianqin He
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Sisi Yang
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Canqun Yan
- The Health Management Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Hongyan Ling
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
27
|
Bellettini-Santos T, Batista-Silva H, Marcolongo-Pereira C, Quintela-Castro FCDA, Barcelos RM, Chiepe KCMB, Rossoni JV, Passamani-Ambrosio R, da Silva BS, Chiarelli-Neto O, Garcez ML. Move Your Body toward Healthy Aging: Potential Neuroprotective Mechanisms of Irisin in Alzheimer's Disease. Int J Mol Sci 2023; 24:12440. [PMID: 37569815 PMCID: PMC10420140 DOI: 10.3390/ijms241512440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, having a significant global burden and increasing prevalence. Current treatments for AD only provide symptomatic relief and do not cure the disease. Physical activity has been extensively studied as a potential preventive measure against cognitive decline and AD. Recent research has identified a hormone called irisin, which is produced during exercise, that has shown promising effects on cognitive function. Irisin acts on the brain by promoting neuroprotection by enhancing the growth and survival of neurons. It also plays a role in metabolism, energy regulation, and glucose homeostasis. Furthermore, irisin has been found to modulate autophagy, which is a cellular process involved in the clearance of protein aggregates, which are a hallmark of AD. Additionally, irisin has been shown to protect against cell death, apoptosis, oxidative stress, and neuroinflammation, all of which are implicated in AD pathogenesis. However, further research is needed to fully understand the mechanisms and therapeutic potential of irisin in AD. Despite the current gaps in knowledge, irisin holds promise as a potential therapeutic target for slowing cognitive decline and improving quality of life in AD patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Michelle Lima Garcez
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo 29703-858, Brazil; (T.B.-S.); (H.B.-S.); (C.M.-P.); (F.C.d.A.Q.-C.); (R.M.B.); (K.C.M.B.C.); (J.V.R.J.); (R.P.-A.); (B.S.d.S.); (O.C.-N.)
| |
Collapse
|
28
|
Mani V, Alshammeri BS. Quetiapine Moderates Doxorubicin-Induced Cognitive Deficits: Influence of Oxidative Stress, Neuroinflammation, and Cellular Apoptosis. Int J Mol Sci 2023; 24:11525. [PMID: 37511284 PMCID: PMC10380642 DOI: 10.3390/ijms241411525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Chemotherapy is considered a major choice in cancer treatment. Unfortunately, several cognitive deficiencies and psychiatric complications have been reported in patients with cancer during treatment and for the rest of their lives. Doxorubicin (DOX) plays an important role in chemotherapy regimens but affects both the central and peripheral nervous systems. Antipsychotic drugs alleviate the behavioral symptoms of aging-related dementia, and the atypical class, quetiapine (QUET), has been shown to have beneficial effects on various cognitive impairments. The present investigation aimed to determine the possible mechanism underlying the effect of thirty-day administrations of QUET (10 or 20 mg/kg, p.o.) on DOX-induced cognitive deficits (DICDs). DICDs were achieved through four doses of DOX (2 mg/kg, i.p.) at an interval of seven days during drug treatment. Elevated plus maze (EPM), novel object recognition (NOR), and Y-maze tasks were performed to confirm the DICDs and find the impact of QUET on them. The ELISA tests were executed with oxidative [malondialdehyde (MDA), catalase, and reduced glutathione (GSH)], inflammatory [cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), and tumor necrosis factor-alpha (TNF-α)], and apoptosis [B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein (Bax), and Caspase-3] markers were assessed in the brain homogenate to explore the related mechanisms. DICD lengthened the transfer latency time in EPM, shortened the exploration time of the novel object, reduced the discrimination ability of the objects in NOR, and lowered the number of arm entries and time spent in the novel arm. QUET alleviated DICD-related symptoms. In addition, QUET reduced neuronal oxidative stress by reducing MDA and elevating GSH levels in the rat brain. Moreover, it reduced neuronal inflammation by controlling the levels of COX-2, NF-κB, and TNF-α. By improving the Bcl-2 level and reducing both Bax and Caspase-3 levels, it protected against neuronal apoptosis. Collectively, our results supported that QUET may protect against DICD, which could be explained by the inhibition of neuronal inflammation and the attenuation of cellular apoptosis protecting against oxidative stress.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Bander Shehail Alshammeri
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
29
|
Fonseca-Santos B, Cazarin CA, da Silva PB, Dos Santos KP, da Rocha MCO, Báo SN, De-Souza MM, Chorilli M. Intranasal in situ gelling liquid crystal for delivery of resveratrol ameliorates memory and neuroinflammation in Alzheimer's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023:102689. [PMID: 37156330 DOI: 10.1016/j.nano.2023.102689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Alzheimer's disease (AD) is an illness that affects people aged 65 or older and affects around 6.5 million in the United States. Resveratrol is a chemical obtained from natural products and it exhibits biological activity based on inhibiting the formation, depolymerization of the amyloid, and decreasing neuroinflammation. Due to the insolubility of this compound; its incorporation in surfactant-based systems was proposed to design an intranasal formulation. A range of systems has been produced by mixing oleic acid, CETETH-20 and water. Polarised light microscopy (PLM), small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) confirm the initial liquid formulation (F) presented as microemulsion (ME). After dilution, the gelled systems were characterized as hexagonal mesophase and they showed feasibility proprieties. Pharmacological assays performed after intranasal administration showed the ability to improve learning and memory in animals, as well as remission of neuroinflammation via inhibition of interleukin.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil; Federal University of Bahia (UFBA), Health Sciences Institute, Department of Biotechnology, Salvador, Bahia 40170-115, Brazil.
