1
|
Revokatova D, Koteneva P, Kosheleva N, Shpichka A, Timashev P. Spheroids from Epithelial and Mesenchymal Cell Phenotypes as Building Blocks in Bioprinting (Review). Sovrem Tekhnologii Med 2025; 17:133-154. [PMID: 40071071 PMCID: PMC11892564 DOI: 10.17691/stm2025.17.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Indexed: 03/14/2025] Open
Abstract
Most tissues and organs are based on cells of the epithelial and mesenchymal phenotypes. Epithelial cells build protective barriers, have a key role in absorption and secretion, and participate in metabolism. Characterized by high plasticity and ability to migrate, mesenchymal cells ensure structural support, promote tissue restoration and are important for matrix remodeling. Interaction between these two cell types is critical for maintaining the body integrity and functioning. Modern tissue engineering is aimed at creation of artificial tissues and organs that have the required cellular composition, mechanical properties and functional potential for medical usage. One of the most popular methods of tissue engineering is 3D bioprinting, which allows creating complex three-dimensional structures with specified characteristics. Recently, special attention has been paid to bioprinting with spheroids being three-dimensional cellular aggregates that can be used as building blocks for tissue-engineered structures. Due to numerous cell-to-cell contacts and accumulation of extracellular matrix, spheroids ensure conditions allowing to form anatomical tissues and organs. To optimize bioprinting conditions, one shall precisely understand the mechanical properties of spheroids, as they directly affect the ability of cells to migrate and fuse, and thus the rate of construct formation and its overall morphology. This review summarizes the available data on the differences in mechanical properties of epithelial and mesenchymal spheroids, examines methods for their co-culturing in various applications of regenerative medicine, as well as analyzes the peculiarities of their use in different bioprinting methods to obtain high-quality tissue constructs.
Collapse
Affiliation(s)
- D.P. Revokatova
- Junior Researcher, Laboratory of Clinical Smart- and Nanotechnologies, Institute of Regenerative Medicine; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| | - P.I. Koteneva
- Junior Researcher, Biofabrika Design Center, Institute of Regenerative Medicine; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| | - N.V. Kosheleva
- PhD, Associate Professor, Head of Laboratory of Clinical Smart- and Nanotechnologies, Institute of Regenerative Medicine; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| | - A.I. Shpichka
- PhD, Associate Professor, Head of Laboratory of Applied Microfluidics, Institute of Regenerative Medicine; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| | - P.S. Timashev
- DSc, Professor, Institute of Regenerative Medicine; Chief Scientific Officer of the Scientific and Technological Park of Biomedicine; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| |
Collapse
|
2
|
Cieśla J, Tomsia M. Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration. Histochem Cell Biol 2025; 163:27. [PMID: 39863760 DOI: 10.1007/s00418-025-02356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA). The review summarizes the most important scientific reports on biology and mechanisms of SC-derived chondrogenesis and sources of SCs for chondrogenic purposes. Additionally, it focuses on the genetic mechanisms, microRNA (miRNA) regulation, and epigenetic processes steering the chondrogenic differentiation of SCs. It also describes the attempts to create functional cartilage with tissue engineering using growth factors and scaffolds. Finally, it presents the challenges that researchers will have to face in the future to effectuate SC differentiation methods into clinical practice for treating cartilage diseases.
Collapse
Affiliation(s)
- Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
| |
Collapse
|
3
|
Kang M, Yang Y, Zhang H, Zhang Y, Wu Y, Denslin V, Othman RB, Yang Z, Han J. Comparative Analysis of Serum and Serum-Free Medium Cultured Mesenchymal Stromal Cells for Cartilage Repair. Int J Mol Sci 2024; 25:10627. [PMID: 39408956 PMCID: PMC11476526 DOI: 10.3390/ijms251910627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cartilage repair therapy due to their self-renewal, chondrogenic, and immunomodulatory capacities. It is widely recognized that a shift from fetal bovine serum (FBS)-containing medium toward a fully chemically defined serum-free (SF) medium would be necessary for clinical applications of MSCs to eliminate issues such as xeno-contamination and batch-to-batch variation. However, there is a notable gap in the literature regarding the evaluation of the chondrogenic ability of SF-expanded MSCs (SF-MSCs). In this study, we compared the in vivo regeneration effect of FBS-MSCs and SF-MSCs in a rat osteochondral defect model and found poor cartilage repair outcomes for SF-MSCs. Consequently, a comparative analysis of FBS-MSCs and SF-MSCs expanded using two SF media, MesenCult™-ACF (ACF), and Custom StemPro™ MSC SFM XenoFree (XF) was conducted in vitro. Our results show that SF-expanded MSCs constitute variations in morphology, surface markers, senescence status, differentiation capacity, and senescence/apoptosis status. Highly proliferative MSCs supported by SF medium do not always correlate to their chondrogenic and cartilage repair ability. Prior determination of the SF medium's ability to support the chondrogenic ability of expanded MSCs is therefore crucial when choosing an SF medium to manufacture MSCs for clinical application in cartilage repair.
Collapse
Affiliation(s)
- Meiqi Kang
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
| | - Yanmeng Yang
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
| | - Haifeng Zhang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Yuan Zhang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Yingnan Wu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Vinitha Denslin
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Rashidah Binte Othman
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
| | - Zheng Yang
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore; (H.Z.); (Y.Z.); (Y.W.); (V.D.)
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalised-Medicine (CAMP) Interdisciplinary Research Group (IRG), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore; (M.K.); (Y.Y.); (R.B.O.)
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Ganguly A, Chetty S, Primavera R, Levitte S, Regmi S, Dulken BW, Sutherland SM, Angeles W, Wang J, Thakor AS. Time-course analysis of cisplatin induced AKI in preclinical models: implications for testing different sources of MSCs. J Transl Med 2024; 22:789. [PMID: 39192240 DOI: 10.1186/s12967-024-05439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Kidneys are at risk from drug-induced toxicity, with a significant proportion of acute kidney injury (AKI) linked to medications, particularly cisplatin. Existing cytoprotective drugs for cisplatin-AKI carry side effects, prompting a search for better biological therapies. Mesenchymal Stem Cells (MSCs) are under consideration given their regenerative properties, yet their clinical application has not achieved their full potential, mainly due to variability in the source of MSC tested. In addition, translating treatments from rodent models to humans remains challenging due to a lack of standardized dosing and understanding potential differential responses to cisplatin between animal strains. METHOD In the current study, we performed a time-course analysis of the effect of cisplatin across different mouse strains and evaluated gender related differences to create a robust preclinical model that could then be used to explore the therapeutic efficacy of different sources of MSCs for their ability to reverse AKI. RESULT Our data indicated that different mouse strains produce differential responses to the same cisplatin dosing regimen. Despite this, we did not observe any gender-related bias towards cisplatin nephrotoxicity. Furthermore, our time-course analysis identified that cisplatin-induced inflammation was driven by a strong CXCL1 response, which was used as a putative biomarker to evaluate the comparative therapeutic efficacy of different MSC sources in reversing AKI. Our data indicates that UC-MSCs have a stronger anti-inflammatory effect compared to BM-MSCs and AD-MSCs, which helped to ameliorate cisplatin-AKI. CONCLUSION Overall, our data underscores the importance of using an optimized preclinical model of cisplatin-AKI to test different therapies. We identified CXCL1 as a potential biomarker of cisplatin-AKI and identified the superior efficacy of UC-MSCs in mitigating cisplatin-AKI.