| | - Camila André Cazarin
- University of Vale do Itajaí (UNIVALI), Postgraduate in Pharmaceutical Sciences, Itajaí, Santa Catarina 88302-901, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Kaio Pini Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil
| | - Márcia Cristina Oliveira da Rocha
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia, Federal District 70910-900, Brazil
| | - Márcia Maria De-Souza
- University of Vale do Itajaí (UNIVALI), Postgraduate in Pharmaceutical Sciences, Itajaí, Santa Catarina 88302-901, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil.
| |
Collapse
|
30
|
Arjunan A, Song J. Pharmacological and physiological roles of adipokines and myokines in metabolic-related dementia. Biomed Pharmacother 2023; 163:114847. [PMID: 37150030 DOI: 10.1016/j.biopha.2023.114847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Dementia is a detrimental neuropathologic condition with considerable physical, mental, social, and financial impact on patients and society. Patients with metabolic syndrome (MetS), a group of diseases that occur in tandem and increase the risk of neurologic diseases, have a higher risk of dementia. The ratio between muscle and adipose tissue is crucial in MetS, as these contain many hormones, including myokines and adipokines, which are involved in crosstalk and local paracrine/autocrine interactions. Evidence suggests that abnormal adipokine and myokine synthesis and release may be implicated in various MetS, such as atherosclerosis, diabetic mellitus (DM), and dyslipidemia, but their precise role is unclear. Here we review the literature on adipokine and myokine involvement in MetS-induced dementia via glucose and insulin homeostasis regulation, neuroinflammation, vascular dysfunction, emotional changes, and cognitive function.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| |
Collapse
|
31
|
Wang Y, Cai Z, Zhan G, Li X, Li S, Wang X, Li S, Luo A. Caffeic Acid Phenethyl Ester Suppresses Oxidative Stress and Regulates M1/M2 Microglia Polarization via Sirt6/Nrf2 Pathway to Mitigate Cognitive Impairment in Aged Mice following Anesthesia and Surgery. Antioxidants (Basel) 2023; 12:714. [PMID: 36978961 PMCID: PMC10045012 DOI: 10.3390/antiox12030714] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a severe neurological complication after anesthesia and surgery. However, there is still a lack of effective clinical pharmacotherapy due to its unclear pathogenesis. Caffeic acid phenethyl ester (CAPE), which is obtained from honeybee propolis and medicinal plants, shows powerful antioxidant, anti-inflammatory, and immunomodulating properties. In this study, we aimed to evaluate whether CAPE mitigated cognitive impairment following anesthesia and surgery and its potential underlying mechanisms in aged mice. Here, isoflurane anesthesia and tibial fracture surgery were used as the POCD model, and H2O2-induced BV2 cells were established as the microglial oxidative stress model. We revealed that CAPE pretreatment suppressed oxidative stress and promoted the switch of microglia from the M1 to the M2 type in the hippocampus, thereby ameliorating cognitive impairment caused by anesthesia and surgery. Further investigation indicated that CAPE pretreatment upregulated hippocampal Sirt6/Nrf2 expression after anesthesia and surgery. Moreover, mechanistic studies in BV2 cells demonstrated that the potent effects of CAPE pretreatment on reducing ROS generation and promoting protective polarization were attenuated by a specific Sirt6 inhibitor, OSS_128167. In summary, our findings opened a promising avenue for POCD prevention through CAPE pretreatment that enhanced the Sirt6/Nrf2 pathway to suppress oxidative stress as well as favor microglia protective polarization.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ailin Luo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
32
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
33
|
Song D, Chen X, Zhou N, Yuan Y, Geng S, Zhang C, Zhao Z, Wang X, Bao X, Lan X, Zhang X. Low-intensity pulsed ultrasound triggers a beneficial neuromodulation in dementia mice with chronic cerebral hypoperfusion via activation of hippocampal Fndc5/irisin signaling. J Transl Med 2023; 21:139. [PMID: 36823656 PMCID: PMC9948478 DOI: 10.1186/s12967-022-03824-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/11/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Exercise-related signaling Fndc5/irisin expresses in brain and acts as a crucial regulator of cognitive function, but its detailed roles in vascular dementia (VaD) are still unclear. Low intensity pulsed ultrasound (LIPUS), a novel brain stimulation approach, has been suggested as a promising treatment for dementia. Here, we investigated the activity and efficacy of Fndc5/irisin in experimental VaD, further explored whether the potential effects of LIPUS on VaD is related to Fndc5/irisin. METHODS Mouse model of VaD was established with chronic cerebral hypoperfusion (CCH) using bilateral common carotid arteries stenosis (BCAS). Transcranial LIPUS was applied 24 h after BCAS and subsequently daily with a stimulation time of 5 min at an ultrasound pressure of 0.51 MPa for a period of 28 days. The levels of Fndc5/irisin in different brain regions, the hippocampal long-term potentiation and anti-inflammatory cytokines were investigated at day 28 after cognitive evaluation. Global Fndc5 knock-out (F5KO), forced expression or knockdown of Fndc5, and recombinant irisin application were respectively employed for mechanism exploration. The neuron dendritic spine density and astrocyte phenotype were detected in vitro. RESULTS Fndc5/irisin was reduced in hippocampus of BCAS mice, forced expression hippocampal Fndc5 or bilateral intrahippocampal injection of recombinant irisin respectively improved hippocampal synaptic plasticity or inflammatory microenvironment, and then alleviated the cognitive impairments. LIPUS existed a positive efficacy in enhancing hippocampal Fndc5/irisin in BCAS mice, thus triggering a beneficial neuromodulation for VaD protection. Importantly, the neurorestorative effects of LIPUS on CCH-induced damages were totally reversed by knockdown the expression of hippocampal Fndc5 in WT mice, or in F5KO mice. Moreover, Fndc5 mediated the upregulated effects of LIPUS on spine density as well as irisin secretion of hippocampal neurons. The neuron-secreted irisin further drove reactive astrocytes to a neuroprotective phenotype. CONCLUSION LIPUS induced a neurorestorative stimulation against VaD may be through upregulation of the hippocampal Fndc5/irisin levels. Hippocampal Fndc5/irisin signaling might be a promising strategic target for VaD.
Collapse
Affiliation(s)
- Degang Song
- Department of Neurology, First Hospital of Qinhuangdao, Hebei Medical University, No. 258, Wenhua Road, Qinhuangdao, 066000, Hebei, China. .,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
| | - Xiaomin Chen
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000 Hebei China ,grid.256883.20000 0004 1760 8442Department of Nursing, First Hospital of Qinhuangdao, Hebei Medical University, No. 258, Wenhua Road, Qinhuangdao, 066000 Hebei China
| | - Na Zhou
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000 Hebei China ,grid.256883.20000 0004 1760 8442Department of Nursing, First Hospital of Qinhuangdao, Hebei Medical University, No. 258, Wenhua Road, Qinhuangdao, 066000 Hebei China
| | - Yi Yuan
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000 Hebei China ,grid.413012.50000 0000 8954 0417Institute of Electrical Engineering, Yanshan University, No. 438, Hebei Street, Qinhuangdao, 066000 Hebei China
| | - Shuo Geng
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000 Hebei China ,grid.438526.e0000 0001 0694 4940Department of Biological Sciences, Virginia Tech, Blacksburg, VG 24061 USA
| | - Cong Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000 Hebei China ,grid.452702.60000 0004 1804 3009Department of Neurology, Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000 Hebei China
| | - Zhe Zhao
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000 Hebei China ,grid.413012.50000 0000 8954 0417Institute of Electrical Engineering, Yanshan University, No. 438, Hebei Street, Qinhuangdao, 066000 Hebei China
| | - Xingran Wang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000 Hebei China ,grid.413012.50000 0000 8954 0417Institute of Electrical Engineering, Yanshan University, No. 438, Hebei Street, Qinhuangdao, 066000 Hebei China
| | - Xinran Bao
- grid.256883.20000 0004 1760 8442Department of Neurology, First Hospital of Qinhuangdao, Hebei Medical University, No. 258, Wenhua Road, Qinhuangdao, 066000 Hebei China
| | - Xifa Lan
- grid.256883.20000 0004 1760 8442Department of Neurology, First Hospital of Qinhuangdao, Hebei Medical University, No. 258, Wenhua Road, Qinhuangdao, 066000 Hebei China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei, China. .,Department of Neurology, Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
34
|
Trettel CDS, Pelozin BRDA, Barros MP, Bachi ALL, Braga PGS, Momesso CM, Furtado GE, Valente PA, Oliveira EM, Hogervorst E, Fernandes T. Irisin: An anti-inflammatory exerkine in aging and redox-mediated comorbidities. Front Endocrinol (Lausanne) 2023; 14:1106529. [PMID: 36843614 PMCID: PMC9951776 DOI: 10.3389/fendo.2023.1106529] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Human beings lead largely sedentary lives. From an evolutionary perspective, such lifestyle is not beneficial to health. Exercise can promote many enabling pathways, particularly through circulating exerkines, to optimize individual health and quality of life. Such benefits might explain the protective effects of exercise against aging and noncommunicable diseases. Nevertheless, the miRNA-mediated molecular mechanisms and exerkine interorgan crosstalk that underlie the beneficial effects of exercise remain poorly understood. In this mini review, we focused on the exerkine, irisin, mainly produced by muscle contraction during adaptation to exercise and its beneficial effects on body homeostasis. Herein, the complex role of irisin in metabolism and inflammation is described, including its subsequent effects on thermogenesis through browning to control obesity and improve glycemic regulation for diabetes mellitus control, its potential to improve cognitive function (via brain derived neurotrophic factor), and its pathways of action and role in aging.