Collapse
Affiliation(s)
- Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Steven Levitte
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | | | - Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Stanford University, Palo Alto, CA, USA
| | - Wendy Angeles
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Jing Wang
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5
|
Tong D, Gobert S, Reuzeau A, Farges JC, Leveque M, Bolon M, Costantini A, Pasdeloup M, Lafont J, Ducret M, Bekhouche M. Dental pulp mesenchymal stem cells-response to fibrin hydrogel reveals ITGA2 and MMPs expression. Heliyon 2024; 10:e32891. [PMID: 39027533 PMCID: PMC11255596 DOI: 10.1016/j.heliyon.2024.e32891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Regenerative endodontic procedures (REP) aim at reestablishing tooth vitality by replacing the irreversibly damaged dental pulp removed by the dental practitioner with a new functional one. The current treatment of advanced caries relies on the replacement of the inflamed or necrosed dental pulp with an inert filling material. This leads to a functional but non-vital tooth, which lacks the ability to sense dental tissue damage, and to protect from further bacterial attack. Therapeutic strategies inspired by tissue engineering called REP propose to regenerate a fully functional dental pulp directly in the canal space. Promising results were obtained using dental pulp mesenchymal stem cells (DP-MSCs) in combination with bio-inspired artificial and temporary 3D hydrogels made of extracellular matrix molecules such as collagen and fibrin biomacromolecules. However, the uncontrolled mechanisms of DP regeneration from DP-MSCs in 3D biomacromolecules fail to regenerate a fully functional DP and can induce fibrotic scarring or mineralized tissue formation to a non-negligible extent. The lack of knowledge regarding the early molecular mechanisms initiated by DP-MSCs seeded in ECM-made hydrogels is a scientific lock for REP. In this study, we investigated the early DP-MSC-response in a 3D fibrin hydrogel. DP-MSCs isolated from human third molars were cultured for 24 h in the fibrin hydrogel. The differential transcript levels of extracellular and cell surface genes were screened with 84-gene PCR array. Out of the 84 genes screened, 9 were found to be overexpressed, including those coding for the integrin alpha 2 subunit, the collagenase MMP1 and stromelysins MMP3, MMP10 and MMP12. Over-expression of ITGA2 was confirmed by RT-qPCR. The expression of alpha 2 integrin subunit protein was assessed over time by immunoblot and immunofluorescence staining. The increase in the transcript level of MMP1, MMP3, MM10 and MMP12 was confirmed by RT-qPCR. The overexpression of MMP1 and 3 at the protein level was assessed by immunoblot. MMP3 expression by DP-MSCs was observed by immunofluorescence staining. This work demonstrates overexpression of ITGA2 and of MMP1, 3, 10 and 12 by DP-MSCs cultured in a fibrin hydrogel. The main preliminary extracellular and cell surface response of the DP-MSCs to fibrin hydrogel seems to rely on a ITGA2/MMP3 axis. Further investigations are needed to precisely decipher the role of this axis in dental pulp tissue building. Nevertheless, this work identifies extracellular and cell surface molecules that could be potential checkpoints to be targeted to guide proper dental pulp tissue regeneration.
Collapse
Affiliation(s)
- David Tong
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Stéphanie Gobert
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Alicia Reuzeau
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jean-Christophe Farges
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marianne Leveque
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Marie Bolon
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Arthur Costantini
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marielle Pasdeloup
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jérôme Lafont
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Maxime Ducret
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
| | - Mourad Bekhouche
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| |
Collapse
|
6
|
Lorio MP, Tate JL, Myers TJ, Block JE, Beall DP. Perspective on Intradiscal Therapies for Lumbar Discogenic Pain: State of the Science, Knowledge Gaps, and Imperatives for Clinical Adoption. J Pain Res 2024; 17:1171-1182. [PMID: 38524692 PMCID: PMC10959304 DOI: 10.2147/jpr.s441180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Specific clinical diagnostic criteria have established a consensus for defining patients with lumbar discogenic pain. However, if conservative medical management fails, these patients have few treatment options short of surgery involving discectomy often coupled with fusion or arthroplasty. There is a rapidly-emerging research effort to fill this treatment gap with intradiscal therapies that can be delivered minimally-invasively via fluoroscopically guided injection without altering the normal anatomy of the affected vertebral motion segment. Viable candidate products to date have included mesenchymal stromal cells, platelet-rich plasma, nucleus pulposus structural allograft, and other cell-based compositions. The objective of these products is to repair, supplement, and restore the damaged intervertebral disc as well as retard further degeneration. In doing so, the intervention is meant to eliminate the source of discogenic pain and avoid surgery. Methodologically rigorous studies are rare, however, and based on the best clinical evidence, the safety as well as the magnitude and duration of clinical efficacy remain difficult to estimate. Further, we summarize the US Food and Drug Administration's (FDA) guidance regarding the interpretation of the minimal manipulation and homologous use criteria, which is central to designating these products as a tissue or as a drug/device/biologic. We also provide perspectives on the core evidence and knowledge gaps associated with intradiscal therapies, propose imperatives for evaluating effectiveness of these treatments and highlight several new technologies on the horizon.
Collapse
|
7
|
Sun L, Xu Y, Han Y, Cui J, Jing Z, Li D, Liu J, Xiao C, Li D, Cai B. Collagen-Based Hydrogels for Cartilage Regeneration. Orthop Surg 2023; 15:3026-3045. [PMID: 37942509 PMCID: PMC10694028 DOI: 10.1111/os.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 11/10/2023] Open
Abstract
Cartilage regeneration remains difficult due to a lack of blood vessels. Degradation of the extracellular matrix (ECM) causes cartilage defects, and the ECM provides the natural environment and nutrition for cartilage regeneration. Until now, collagen hydrogels are considered to be excellent material for cartilage regeneration due to the similar structure to ECM and good biocompatibility. However, collagen hydrogels also have several drawbacks, such as low mechanical strength, limited ability to induce stem cell differentiation, and rapid degradation. Thus, there is a demanding need to optimize collagen hydrogels for cartilage regeneration. In this review, we will first briefly introduce the structure of articular cartilage and cartilage defect classification and collagen, then provide an overview of the progress made in research on collagen hydrogels with chondrocytes or stem cells, comprehensively expound the research progress and clinical applications of collagen-based hydrogels that integrate inorganic or organic materials, and finally present challenges for further clinical translation.
Collapse
Affiliation(s)
- Lihui Sun
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Yan Xu
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Yu Han
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of StomatologyJilin UniversityChangchunChina
| | - Zheng Jing
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Dongbo Li
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Jianguo Liu
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Dongsong Li
- Division of Bone and Joint Surgery, Center of OrthopaedicsFirst Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Bo Cai
- Department of Ultrasound DiagnosisThe 964 Hospital of Chinese People's Liberation ArmyChangchunPeople's Republic of China
| |
Collapse
|
8
|
Kim Y, An SB, Lee SH, Lee JJ, Kim SB, Ahn JC, Hwang DY, Han I. Enhanced Intervertebral Disc Repair via Genetically Engineered Mesenchymal Stem Cells with Tetracycline Regulatory System. Int J Mol Sci 2023; 24:16024. [PMID: 38003216 PMCID: PMC10671788 DOI: 10.3390/ijms242216024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic potential of Mesenchymal stem cells (MSCs) for the treatment of Intervertebral disc (IVD) degeneration can be enhanced by amplifying specific cytokines and proteins. This study aimed to investigate the therapeutic potential of tetracycline-off system-engineered tonsil-derived mesenchymal stem cells (ToMSC-Tetoff-TGFβ1-IGF1-BMP7) for treating intervertebral disc (IVD) degeneration. ToMSCs were isolated from a tonsillectomy patient and genetically modified with four distinct plasmids via CRISPR/Cas9-mediated knock-in gene editing. Transgene expression was confirmed through immunofluorescence, western blots, and an enzyme-linked immunosorbent assay for transforming growth factor beta 1 (TGFβ1) protein secretion, and the effect of MSC-TetOff-TGFβ1-IGF1-BMP7 on disc injury was assessed in a rat model. The ToMSC-Tetoff-TGFβ1-IGF1-BMP7 treatment exhibited superior therapeutic effects compared to ToMSC-TGFβ1, and ToMSC-SDF1α implantation groups, stimulating the regeneration of nucleus pulposus (NP) cells crucial for IVD. The treatment showed potential to restore the structural integrity of the extracellular matrix (ECM) by upregulating key molecules such as aggrecan and type II collagen. It also exhibited anti-inflammatory properties and reduced pain-inducing neuropeptides. ToMSC-Tetoff-TGFβ1-IGF1-BMP7 holds promise as a novel treatment for IVD degeneration. It appears to promote NP cell regeneration, restore ECM structure, suppress inflammation, and reduce pain. However, more research and clinical trials are required to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Yeji Kim
- Research Competency Milestones Program of School of Medicine, CHA University School of Medicine, Seongnam-si 13496, Republic of Korea;
| | - Seong Bae An
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| | - Sang-Hyuk Lee
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
| | - Jong Joo Lee
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea;
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Republic of Korea
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Jae-Cheul Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Dong-Youn Hwang
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
- Department of Microbiology, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| |
Collapse
|
9
|
Li J, Lv X, Ge T, Shi J, Verwoerd G, Lin H, Yu Y. Improved Cell Properties of Human Dental Pulp Stem Cells (hDPSCs) Isolated and Expanded in a GMP Compliant and Xenogeneic Serum-free Medium. In Vivo 2023; 37:2564-2576. [PMID: 37905631 PMCID: PMC10621445 DOI: 10.21873/invivo.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Human dental pulp mesenchymal stem cells (hDPSCs) are considered to be a good cell source for cell-based clinical therapy, due to the advantages of high proliferation capacity, multilineage differentiation potential, immune regulation abilities, less ethnic concerns and non-invasive access. However, hDPSCs were traditionally isolated and expanded in medium containing fetal bovine serum (FBS), which is a barrier for clinical application due to the safety issues (virus transmission and allergy). Although many studies make efforts to screen out a suitable culture medium, the results are not promising so far. Therefore, a standard good manufacturing practice (GMP) compliant culture system is urgently required for the large-scale cell production. This study aimed to find suitable culture conditions for producing clinical grade hDPSCs to meet the requirements for clinical cell-based therapy and further to promote the application of hDPSCs into tissue regeneration or disease cure. MATERIALS AND METHODS We derived hDPSCs from nine orthodontic teeth expanded in two different media: a GMP compliant and xenogeneic serum-free medium (AMMS) and a serum containing medium (SCM). Cell propterties including morphology, proliferation, marker expression, differentiation, stemness, senescence and cytokine secretion between these two media were systematically compared. RESULTS hDPSCs cultured in both media exhibited the typical characteristics of mesenchymal stem cells (MSCs). However, we found that more cell colonies formed in the primary culture in AMMS, and the hDPSCs displayed higher proliferation capacity, differentiation potential and better stemness maintenance during sub-culturing in AMMS. CONCLUSION Cell properties of hDPSCs could be improved when they were isolated and expanded in AMMS, which might provide a good candidate of culture medium for large-scale cell manufacturing.