Collapse
Affiliation(s)
- Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Paes Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Pedro Gabriel Senger Braga
- Laboratory of Metabolism and Lipids, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Guilherme Eustáquio Furtado
- Applied Research Institute, Polytechnic Institute of Coimbra, Coimbra, Portugal
- Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2020), Faculty of Sport Sciences and Physical Education (FCDEF-UC), Coimbra, Portugal
| | - Pedro Afonso Valente
- Research Centre for Sport and Physical Activity, Faculty of Sport Science and Physical Education, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Eef Hogervorst
- National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, United Kingdom
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Effects of the Myokine Irisin on Stromal Cells from Swine Adipose Tissue. Biomolecules 2022; 12:biom12121895. [PMID: 36551323 PMCID: PMC9775982 DOI: 10.3390/biom12121895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Irisin is a hormone able to reproduce some of the positive effects of physical activity and diet. Recently, we demonstrated the presence of Irisin at the ovarian level as a potential physiological regulator of follicular function. Adipose tissue is crucial for reproductive function through its metabolic activity and the production of adipokines. At present, the exact nature of adipocyte precursors is still under debate, but an important role has been assigned to the population of adipose tissue mesenchymal stromal cells (ASCs) of perivascular origin. It should be noted that, when appropriately stimulated, ASCs can differentiate into preadipocytes and, subsequently, adipocytes. Therefore, this present study was undertaken to explore the potential effect of Irisin on ASCs, known for their high differentiative potential. Since Irisin expression in ASCs was confirmed by PCR, we tested its potential effects on the main functional activities of these cells, including proliferation (BrdU uptake); metabolic activity (ATP production); redox status, evaluated as the generation of free molecules such as superoxide anion and nitric oxide; and scavenger activities, assessed as both enzymatic (superoxide dismutase) and non-enzymatic antioxidant power. Moreover, we tested the effect of Irisin on ASCs adipogenic differentiation. BrdU uptake was significantly (p < 0.001) inhibited by Irisin, while ATP production was significantly (p < 0.05) increased. Both superoxide anion and nitric oxide generation were significantly increased (p < 0.001) by Irisin, while scavenger activity was significantly reduced (p < 0.05). Irisin was found to significantly (p < 0.05) inhibit ASCs adipogenic differentiation. Taken together, the present results suggest a potential local role of Irisin in the regulation of adipose tissue function.
Collapse
|
36
|
Zhang Y, Zhang X, Lin S. Irisin: A bridge between exercise and neurological diseases. Heliyon 2022; 8:e12352. [PMID: 36619416 PMCID: PMC9816981 DOI: 10.1016/j.heliyon.2022.e12352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise plays a beneficial regulating role on each organ of the body through different mechanisms and is a powerful weapon to prevent disease. Irisin is released from muscle and widely distributed in the human body, participating in the physiological processes of multiple human systems and playing a protective role in multiple human organs. The protective effect of irisin on the nervous system is particularly remarkable, which can improve cognitive function, reduce the risk of ischemic stroke and improve its prognosis. Irisin also plays a guiding role in the prevention and treatment of neurodegenerative diseases and ischemic cerebrovascular diseases. Exercise is the driving factor promoting irisin secretion, and different exercise modes, intensity, frequency, and time all affect the level of serum irisin. As a result of analyzing the effects of various exercise modes on irisin secretion, we proposed an exercise program with a higher level of irisin secretion.
Collapse
|
37
|
ChemR23 signaling ameliorates cognitive impairments in diabetic mice via dampening oxidative stress and NLRP3 inflammasome activation. Redox Biol 2022; 58:102554. [PMID: 36446229 PMCID: PMC9703827 DOI: 10.1016/j.redox.2022.102554] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetes mellitus is associated with cognitive impairment characterized by memory loss and cognitive inflexibility. Recent studies have revealed that ChemR23 is implicated in both diabetes mellitus and Alzheimer's disease. However, the impact of ChemR23 on diabetes-associated cognitive impairment remains elusive. In this study, we explored the longitudinal changes of ChemR23 expression and cognitive function in STZ-induced type 1 diabetic mice and leptin receptor knockout type 2 diabetic mice at different ages. We also treated diabetic mice with ChemR23 agonists RvE1 or chemerin-9 to explore whether ChemR23 activation could alleviate diabetes-associated cognitive impairment. The underlying mechanism was further investigated in diabetic mice with genetic deletion of ChemR23. The results showed that ChemR23 expression was decreased along with aging and the progression of diabetes, suggesting that abnormal ChemR23 signaling may be involved in diabetes-associated cognitive impairment. Administration of RvE1 or chemerin-9 ameliorated oxidative stress and inhibited NLRP3 inflammasome activation through Nrf2/TXNIP pathway, and ultimately alleviated cognitive impairment in diabetic mice. Depletion of ChemR23 in diabetic mice abolished the beneficial effects of RvE1 and chemerin-9, and exacerbated cognitive impairment via increasing oxidative stress and activating NLRP3 inflammasome. Collectively, our data highlight the crucial role of ChemR23 signaling in diabetes-associated cognitive impairment via regulating oxidative stress and NLRP3 inflammasome, and targeting ChemR23 may serve as a promising novel strategy for the treatment of diabetes-associated cognitive impairment.
Collapse
|
38
|
Qi JY, Yang LK, Wang XS, Wang M, Li XB, Feng B, Wu YM, Liu SB, Zhang K. Mechanism of CNS regulation by irisin, a multifunctional protein. Brain Res Bull 2022; 188:11-20. [PMID: 35850187 DOI: 10.1016/j.brainresbull.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Exercise not only builds up our body but also improves cognitive function. Skeletal muscle secretes myokine during exercise as a large reservoir of signaling molecules, which can be considered as a medium between exercise and brain health. Irisin is a circulating myokine derived from the Fibronectin type III domain-containing protein 5 (FNDC5). Irisin regulates energy metabolism because it can stimulate the "Browning" of white adipose tissue. It has been reported that irisin can cross the blood-brain barrier and increase the expression of a brain-derived neurotrophic factor (BDNF) in the hippocampus, which improves learning and memory. In addition, the neuroprotective effect of irisin has been verified in various disease models. Therefore, this review summarizes how irisin plays a neuroprotective role, including its signal pathway and mechanism. In addition, we will briefly discuss the therapeutic potential of irisin for neurological diseases.
Collapse
Affiliation(s)
- Jing-Yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
39
|
Shi J, Yin Q, Zhang L, Wu Y, Yi P, Guo M, Li H, Yuan L, Wang Z, Zhuang P, Zhang Y. Zi Shen Wan Fang Attenuates Neuroinflammation and Cognitive Function Via Remodeling the Gut Microbiota in Diabetes-Induced Cognitive Impairment Mice. Front Pharmacol 2022; 13:898360. [PMID: 35910371 PMCID: PMC9335489 DOI: 10.3389/fphar.2022.898360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background : Cognitive dysfunction is a critical complication of diabetes mellitus, and there are still no clinically approved drugs. Zi Shen Wan Fang (ZSWF) is an optimized prescription composed of Anemarrhenae Rhizoma, Phellodendri Chinensis Cortex, and Cistanches Herba. The purpose of this study is to investigate the effect of ZSWF on DCI and explore its mechanism from the perspective of maintaining intestinal microbial homeostasis in order to find an effective prescription for treating DCI. Methods: The diabetes model was established by a high-fat diet combined with intraperitoneal injections of streptozotocin (STZ, 120 mg/kg) and the DCI model was screened by Morris water maze (MWM) after 8 weeks of continuous hyperglycemic stimulation. The DCI mice were randomly divided into the model group (DCI), the low- and high-ZSWF-dose groups (9.63 g/kg, 18.72 g/kg), the mixed antibiotic group (ABs), and the ZSWF combined with mixed antibiotic group (ZSWF + ABs). ZSWF was administered orally once a day for 8 weeks. Then, cognitive function was assessed using MWM, neuroinflammation and systemic inflammation were analyzed by enzyme-linked immunosorbent assay kits, intestinal barrier integrity was assessed by hematoxylin-eosin (HE) staining and Western blot and high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Furthermore, the alteration to intestinal flora was monitored by 16S rDNA sequencing. Results: ZSWF restored cognitive function in DCI mice and reduced levels of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α. Moreover, ZSWF protected the integrity of the intestinal barrier by increasing intestinal ZO-1 and occludin protein expression and decreasing urinary lactulose to mannitol ratio. In addition, ZSWF reshaped the imbalanced gut microbiota in DCI mice by reversing the abundance changes of a wide range of intestinal bacteria at the phyla and genus levels. In contrast, removing gut microbiota with antibiotics partially eliminated the effects of ZSWF on improving cognitive function and reducing inflammation, confirming the essential role of gut microbiota in the improvement of DCI by ZSWF. Conclusion: ZSWF can reverse cognitive impairment in DCI mice by remolding the structure of destructed gut microbiota community, which is a potential Chinese medicine prescription for DCI treatment.