Collapse
Affiliation(s)
- Juan Li
- Basic Medicine School, Zhejiang Academy of Medical Science, Hangzhou Medical College, Hangzhou, P.R. China
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
| | - Xuewei Lv
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
| | - Tingting Ge
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
| | - Jiaman Shi
- Edinburgh Medical School, University of Edinburgh, Edinburgh, U.K
| | - Gideon Verwoerd
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
- Bourn Hall Reproductive Medical Center, Kunming City Maternal and Child Health Hospital, Kunming, P.R. China
| | - Haiyan Lin
- Hangzhou Stomatological Hospital, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China
| | - Yuansong Yu
- Dental Stem Cell Bank and Research Center, Savaid Stomatology School, Hangzhou Medical College, Hangzhou, P.R. China;
- Bourn Hall Reproductive Medical Center, Kunming City Maternal and Child Health Hospital, Kunming, P.R. China
| |
Collapse
|
10
|
Noh S, Jin YJ, Shin DI, Kwon HJ, Yun HW, Kim KM, Park JY, Chung JY, Park DY. Selective Extracellular Matrix Guided Mesenchymal Stem Cell Self-Aggregate Engineering for Replication of Meniscal Zonal Tissue Gradient in a Porcine Meniscectomy Model. Adv Healthc Mater 2023; 12:e2301180. [PMID: 37463568 DOI: 10.1002/adhm.202301180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Degenerative meniscus tears (DMTs) are prevalent findings in osteoarthritic knees, yet current treatment is mostly limited to arthroscopic partial meniscectomy rather than regeneration, which further exacerbates arthritic changes. Translational research regarding meniscus regeneration is hindered by the complex, composite nature of the meniscus which exhibit a gradient from inner cartilage-like tissue to outer fibrous tissue, as well as engineering hurdles often requiring growth factors and cross-linking agents. Here, a meniscus zonal tissue gradient is proposed using zone-specific decellularized meniscus extracellular matrix (DMECM) and autologous synovial mesenchymal stem cells (SMSC) via self-aggregation without the use of growth factors or cross-linking agents. Combination with zone-specific DMECM during self-aggregation of MSCs forms zone-specific meniscus tissue that reflects the respective DMECM harvest site. The implantation of these constructs leads to the regeneration of meniscus tissue resembling the native meniscus, demonstrating inner cartilaginous and outer fibrous characteristics as well as recovery of native meniscal microarchitecture in a porcine partial meniscectomy model at 6 months. In all, the findings offer a potential regenerative therapy for DMTs that may improve current partial meniscectomy-based patient care.
Collapse
Affiliation(s)
- Sujin Noh
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Dong Il Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyeon Jae Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hee-Woong Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Republic of Korea
| | - Kyu Min Kim
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Republic of Korea
| | - Jae-Young Park
- Department of Orthopedics Surgery, CHA University Bundang Medical Center, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Do Young Park
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Republic of Korea
- Ajou University, Leading Convergence of Healthcare and Medicine, Institute of Science & Technology (ALCHeMIST), Suwon, 16499, Republic of Korea
| |
Collapse
|
11
|
Sahibdad I, Khalid S, Chaudhry GR, Salim A, Begum S, Khan I. Zinc enhances the cell adhesion, migration, and self-renewal potential of human umbilical cord derived mesenchymal stem cells. World J Stem Cells 2023; 15:751-767. [PMID: 37545753 PMCID: PMC10401417 DOI: 10.4252/wjsc.v15.i7.751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Zinc (Zn) is the second most abundant trace element after Fe, present in the human body. It is frequently reported in association with cell growth and proliferation, and its deficiency is considered to be a major disease contributing factor. AIM To determine the effect of Zn on in vitro growth and proliferation of human umbilical cord (hUC)-derived mesenchymal stem cells (MSCs). METHODS hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry, immunophenotyping, and tri-lineage differentiation. The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay. To determine the effect of Zn on population doubling time (PDT), hUC-MSCs were cultured in media with and without Zn for several passages. An in vitro scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs. A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs. Transcriptional analysis of genes involved in the cell cycle, proliferation, migration, and self-renewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction. The protein expression of Lin28, a pluripotency marker, was analyzed by immunocytochemistry. RESULTS Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations (> 100 µM), showed concentration dependent cytotoxicity in hUC-MSCs. hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells. Zn also increased the cell adhesion rate, and colony forming efficiency (CFE). In addition, Zn upregulated the expression of genes involved in the cell cycle (CDC20, CDK1, CCNA2, CDCA2), proliferation (transforming growth factor β1, GDF5, hypoxia-inducible factor 1α), migration (CXCR4, VCAM1, VEGF-A), and self-renewal (OCT4, SOX2, NANOG) of hUC-MSCs. Expression of Lin28 protein was significantly increased in cells treated with Zn. CONCLUSION Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT, and maintaining the CFE. Zn also enhances the cell adhesion, migration, and self-renewal of hUC-MSCs. These results highlight the essential role of Zn in cell growth and development.