Collapse
Affiliation(s)
- Jiangwei Shi
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingsheng Yin
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wu
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengrong Yi
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengqing Guo
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liuyi Yuan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zixuan Wang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
40
|
Zhang J, Liu Z, Wu H, Chen X, Hu Q, Li X, Luo L, Ye S, Ye J. Irisin Attenuates Pathological Neovascularization in Oxygen-Induced Retinopathy Mice. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 35737379 PMCID: PMC9233294 DOI: 10.1167/iovs.63.6.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Abnormal angiogenesis is a defining feature in a couple of ocular neovascular diseases. The application of anti-VEGFA therapy has achieved certain benefits in the clinic, accompanying side effects and poor responsiveness in many patients. The present study investigated the role of irisin in retinal neovascularization. Methods Western blot and quantitative PCR were used to determine irisin expression in the oxygen-induced retinopathy mice model. The pathological angiogenesis and inflammation index were examined after irisin administration. Primary retinal astrocytes were cultured and analyzed for VEGFA expression in vitro. Astrocyte-conditioned medium was collected for transwell assay and tube formation assay in human microvascular endothelial cells-1. Results Irisin was downregulated in the oxygen-induced retinopathy mice retinae. Additional irisin attenuated pathological angiogenesis, inflammation, and apoptosis in vivo. In vitro, irisin decreased astrocyte VEGFA production, and the conditioned medium suppressed human microvascular endothelial cells-1 migration. Last, irisin inhibited hypoxia-inducible factor-2α, nuclear factor-κB, and pNF-κB (Phospho-Nuclear Factor-κB) expression. Conclusions Irisin mitigates retinal pathological angiogenesis. Chinese Abstract
目的:异常的血管生成是新生血管性眼病的显著特征。抗血管内皮生长因子A的治疗在临床上取得了一定的效果, 然而同时伴随着不可避免的副作用和不良反应。本研究旨在探讨irisin在视网膜病理性新生血管形成中的作用。
方法:采用免疫印迹和qPCR检测氧诱导视网膜病变小鼠模型中irisin的表达。外源性给予irisin后, 检测病理性血管生成和炎症的相关指标。为了研究irisin在体外的作用, 我们培养了原代视网膜星形胶质细胞, 检测缺氧后VEGFA的表达, 并收集星形胶质细胞的条件培养基用于人微血管内皮细胞-1(HMEC-1)的迁移和管腔形成实验。
结果:irisin在氧诱导视网膜病变小鼠视网膜中下调。外源性加入irisin可抑制病理性血管生成、炎症和凋亡。在体外, irisin减少星形胶质细胞中VEGFA的生成, 其处理过的星形胶质细胞条件培养基可以抑制人微血管内皮细胞-1的迁移。最后, 我们发现irisin可以降低HIF-2α、NF-κB和pNF-κB的表达水平。
结论:irisin可减轻视网膜病理性血管生成。
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Zhifei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Haoqian Wu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Shiyang Ye
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| |
Collapse
|
41
|
Peng J, Wu J. Effects of the FNDC5/Irisin on Elderly Dementia and Cognitive Impairment. Front Aging Neurosci 2022; 14:863901. [PMID: 35431908 PMCID: PMC9009536 DOI: 10.3389/fnagi.2022.863901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Population aging is an inevitable problem nowadays, and the elderly are going through a lot of geriatric symptoms, especially cognitive impairment. Irisin, an exercise-stimulating cleaved product from transmembrane fibronectin type III domain-containing protein 5 (FNDC5), has been linked with favorable effects on many metabolic diseases. Recently, mounting studies also highlighted the neuroprotective effects of irisin on dementia. The current evidence remains uncertain, and few clinical trials have been undertaken to limit its clinical practice. Therefore, we provided an overview of current scientific knowledge focusing on the preventive mechanisms of irisin on senile cognitive decline and dementia, in terms of the possible connections between irisin and neurogenesis, neuroinflammation, oxidative stress, and dementia-related diseases. This study summarized the recent advances and ongoing studies, aiming to provide a better scope into the effectiveness of irisin on dementia progression, as well as a mediator of muscle brain cross talk to provide theoretical support for exercise therapy for patients with dementia. Whether irisin is a diagnostic or prognostic factor for dementia needs more researches.
Collapse
|
42
|
Aerobic exercise increases irisin serum levels and improves depression and fatigue in patients with relapsing remitting multiple sclerosis: A randomized controlled trial. Mult Scler Relat Disord 2022; 61:103742. [DOI: 10.1016/j.msard.2022.103742] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022]
|
43
|
Loss of association between plasma irisin levels and cognition in Alzheimer's disease. Psychoneuroendocrinology 2022; 136:105624. [PMID: 34902775 DOI: 10.1016/j.psyneuen.2021.105624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Irisin, an exercise-induced myokine, has been shown to have beneficial effects on cognitive and metabolic functions. However, previous studies assessing the levels of circulating irisin in patients with Alzheimer's disease (AD) or diabetes mellitus (DM) have provided inconsistent results. This suggests that the normal physiological action of irisin may be altered by disease-associated pathological conditions in target organs. OBJECTIVE To investigate the association of plasma levels of irisin with cognition and brain structures according to the presence or absence of AD and DM. METHODS Plasma levels of irisin, multi-domain cognition, and volumes of relevant brain regions were assessed using enzyme-linked immunoassay, neuropsychological test, and magnetic resonance imaging, respectively. We classified 107 participants by cognitive (cognitively normal [CN, n = 23], mild cognitive impairment [MCI, n = 49], and AD [n = 35]) and metabolic (non-DM [n = 75] and DM [n = 32]) states. RESULTS Disease state-stratified multiple regression analyses showed that plasma levels of irisin were positively associated with cognition only in participants without AD (CN plus MCI). By contrast, in participants with AD, these associations lost significance, and furthermore, higher levels of irisin indicated smaller hippocampal, superior temporal, and inferior frontal volumes. The association between plasma irisin levels and cognition was not affected by the presence of DM. Consistently, moderation analysis revealed that the relationship between plasma irisin levels and cognition or brain structures was significantly modified by the presence of AD, not that of DM. CONCLUSION Our findings suggest that the beneficial actions of circulating irisin on cognition may be attenuated by AD-induced pathological conditions in the brain.
Collapse
|
44
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
45
|
Lee HJ, Lim HM, Feng JH, Lee JM, Lee JT, Suh HW. Antinociceptive effect of N-(9,13b-dihydro-1H-dibenzo[c,f]imidazo[1,5-a]azepin-3-yl)-2-hydroxybenzamide on different pain models in mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hee-Jung Lee
- Hallym University, Korea; Hallym University, Korea
| | | | | | | | | | - Hong-Won Suh
- Hallym University, Korea; Hallym University, Korea
| |
Collapse
|
46
|
Mani V, Arfeen M, Sajid S, Almogbel Y. Aqueous Ajwa dates seeds extract improves memory impairment in type-2 diabetes mellitus rats by reducing blood glucose levels and enhancing brain cholinergic transmission. Saudi J Biol Sci 2022; 29:2738-2748. [PMID: 35531250 PMCID: PMC9072939 DOI: 10.1016/j.sjbs.2021.12.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 01/17/2023] Open
Abstract
Diabetes is a metabolic disorder prevalent across the globe and is known to cause brain dysfunction, especially memory and cognitive decline. The current study investigates the effect of aqueous Ajwa seeds extract (AASE) on type-2 diabetes mellitus (T2DM)-induced memory deficits using a rat model. T2DM was induced by an administration of nicotinamide (120 mg/kg, i.p.) and streptozotocin (STZ) (60 mg/kg, i.p.). AASE (200 and 400 mg/kg, p.o.) were treated to T2DM rats for 30 days and the results were compared with the metformin (200 mg/kg). Elevated plus maze (EPM), Y-maze, and novel object recognition (NOR) tests were performed to assess the memory functions. The blood glucose and plasma insulin levels were estimated to assess the anti-diabetic effects of AASE. Acetylcholine (ACh) and acetylcholinesterase (AChE) levels were estimated from brain homogenates to assess cholinergic transmission. Treatment with AASE resulted in the reversal of behavioral deficits. EPM showed, a significant reduction in transfer latency (TL) among T2DM rats. High exploration time with a novel object and improvement in discrimination index were observed among treated groups during the NOR test. The Y-Maze test improved the entries and also time spent in the novel arm. Moreover, treatment of AASE reversed hyperglycemic and enhanced plasma insulin levels (200 mg/kg: 3.81 ± 0.08 ng/ml and 400 mg/kg: 4.09 ± 0.10 ng/ml) among T2DM rats (2.81 ± 0.15 ng/ml). Improved ACh levels (200 mg/kg: 186.6 ± 9.51 pg/mg protein and 400 mg/kg: 165.5 ± 9.25 pg/mg protein) and reduced AChE levels (200 mg/kg: 0.29 ± 0.02 ng/mg protein and 400 mg/kg: 0.32 ± 0.03 ng/mg protein) were also noted in the brain of AASE treated groups as referred to diabetic group (ACh: 107.1 ± 7.16 pg/mg protein and AChE: 0.51 ± 0.03 ng/mg protein). The above results were found to be comparable with the metformin-treated groups. From the results, it can be concluded that AASE has the potential to improve T2DM associated cognitive deficits.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Corresponding author at: Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia.
| | - Sultan Sajid
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Yasser Almogbel
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Jo D, Song J. Irisin Acts via the PGC-1α and BDNF Pathway to Improve Depression-like Behavior. Clin Nutr Res 2021; 10:292-302. [PMID: 34796134 PMCID: PMC8575642 DOI: 10.7762/cnr.2021.10.4.292] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
Depression is the most prevalent psychiatric disorder experienced by the world's population. Mechanisms associated with depression-like behavior have not been fully investigated. Among the therapeutic solution for depression, exercise is considered an important regulator attenuating depressive neuropathology. Exercise has been reported to boost the secretion of myokines such as irisin and myostatin in skeletal muscles. Myokines secreted during exercise are involved in various cellular responses including the endocrine and autocrine systems. Especially, irisin as a cleaved version of fibronectin domain-containing protein 5 has multiple functions such as white fat-browning, energy expenditure increase, anti-inflammatory effects, and mitochondrial function improvement in both systemic circulation and central nervous system. Furthermore, irisin activates energy metabolism-related signaling peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and memory formation-related signaling brain-derived neurotrophic factor involved in depression. However, the role and mechanism of irisin in depression disorder is not obvious until now. Here, we review recent evidences regarding the therapeutic effect of irisin in depression disorder. We suggest that irisin is a key molecule that suppresses several neuropathological mechanisms involved in depression.