Collapse
Affiliation(s)
- Iqra Sahibdad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Sumreen Begum
- Stem Cell Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi 74200, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
12
|
Ao Y, Duan J, Xiong N, Qian N, Zhang R, Yang L, Yu S, Wang F. Repeated intra-articular injections of umbilical cord-derived mesenchymal stem cells for knee osteoarthritis: a phase I, single-arm study. BMC Musculoskelet Disord 2023; 24:488. [PMID: 37312112 DOI: 10.1186/s12891-023-06555-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
INTRODUCTION Stem cell therapy has emerged as an effective treatment for multiple diseases, and some studies also demonstrate that it may be a promising treatment for osteoarthritis (OA). However, few studies have clarified the safety of repeated intra-articular injection of human umbilical cord-derived mesenchymal stem cells (UC-MSCs). To promote its application in treating OA, we conducted an open-label trial to investigate the safety of repeated intra-articular injections of UC-MSCs. METHODS Fourteen patients with OA (Kellgrene-Lawrence grade 2 or 3) who received repeated intra-articular injections of UC-MSCs were evaluated in three months of follow-up. The primary outcomes were the adverse events, and the second outcomes included visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) scores and SF-12 quality of life score. RESULTS A total of 5 of 14 patients (35.7%) experienced transient adverse reactions, which resolved spontaneously. All patients showed some improvement in knee function limitation and pain after receiving stem cell therapy. VAS score 6.0 to 3.5, WOMAC score 26.0 to 8.5, MOCART score 42.0 to 58.0, SF-12 score 39.0 to 46.0. CONCLUSION Repeated intra-articular injection of UC-MSCs demonstrates safety in treating OA and does not induce serious adverse events. This treatment may transiently improve symptoms in patients with knee OA and may be a potential therapeutic option for OA.
Collapse
Affiliation(s)
- Yunong Ao
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiangjie Duan
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
| | - Na Xiong
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
| | - Nannan Qian
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
| | - Rui Zhang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
13
|
Ganguly A, Swaminathan G, Garcia-Marques F, Regmi S, Yarani R, Primavera R, Chetty S, Bermudez A, Pitteri SJ, Thakor AS. Integrated transcriptome-proteome analyses of human stem cells reveal source-dependent differences in their regenerative signature. Stem Cell Reports 2023; 18:190-204. [PMID: 36493779 PMCID: PMC9860079 DOI: 10.1016/j.stemcr.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are gaining increasing prominence as an effective regenerative cellular therapy. However, ensuring consistent and reliable effects across clinical populations has proved to be challenging. In part, this can be attributed to heterogeneity in the intrinsic molecular and regenerative signature of MSCs, which is dependent on their source of origin. The present work uses integrated omics-based profiling, at different functional levels, to compare the anti-inflammatory, immunomodulatory, and angiogenic properties between MSCs from neonatal (umbilical cord MSC [UC-MSC]) and adult (adipose tissue MSC [AD-MSC], and bone marrow MSC [BM-MSC]) sources. Using multi-parametric analyses, we identified that UC-MSCs promote a more robust host innate immune response; in contrast, adult-MSCs appear to facilitate remodeling of the extracellular matrix (ECM) with stronger activation of angiogenic cascades. These data should help facilitate the standardization of source-specific MSCs, such that their regenerative signatures can be confidently used to target specific disease processes.
Collapse
Affiliation(s)
- Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Ganesh Swaminathan
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Fernando Garcia-Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| |
Collapse
|
14
|
Mélou C, Pellen-Mussi P, Jeanne S, Novella A, Tricot-Doleux S, Chauvel-Lebret D. Osteoarthritis of the Temporomandibular Joint: A Narrative Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010008. [PMID: 36676632 PMCID: PMC9866170 DOI: 10.3390/medicina59010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background and Objectives: This study reviewed the literature to summarize the current and recent knowledge of temporomandibular joint osteoarthritis (TMJOA). Methods: Through a literature review, this work summarizes many concepts related to TMJOA. Results: Although many signaling pathways have been investigated, the etiopathogenesis of TMJOA remains unclear. Some clinical signs are suggestive of TMJOA; however, diagnosis is mainly based on radiological findings. Treatment options include noninvasive, minimally invasive, and surgical techniques. Several study models have been used in TMJOA studies because there is no gold standard model. Conclusion: More research is needed to develop curative treatments for TMJOA, which could be tested with reliable in vitro models, and to explore tissue engineering to regenerate damaged temporomandibular joints.
Collapse
Affiliation(s)
- Caroline Mélou
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Pascal Pellen-Mussi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Jeanne
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Agnès Novella
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Tricot-Doleux
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Dominique Chauvel-Lebret
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
- Correspondence: ; Tel.: +33-2-23-23-43-64; Fax: +33-2-23-23-43-93
| |
Collapse
|
15
|
Meesuk L, Suwanprateeb J, Thammarakcharoen F, Tantrawatpan C, Kheolamai P, Palang I, Tantikanlayaporn D, Manochantr S. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Sci Rep 2022; 12:19509. [PMID: 36376498 PMCID: PMC9663507 DOI: 10.1038/s41598-022-24160-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising candidate for bone repair. However, the maintenance of MSCs injected into the bone injury site remains inefficient. A potential approach is to develop a bone-liked platform that incorporates MSCs into a biocompatible 3D scaffold to facilitate bone grafting into the desired location. Bone tissue engineering is a multistep process that requires optimizing several variables, including the source of cells, osteogenic stimulation factors, and scaffold properties. This study aims to evaluate the proliferation and osteogenic differentiation potentials of MSCs cultured on 2 types of 3D-printed hydroxyapatite, including a 3D-printed HA and biomimetic calcium phosphate-coated 3D-printed HA. MSCs from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) were cultured on the 3D-printed HA and coated 3D-printed HA. Scanning electron microscopy and immunofluorescence staining were used to examine the characteristics and the attachment of MSCs to the scaffolds. Additionally, the cell proliferation was monitored, and the ability of cells to differentiate into osteoblast was assessed using alkaline phosphatase (ALP) activity and osteogenic gene expression. The BM-MSCs and UC-MSCs attached to a plastic culture plate with a spindle-shaped morphology exhibited an immunophenotype consistent with the characteristics of MSCs. Both MSC types could attach and survive on the 3D-printed HA and coated 3D-printed HA scaffolds. The MSCs cultured on these scaffolds displayed sufficient osteoblastic differentiation capacity, as evidenced by increased ALP activity and the expression of osteogenic genes and proteins compared to the control. Interestingly, MSCs grown on coated 3D-printed HA exhibited a higher ALP activity and osteogenic gene expression than those cultured on the 3D-printed HA. The finding indicated that BM-MSCs and UC-MSCs cultured on the 3D-printed HA and coated 3D-printed HA scaffolds could proliferate and differentiate into osteoblasts. Thus, the HA scaffolds could provide a suitable and favorable environment for the 3D culture of MSCs in bone tissue engineering. Additionally, biomimetic coating with octacalcium phosphate may improve the biocompatibility of the bone regeneration scaffold.
Collapse
Affiliation(s)
- Ladda Meesuk
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Jintamai Suwanprateeb
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Faungchat Thammarakcharoen
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Chairat Tantrawatpan
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Pakpoom Kheolamai
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Iyapa Palang
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Duangrat Tantikanlayaporn
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Sirikul Manochantr
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| |
Collapse
|
16
|
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:5015856. [PMID: 36187229 PMCID: PMC9522499 DOI: 10.1155/2022/5015856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the opportunities and challenges for their application in tissue regeneration and disease therapy.
Collapse
|
17
|
Zheng K, Ma Y, Chiu C, Pang Y, Gao J, Zhang C, Du D. Co-culture pellet of human Wharton's jelly mesenchymal stem cells and rat costal chondrocytes as a candidate for articular cartilage regeneration: in vitro and in vivo study. Stem Cell Res Ther 2022; 13:386. [PMID: 35907866 PMCID: PMC9338579 DOI: 10.1186/s13287-022-03094-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seeding cells are key factors in cell-based cartilage tissue regeneration. Monoculture of either chondrocyte or mesenchymal stem cells has several limitations. In recent years, co-culture strategies have provided potential solutions. In this study, directly co-cultured rat costal chondrocytes (CCs) and human Wharton's jelly mesenchymal stem (hWJMSCs) cells were evaluated as a candidate to regenerate articular cartilage. METHODS Rat CCs are directly co-cultured with hWJMSCs in a pellet model at different ratios (3:1, 1:1, 1:3) for 21 days. The monoculture pellets were used as controls. RT-qPCR, biochemical assays, histological staining and evaluations were performed to analyze the chondrogenic differentiation of each group. The 1:1 ratio co-culture pellet group together with monoculture controls were implanted into the osteochondral defects made on the femoral grooves of the rats for 4, 8, 12 weeks. Then, macroscopic and histological evaluations were performed. RESULTS Compared to rat CCs pellet group, 3:1 and 1:1 ratio group demonstrated similar extracellular matrix production but less hypertrophy intendency. Immunochemistry staining found the consistent results. RT-PCR analysis indicated that chondrogenesis was promoted in co-cultured rat CCs, while expressions of hypertrophic genes were inhibited. However, hWJMSCs showed only slightly improved in chondrogenesis but not significantly different in hypertrophic expressions. In vivo experiments showed that all the pellets filled the defects but co-culture pellets demonstrated reduced hypertrophy, better surrounding cartilage integration and appropriate subchondral bone remodeling. CONCLUSION Co-culture of rat CCs and hWJMSCs demonstrated stable chondrogenic phenotype and decreased hypertrophic intendency in both vitro and vivo. These results suggest this co-culture combination as a promising candidate in articular cartilage regeneration.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
18
|
Sakai D, Schol J, Watanabe M. Clinical Development of Regenerative Medicine Targeted for Intervertebral Disc Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:267. [PMID: 35208590 PMCID: PMC8878570 DOI: 10.3390/medicina58020267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Low back pain is critical health, social, and economic issue in modern societies. This disease is often associated with intervertebral disc degeneration; however, contemporary treatments are unable to target this underlying pathology to alleviate the pain symptoms. Cell therapy offers a promising novel therapeutic that, in theory, should be able to reduce low back pain through mitigating the degenerative disc environment. With the clinical development of cell therapeutics ongoing, this review aims to summarize reporting on the different clinical trials and assess the different regenerative strategies being undertaken to collectively obtain an impression on the potential safety and effectiveness of cell therapeutics against intervertebral disc-related diseases.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, Isehara 259-1193, Japan; (J.S.); (M.W.)
| | | | | |
Collapse
|
19
|
Malhotra P, Shukla M, Meena P, Kakkar A, Khatri N, Nagar RK, Kumar M, Saraswat SK, Shrivastava S, Datt R, Pandey S. Mesenchymal stem cells are prospective novel off-the-shelf wound management tools. Drug Deliv Transl Res 2022; 12:79-104. [PMID: 33580481 DOI: 10.1007/s13346-021-00925-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Chronic/non-healing cutaneous wounds pose a debilitating burden on patients and healthcare system. Presently, treatment modalities are rapidly shifting pace from conventional methods to advanced wound care involving cell-based therapies. Mesenchymal stem cells (MSCs) have come across as a prospective option due to its pleiotropic functions viz. non-immunogenicity, multipotency, multi-lineage plasticity and secretion of growth factors, cytokines, microRNAs (miRNA), exosomes, and microvesicles as part of their secretome for assisting wound healing. We outline the therapeutic role played by MSCs and its secretome in suppressing tissue inflammation, causing immunomodulation, aiding angiogenesis and assisting in scar-free wound healing. We further assess the mechanism of action by which MSCs contribute in manifesting tissue repair. The review flows ahead in exploring factors that influence healing behavior including effect of multiple donor sites, donor age and health status, tissue microenvironment, and in vitro expansion capability. Moving ahead, we overview the advancements achieved in extending the lifespan of cells upon implantation, influence of genetic modifications aimed at altering MSC cargo, and evaluating bioengineered matrix-assisted delivery methods toward faster healing in preclinical and clinical models. We also contribute toward highlighting the challenges faced in commercializing cell-based therapies as standard of care treatment regimens. Finally, we strongly advocate and highlight its application as a futuristic technology for revolutionizing tissue regeneration.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Poonam Meena
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rakesh K Nagar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Sumit K Saraswat
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Supriya Shrivastava
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India.
| |
Collapse
|
20
|
Higher Chondrogenic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells Compared to Chondrocytes-EVs In Vitro. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9011548. [PMID: 34938811 PMCID: PMC8687842 DOI: 10.1155/2021/9011548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
The inability of cartilage to self-repair necessitates an effective therapeutic approach to restore damaged tissues. Extracellular vesicles (EVs) are attractive options because of their roles in cellular communication and tissue repair where they regulate the cellular processes of proliferation, differentiation, and recruitment. However, it is a challenge to determine the relevant cell sources for isolation of EVs with high chondrogenic potential. The current study aims to evaluate the chondrogenic potential of EVs derived from chondrocytes (Cho-EV) and mesenchymal stem cells (MSC-EV). The EVs were separately isolated from conditioned media of both rabbit bone marrow MSCs and chondrocyte cultures. The isolated vesicles were assessed in terms of size, morphology, and surface marker expression. The chondrogenic potential of MSCs in the presence of different concentrations of EVs (50, 100, and 150 μg/ml) was evaluated during 21 days, and chondrogenic surface marker expressions were checked by qRT-PCR and histologic assays. The extracted vesicles had a spherical morphology and a size of 44.25 ± 8.89 nm for Cho-EVs and 112.1 ± 10.10 nm for MSC-EVs. Both groups expressed the EV-specific surface markers CD9 and CD81. Higher expression of chondrogenic specified markers, especially collagen type II (COL II), and secretion of glycosaminoglycans (GAGs) and proteoglycans were observed in MSCs treated with 50 and 100 μg/ml MSC-EVs compared to the Cho-EVs. The results from the use of EVs, particularly MSC-EVs, with high chondrogenic ability will provide a basis for developing therapeutic agents for cartilage repair.
Collapse
|
21
|
Burk J, Melzer M, Hagen A, Lips KS, Trinkaus K, Nimptsch A, Leopold J. Phospholipid Profiles for Phenotypic Characterization of Adipose-Derived Multipotent Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:784405. [PMID: 34926463 PMCID: PMC8672196 DOI: 10.3389/fcell.2021.784405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/09/2021] [Indexed: 11/14/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have emerged as therapeutic tools for a wide range of pathological conditions. Yet, the still existing deficits regarding MSC phenotype characterization and the resulting heterogeneity of MSC used in different preclinical and clinical studies hamper the translational success. In search for novel MSC characterization approaches to complement the traditional trilineage differentiation and immunophenotyping assays reliably across species and culture conditions, this study explored the applicability of lipid phenotyping for MSC characterization and discrimination. Human peripheral blood mononuclear cells (PBMC), human fibroblasts, and human and equine adipose-derived MSC were used to compare different mesodermal cell types and MSC from different species. For MSC, cells cultured in different conditions, including medium supplementation with either fetal bovine serum or platelet lysate as well as culture on collagen-coated dishes, were additionally investigated. After cell harvest, lipids were extracted by chloroform/methanol according to Bligh and Dyer. The lipid profiles were analysed by an untargeted approach using liquid chromatography coupled to mass spectrometry (LC-MS) with a reversed phase column and an ion trap mass spectrometer. In all samples, phospholipids and sphingomyelins were found, while other lipids were not detected with the current approach. The phospholipids included different species of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS) in all cell types, whereas phosphatidylglycerol (PG) species were only present in MSC. MSC from both species showed a higher phospholipid species diversity than PBMC and fibroblasts. Few differences were found between MSC from different culture conditions, except that human MSC cultured with platelet lysate exhibited a unique phenotype in that they exclusively featured PE O-40:4, PG 38:6 and PG 40:6. In search for specific and inclusive candidate MSC lipid markers, we identified PE O-36:3 and PG 40:7 as potentially suitable markers across culture conditions, at which PE O-36:3 might even be used across species. On that basis, phospholipid phenotyping is a highly promising approach for MSC characterization, which might condone some heterogeneity within the MSC while still achieving a clear discrimination even from fibroblasts. Particularly the presence or absence of PG might emerge as a decisive criterion for future MSC characterization.