Collapse
Affiliation(s)
- Danbi Jo
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea.,Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea.,Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| |
Collapse
|
48
|
Gupta R, Khan R, Cortes CJ. Forgot to Exercise? Exercise Derived Circulating Myokines in Alzheimer's Disease: A Perspective. Front Neurol 2021; 12:649452. [PMID: 34276532 PMCID: PMC8278015 DOI: 10.3389/fneur.2021.649452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Regular exercise plays an essential role in maintaining healthy neurocognitive function and central nervous system (CNS) immuno-metabolism in the aging CNS. Physical activity decreases the risk of developing Alzheimer's Disease (AD), is associated with better AD prognosis, and positively affects cognitive function in AD patients. Skeletal muscle is an important secretory organ, communicating proteotoxic and metabolic stress to distant tissues, including the CNS, through the secretion of bioactive molecules collectively known as myokines. Skeletal muscle undergoes significant physical and metabolic remodeling during exercise, including alterations in myokine expression profiles. This suggests that changes in myokine and myometabolite secretion may underlie the well-documented benefits of exercise in AD. However, to date, very few studies have focused on specific alterations in skeletal muscle-originating secreted factors and their potential neuroprotective effects in AD. In this review, we discuss exercise therapy for AD prevention and intervention, and propose the use of circulating myokines as novel therapeutic tools for modifying AD progression.
Collapse
Affiliation(s)
- Rajesh Gupta
- Department of Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rizwan Khan
- Department of Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Constanza J Cortes
- Department of Cell, Developmental and Integrative Biology (CDIB), School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Neurodegeneration and Experimental Therapeutics (CNET), University of Alabama at Birmingham, Birmingham, AL, United States.,Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,UAB Nathan Shock Center for the Excellence in the Study of Aging, University of Alabama at Birmingman, Birmingham, AL, United States
| |
Collapse
|
49
|
Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci 2021; 13:649929. [PMID: 33935687 PMCID: PMC8086837 DOI: 10.3389/fnagi.2021.649929] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise has multiple beneficial effects on health including decreasing the risk of neurodegenerative diseases. Such effects are thought to be mediated (at least in part) by myokines, a collection of cytokines and other small proteins released from skeletal muscles. As an endocrine organ, skeletal muscle synthesizes and secretes a wide range of myokines which contribute to different functions in different organs, including the brain. One such myokine is the recently discovered protein Irisin, which is secreted into circulation from skeletal muscle during exercise from its membrane bound precursor Fibronectin type III domain-containing protein 5 (FNDC5). Irisin contributes to metabolic processes such as glucose homeostasis and browning of white adipose tissue. Irisin also crosses the blood brain barrier and initiates a neuroprotective genetic program in the hippocampus that culminates with increased expression of brain derived neurotrophic factor (BDNF). Furthermore, exercise and FNDC5/Irisin have been shown to have several neuroprotective effects against injuries in ischemia and neurodegenerative disease models, including Alzheimer's disease. In addition, Irisin has anxiolytic and antidepressant effects. In this review we present and summarize recent findings on the multiple effects of Irisin on neural function, including signaling pathways and mechanisms involved. We also discuss how exercise can positively influence brain function and mental health via the "skeletal muscle-brain axis." While there are still many unanswered questions, we put forward the idea that Irisin is a potentially essential mediator of the skeletal muscle-brain crosstalk.
Collapse
Affiliation(s)
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
50
|
Cui Y, Yang M, Wang Y, Ren J, Lin P, Cui C, Song J, He Q, Hu H, Wang K, Sun Y. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. FASEB J 2021; 35:e21485. [PMID: 33709562 DOI: 10.1096/fj.202002247rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Cognitive dysfunction often occurs in diabetes mellitus patients. This study aimed to investigate the efficacy of melatonin (MLT) in improving diabetes-associated cognitive decline and the underlying mechanism involved. Type 2 diabetic mice and palmitic acid (PA)-stimulated BV-2 cells were treated by MLT, and the potential mechanisms among MLT, cognition, and autophagy were explored. The results showed that type 2 diabetic mice showed obvious learning and memory impairments in the Morris water maze test compared with normal controls, which could be ameliorated by MLT treatment. Meanwhile, MLT administration significantly improved neuroinflammation and regulated microglial apoptosis. Furthermore, autophagy inhibitor 3-methyladenine (3-MA) increased the microglial inflammation and apoptosis, indicating that the treatment effect of MLT was mediated by autophagy. Lastly, MLT treatment significantly decreased the levels of toll-like receptors 4 (TLR4), phosphorylated-protein kinase B (Akt), and phosphorylated-mechanistic target of rapamycin (mTOR), indicating that blocking TLR4/Akt/mTOR pathway might be an underlying basis for the anti-inflammatory and anti-apoptosis effects of MLT. Collectively, our study suggested that MLT could improve learning and memory in type 2 diabetic mice by activating autophagy via the TLR4/Akt/mTOR pathway, thereby inhibiting neuroinflammation and microglial apoptosis.
Collapse
Affiliation(s)
- Yixin Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Yilin Wang
- Department of Traumatic Orthopedics, Peking University People's Hospital, Beijing, China
| | - Jianmin Ren
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Peng Lin
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| |
Collapse
|