Collapse
Affiliation(s)
- Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Michaela Melzer
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Katrin Susanne Lips
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Katja Trinkaus
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ariane Nimptsch
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jenny Leopold
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Gupta A, Rodriguez HC, Potty AG, Levy HJ, El-Amin III SF. Treatment of Knee Osteoarthritis with Intraarticular Umbilical Cord-Derived Wharton's Jelly: A Case Report. Pharmaceuticals (Basel) 2021; 14:883. [PMID: 34577583 PMCID: PMC8472740 DOI: 10.3390/ph14090883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
We present the case of a 27-year-old male with grade II knee osteoarthritis (OA) that was intraarticularly injected with a 2 mL umbilical cord-derived Wharton's jelly (UC-derived WJ) formulation. The patients' baseline radiographs were taken and baseline numeric pain rating scale (NPRS), knee injury and osteoarthritis outcome score (KOOS), 7-point Likert scale, and a 36-item short form survey (SF-36) were recorded. The NPRS was re-recorded immediately after the injection, and at 24 h, 48 h, 1 week, 6 weeks, and at 3 months follow-up post-injection. The KOOS and 7-point Likert scale was re-recorded at the patients' 1week, 6 week, and 3month follow-up, and SF-36 was re-recorded at 3 months. A final set of X-rays were also performed at 3 months follow-up post-injection. No adverse effects from the injection were reported over the duration of the study. No significant difference nor progression in OA on X-rays compared to baseline was observed. NPRS decreased by 50% and the 7-point Likert scale increased to Extremely Satisfied. KOOS increased overall by 10% and the SF-36 overall change was 25%. These results indicate the potential application of UC-derived WJ in the treatment of knee OA. Larger, long term, non-randomized and randomized control trials are warranted to adequately assess the safety and efficacy of UC-derived WJ and ultimate clinical use.
Collapse
Affiliation(s)
- Ashim Gupta
- BioIntegrate, Lawrenceville, GA 30043, USA; (H.J.L.); (S.F.E.-A.III)
- Future Biologics, Lawrenceville, GA 30043, USA
- South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX 78045, USA;
- Veterans in Pain, Valencia, CA 91354, USA
| | | | - Anish G. Potty
- South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX 78045, USA;
- Laredo Sports Medicine Clinic, Laredo, TX 78041, USA
| | - Howard J. Levy
- BioIntegrate, Lawrenceville, GA 30043, USA; (H.J.L.); (S.F.E.-A.III)
- Department of Orthopaedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY 10075, USA
| | - Saadiq F. El-Amin III
- BioIntegrate, Lawrenceville, GA 30043, USA; (H.J.L.); (S.F.E.-A.III)
- El-Amin Orthopaedic and Sports Medicine Institute, Lawrenceville, GA 30043, USA
| |
Collapse
|
23
|
Characterization of Osteogenesis and Chondrogenesis of Human Decellularized Allogeneic Bone with Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Wharton's Jelly. Int J Mol Sci 2021; 22:ijms22168987. [PMID: 34445692 PMCID: PMC8396436 DOI: 10.3390/ijms22168987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Allogeneic bone grafts are a promising material for bone implantation due to reduced operative trauma, reduced blood loss, and no donor-site morbidity. Although human decellularized allogeneic bone (hDCB) can be used to fill bone defects, the research of revitalizing hDCB blocks with human mesenchymal stem cells (hMSCs) for osteochondral regeneration is missing. The hMSCs derived from bone marrow, adipose tissue, and Wharton’s jelly (BMMSCs, ADMSCs, and UMSCs, respectively) are potential candidates for bone regeneration. This study characterized the potential of hDCB as a scaffold for osteogenesis and chondrogenesis of BMMSCs, ADMSCs, and UMSCs. The pore sizes and mechanical strength of hDCB were characterized. Cell survival and adhesion of hMSCs were investigated using MTT assay and F-actin staining. Alizarin Red S and Safranin O staining were conducted to demonstrate calcium deposition and proteoglycan production of hMSCs after osteogenic and chondrogenic differentiation, respectively. A RT-qPCR was performed to analyze the expression levels of osteogenic and chondrogenic markers in hMSCs. Results indicated that BMMSCs and ADMSCs exhibited higher osteogenic potential than UMSCs. Furthermore, ADMSCs and UMSCs had higher chondrogenic potential than BMMSCs. This study demonstrated that chondrogenic ADMSCs- or UMSCs-seeded hDCB might be potential osteochondral constructs for osteochondral regeneration.
Collapse
|
24
|
Karabıyık Acar Ö, Bedir S, Kayitmazer AB, Kose GT. Chondro-inductive hyaluronic acid/chitosan coacervate-based scaffolds for cartilage tissue engineering. Int J Biol Macromol 2021; 188:300-312. [PMID: 34358603 DOI: 10.1016/j.ijbiomac.2021.07.176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Injuries related to articular cartilage are among the most challenging musculoskeletal problems because of poor repair capacity of this tissue. The lack of efficient treatments for chondral defects has stimulated research on cartilage tissue engineering applications combining porous biocompatible scaffolds with stem cells in the presence of external stimuli. This work presents the role of rat bone marrow mesenchymal stem cell (BMSC) encapsulated-novel three-dimensional (3D) coacervate scaffolds prepared through complex coacervation between different chitosan salts (CHI) and sodium hyaluronate (HA). The 3D architecture of BMSC encapsulated scaffolds (HA/CHI) was shown by scanning electron microscopy (SEM) to have an interconnected structure to allow cell-cell and cell-matrix interactions. Chondrogenic induction of encapsulated BMSCs within HA/CHI coacervates demonstrated remarkable cellular viability in addition to the elevated expression levels of chondrogenic markers such as sex determining region Y-box 9 protein (SOX9), aggrecan (ACAN), cartilage oligomeric matrix protein (COMP) and collagen type II (COL2A1) by immunofluorescence staining, qPCR and ELISA test. Collectively, HA/CHI coacervates are promising candidates for future use of these scaffolds in cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Özge Karabıyık Acar
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| | - Seden Bedir
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | - Gamze Torun Kose
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
25
|
Bekhouche M, Bolon M, Charriaud F, Lamrayah M, Da Costa D, Primard C, Costantini A, Pasdeloup M, Gobert S, Mallein-Gerin F, Verrier B, Ducret M, Farges JC. Development of an antibacterial nanocomposite hydrogel for human dental pulp engineering. J Mater Chem B 2021; 8:8422-8432. [PMID: 32804177 DOI: 10.1039/d0tb00989j] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hydrogel-based regenerative endodontic procedures (REPs) are considered to be very promising therapeutic strategies to reconstruct the dental pulp (DP) tissue in devitalized human teeth. However, the success of the regeneration process is limited by residual bacteria that may persist in the endodontic space after the disinfection step and contaminate the biomaterial. The aim of this work was to develop an innovative fibrin hydrogel incorporating clindamycin (CLIN)-loaded Poly (d,l) Lactic Acid (PLA) nanoparticles (NPs) to provide the hydrogel with antibacterial properties. CLIN-PLA-NPs were synthesized by a surfactant-free nanoprecipitation method and their microphysical properties were assessed by dynamic light scattering, electrophoretic mobility and scanning electron microscopy. Their antimicrobial efficacy was evaluated on Enteroccocus fæcalis by the determination of the minimal inhibitory concentration (MIC) and the minimal biofilm inhibition and eradication concentrations (MBIC and MBEC). Antibacterial properties of the nanocomposite hydrogel were verified by agar diffusion assays. NP distribution into the hydrogel and release from it were evaluated using fluorescent PLA-NPs. NP cytotoxicity was assessed on DP mesenchymal stem cells (DP-MSCs) incorporated into the hydrogel. Type I collagen synthesis was investigated after 7 days of culture by immunohistochemistry. We found that CLIN-PLA-NPs displayed a drug loading of 10 ± 2 μg per mg of PLA polymer and an entrapment efficiency of 43 ± 7%. Antibiotic loading did not affect NP size, polydispersity index and zeta potential. The MIC for Enterococcus fæcalis was 32 μg mL-1. MBIC50 and MBEC50 were 4 and 16 μg mL-1, respectively. CLIN-PLA-NPs appeared homogenously distributed throughout the hydrogel. CLIN-PLA-NP-loaded hydrogels clearly inhibited E. faecalis growth. DP-MSC viability and type I collagen synthesis within the fibrin hydrogel were not affected by CLIN-PLA-NPs. In conclusion, CLIN-PLA-NP incorporation into the fibrin hydrogel gave the latter antibacterial and antibiofilm properties without affecting cell viability and function. This formulation could help establish an aseptic environment supporting DP reconstruction and, accordingly, might be a valuable tool for REPs.
Collapse
Affiliation(s)
- M Bekhouche
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France and Faculté d'Odontologie, Université de Lyon, Université Lyon 1, Lyon, France
| | - M Bolon
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - F Charriaud
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - M Lamrayah
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - D Da Costa
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France and Adjuvatis®, Lyon, France
| | | | - A Costantini
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - M Pasdeloup
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - S Gobert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - F Mallein-Gerin
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - B Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - M Ducret
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France and Faculté d'Odontologie, Université de Lyon, Université Lyon 1, Lyon, France and Hospices Civils de Lyon, Service de Consultations et Traitements Dentaires, Lyon, France
| | - J-C Farges
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France and Faculté d'Odontologie, Université de Lyon, Université Lyon 1, Lyon, France and Hospices Civils de Lyon, Service de Consultations et Traitements Dentaires, Lyon, France
| |
Collapse
|
26
|
Recent advances in bioprinting technologies for engineering different cartilage-based tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112005. [PMID: 33812625 DOI: 10.1016/j.msec.2021.112005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Inadequate self-repair and regenerative efficiency of the cartilage tissues has motivated the researchers to devise advanced and effective strategies to resolve this issue. Introduction of bioprinting to tissue engineering has paved the way for fabricating complex biomimetic engineered constructs. In this context, the current review gears off with the discussion of standard and advanced 3D/4D printing technologies and their implications for the repair of different cartilage tissues, namely, articular, meniscal, nasoseptal, auricular, costal, and tracheal cartilage. The review is then directed towards highlighting the current stem cell opportunities. On a concluding note, associated critical issues and prospects for future developments, particularly in this sphere of personalized medicines have been discussed.
Collapse
|
27
|
Dufour A, Lafont JE, Buffier M, Verset M, Cohendet A, Contamin H, Confais J, Sankar S, Rioult M, Perrier-Groult E, Mallein-Gerin F. Repair of full-thickness articular cartilage defects using IEIK13 self-assembling peptide hydrogel in a non-human primate model. Sci Rep 2021; 11:4560. [PMID: 33633122 PMCID: PMC7907267 DOI: 10.1038/s41598-021-83208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
Articular cartilage is built by chondrocytes which become less active with age. This declining function of the chondrocytes, together with the avascular nature of the cartilage, impedes the spontaneous healing of chondral injuries. These lesions can progress to more serious degenerative articular conditions as in the case of osteoarthritis. As no efficient cure for cartilage lesions exist yet, cartilage tissue engineering has emerged as a promising method aiming at repairing joint defects and restoring articular function. In the present work, we investigated if a new self-assembling peptide (referred as IEIK13), combined with articular chondrocytes treated with a chondrogenic cocktail (BMP-2, insulin and T3, designated BIT) could be efficient to restore full-thickness cartilage defects induced in the femoral condyles of a non-human primate model, the cynomolgus monkey. First, in vitro molecular studies indicated that IEIK13 was efficient to support production of cartilage by monkey articular chondrocytes treated with BIT. In vivo, cartilage implant integration was monitored non-invasively by contrast-enhanced micro-computed tomography, and then by post-mortem histological analysis and immunohistochemical staining of the condyles collected 3 months post-implantation. Our results revealed that the full-thickness cartilage injuries treated with either IEIK13 implants loaded with or devoid of chondrocytes showed similar cartilage-characteristic regeneration. This pilot study demonstrates that IEIK13 can be used as a valuable scaffold to support the in vitro activity of articular chondrocytes and the repair of articular cartilage defects, when implanted alone or with chondrocytes.
Collapse
Affiliation(s)
- Alexandre Dufour
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | - Jérôme E Lafont
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | | | | | | | | | | | | | | | - Emeline Perrier-Groult
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367, Lyon Cedex 07, France.
| |
Collapse
|
28
|
Rodriguez HC, Gupta M, Cavazos-Escobar E, El-Amin SF, Gupta A. Umbilical cord: an allogenic tissue for potential treatment of COVID-19. Hum Cell 2021; 34:1-13. [PMID: 33033884 PMCID: PMC7544522 DOI: 10.1007/s13577-020-00444-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic has placed an unprecedented burden on health care systems and economies around the globe. Clinical evidences demonstrate that SARS-CoV-2 infection produces detrimental levels of pro-inflammatory cytokines and chemokines that can lead to acute respiratory distress syndrome (ARDS) and significant systemic organ damage. Currently, there is no definitive therapy for COVID-19 or associated complications, and with the hope of a safe and effective vaccine in the distant future, the search for an answer is paramount. Mesenchymal stem cells (MSCs) provide a viable option due to their immunomodulatory effects and tissue repair and regeneration abilities. Studies have demonstrated that compassionate use of MSCs can reduce symptoms associated with SARS-CoV-2 infection, eliminate fluid buildup, and act as a regenerative technique for alveolar damage; all in a safe and effective way. With multiple autologous sources available for MSCs, each with their own respective limitations, allogenic umbilical cord (UC) and/or UC-derived Wharton's jelly (WJ) seem to be best positioned source to harvest MSCs to treat COVID-19 and associated symptoms. As an allogenic source, UC is readily available, easily obtainable, and is rich in immunomodulatory and regenerative factors. In this manuscript, we reviewed the current evidences and explored the potential therapeutic use of allogenic UC and/or WJ-derived MSCs for the treatment of COVID-19. Although, preliminary preclinical and clinical studies indicate that their use is safe and potentially effective, more multi-center, randomized, controlled trials are needed to adequately assess the safety and efficacy of UC and/or WJ-derived MSCs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Hugo C. Rodriguez
- Future Biologics, 1110 Ballpark Ln Apt 5109, Lawrenceville, GA 30043 USA
- Future Physicians of South Texas, San Antonio, TX USA
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX USA
- South Texas Orthopaedic Research Institute, Laredo, TX USA
| | - Manu Gupta
- Future Biologics, 1110 Ballpark Ln Apt 5109, Lawrenceville, GA 30043 USA
| | - Emilio Cavazos-Escobar
- Future Physicians of South Texas, San Antonio, TX USA
- University of Texas Medical Branch at Galveston, Galveston, TX USA
| | - Saadiq F. El-Amin
- El-Amin Orthopaedic and Sports Medicine Institute, Lawrenceville, GA USA
- BioIntegrate, Lawrenceville, GA USA
| | - Ashim Gupta
- Future Biologics, 1110 Ballpark Ln Apt 5109, Lawrenceville, GA 30043 USA
- South Texas Orthopaedic Research Institute, Laredo, TX USA
- BioIntegrate, Lawrenceville, GA USA
- Veterans in Pain, Los Angeles, CA USA
| |
Collapse
|
29
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Epigenetic Regulation of Dental Pulp Stem Cell Fate. Stem Cells Int 2020; 2020:8876265. [PMID: 33149742 PMCID: PMC7603635 DOI: 10.1155/2020/8876265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
Epigenetic regulation, mainly involving DNA methylation, histone modification, and noncoding RNAs, affects gene expression without modifying the primary DNA sequence and modulates cell fate. Mesenchymal stem cells derived from dental pulp, also called dental pulp stem cells (DPSCs), exhibit multipotent differentiation capacity and can promote various biological processes, including odontogenesis, osteogenesis, angiogenesis, myogenesis, and chondrogenesis. Over the past decades, increased attention has been attracted by the use of DPSCs in the field of regenerative medicine. According to a series of studies, epigenetic regulation is essential for DPSCs to differentiate into specialized cells. In this review, we summarize the mechanisms involved in the epigenetic regulation of the fate of DPSCs.
Collapse
|
31
|
Abdollahiyan P, Oroojalian F, Mokhtarzadeh A, Guardia M. Hydrogel‐Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Biotechnol J 2020; 15:e2000095. [DOI: 10.1002/biot.202000095] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Parinaz Abdollahiyan
- Immunology Research Center Tabriz University of Medical Sciences Tabriz 5166614731 Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies School of Medicine North Khorasan University of Medical Sciences Bojnurd 7487794149 Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz 5166614731 Iran
| | - Miguel Guardia
- Department of Analytical Chemistry University of Valencia Dr. Moliner 50 Burjassot Valencia 46100 Spain
| |
Collapse
|
32
|
Sierra-Parraga JM, Merino A, Eijken M, Leuvenink H, Ploeg R, Møller BK, Jespersen B, Baan CC, Hoogduijn MJ. Reparative effect of mesenchymal stromal cells on endothelial cells after hypoxic and inflammatory injury. Stem Cell Res Ther 2020; 11:352. [PMID: 32787906 PMCID: PMC7424997 DOI: 10.1186/s13287-020-01869-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 01/02/2023] Open
Abstract
Background The renal endothelium is a prime target for ischemia-reperfusion injury (IRI) during donation and transplantation procedures. Mesenchymal stromal cells (MSC) have been shown to ameliorate kidney function after IRI. However, whether this involves repair of the endothelium is not clear. Therefore, our objective is to study potential regenerative effects of MSC on injured endothelial cells and to identify the molecular mechanisms involved. Methods Human umbilical vein endothelial cells (HUVEC) were submitted to hypoxia and reoxygenation and TNF-α treatment. To determine whether physical interaction or soluble factors released by MSC were responsible for the potential regenerative effects of MSC on endothelial cells, dose-response experiments were performed in co-culture and transwell conditions and with secretome-deficient MSC. Results MSC showed increased migration and adhesion to injured HUVEC, mediated by CD29 and CD44 on the MSC membrane. MSC decreased membrane injury marker expression, oxidative stress levels, and monolayer permeability of injured HUVEC, which was observed only when allowing both physical and paracrine interaction between MSC and HUVEC. Furthermore, viable MSC in direct contact with injured HUVEC improved wound healing capacity by 45% and completely restored their angiogenic capacity. In addition, MSC exhibited an increased ability to migrate through an injured HUVEC monolayer compared to non-injured HUVEC in vitro. Conclusions These results show that MSC have regenerative effects on injured HUVEC via a mechanism which requires both physical and paracrine interaction. The identification of specific effector molecules involved in MSC-HUVEC interaction will allow targeted modification of MSC to apply and enhance the therapeutic effects of MSC in IRI. ![]()
Collapse
Affiliation(s)
- Jesus M Sierra-Parraga
- Internal Medicine Department, Sector Nephrology & Transplantation, University Medical Center Rotterdam, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Ana Merino
- Internal Medicine Department, Sector Nephrology & Transplantation, University Medical Center Rotterdam, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Henri Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rutger Ploeg
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Carla C Baan
- Internal Medicine Department, Sector Nephrology & Transplantation, University Medical Center Rotterdam, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Martin J Hoogduijn
- Internal Medicine Department, Sector Nephrology & Transplantation, University Medical Center Rotterdam, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| |
Collapse
|
33
|
To K, Romain K, Mak C, Kamaraj A, Henson F, Khan W. The Treatment of Cartilage Damage Using Human Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Systematic Review of in vivo Studies. Front Bioeng Biotechnol 2020; 8:580. [PMID: 32596228 PMCID: PMC7300288 DOI: 10.3389/fbioe.2020.00580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Damage to joints through injury or disease can result in cartilage loss, which if left untreated can lead to inflammation and ultimately osteoarthritis. There is currently no cure for osteoarthritis and management focusses on symptom control. End-stage osteoarthritis can be debilitating and ultimately requires joint replacement in order to maintain function. Therefore, there is growing interest in innovative therapies for cartilage repair. In this systematic literature review, we sought to explore the in vivo evidence for the use of human Mesenchymal Stem Cell-derived Extracellular Vesicles (MSC-EVs) for treating cartilage damage. We conducted a systematic literature review in accordance with the PRISMA protocol on the evidence for the treatment of cartilage damage using human MSC-EVs. Studies examining in vivo models of cartilage damage were included. A risk of bias analysis of the studies was conducted using the SYRCLE tool. Ten case-control studies were identified in our review, including a total of 159 murine subjects. MSC-EVs were harvested from a variety of human tissues. Five studies induced osteoarthritis, including cartilage loss through surgical joint destabilization, two studies directly created osteochondral lesions and three studies used collagenase to cause cartilage loss. All studies in this review reported reduced cartilage loss following treatment with MSC-EVs, and without significant complications. We conclude that transplantation of MSC-derived EVs into damaged cartilage can effectively reduce cartilage loss in murine models of cartilage injury. Additional randomized studies in animal models that recapitulates human osteoarthritis will be necessary in order to establish findings that inform clinical safety in humans.
Collapse
Affiliation(s)
- Kendrick To
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Karl Romain
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christopher Mak
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Achi Kamaraj
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Frances Henson
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Wasim Khan
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Lam AT, Reuveny S, Oh SKW. Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. Stem Cell Res 2020; 44:101738. [DOI: 10.1016/j.scr.2020.101738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
|
35
|
Böhrnsen F, Melsheimer P, Natorp M, Rolf H, Schminke B, Kauffmann P, Wolfer S, Schliephake H. Cotransplantation of mesenchymal stromal cells and endothelial cells on calcium carbonate and hydroxylapatite scaffolds in vivo. J Craniomaxillofac Surg 2020; 49:238-245. [PMID: 33483245 DOI: 10.1016/j.jcms.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/06/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022] Open
Abstract
This study investigated the cotransplantation of bone marrow mesenchymal stromal cells (BMSC) and human umbilical cord endothelial cells (HUVEC), and evaluated their contribution to vascular and bone tissue engineering in vivo. To evaluate the success of osteogenic differentiation and timely vascularization of different osteoconductive scaffolds in vivo, we transferred BMSC and HUVEC pre-cultivated calcium carbonate (CaCO3) and hydroxylapatite (HA) matrices into immunocompromised RNU-rats, and analyzed mineralization, expression of osteopontin, and vascular integration via new vessel formation. After in vivo transplantation, pre-cultivated scaffolds demonstrated overall improved mineralization of 44% for CaCO3 (p = 0.01, SD ± 14.3) and 34% for HA (p = 0.001, SD ± 17.8), as well as improved vascularization of 5.6 vessels/0.1 mm2 on CaCO3 (p < 0.0001, SD ± 2.0) and 5.3 vessels/0.1 mm2 on HA (p < 0.0001, SD ± 2.4) compared with non-pre-cultivated controls. However, no significant differences between the implantation of BMSC-only, HUVEC-only, or BMSC + HUVEC cocultures could be observed. There is an increasing demand for improved bone regeneration in tissue engineering. Cotransplantation of mesenchymal stromal cells and endothelial cells often demonstrates synergistic improvements in vitro. However, the benefits or superiority of cotransplantation was not evident in vivo and so will require further investigation.
Collapse
Affiliation(s)
- Florian Böhrnsen
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany.
| | - Petra Melsheimer
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Mareike Natorp
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Hans Rolf
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Boris Schminke
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Philipp Kauffmann
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Susanne Wolfer
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| |
Collapse
|
36
|
Kunisch E, Gunnella F, Wagner S, Dees F, Maenz S, Bossert J, Jandt KD, Kinne RW. The poly (l-lactid-co-glycolide; PLGA) fiber component of brushite-forming calcium phosphate cement induces the osteogenic differentiation of human adipose tissue-derived stem cells. ACTA ACUST UNITED AC 2019; 14:055012. [PMID: 31465298 DOI: 10.1088/1748-605x/ab3544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A brushite-forming calcium phosphate cement (CPC) was mechanically stabilized by addition of poly (l-lactid-co-glycolide; PLGA) fibers (≤10% w/w). It proved highly biocompatible and its fiber component enhanced bone formation in a sheep lumbar vertebroplasty model. However, possible effects on the osteogenic differentiation of resident mesenchymal stem cells (MSCs) remained unexplored. The present study used a novel approach, simultaneously analyzing the influence of a solid CPC scaffold and its relatively low PLGA proportion (a mimicry of natural bone) on osteogenic, chondrogenic, and adipogenic differentiation, as well as the pluripotency of human adipose tissue-derived mesenchymal stem cells (hASCs). hASCs were cultured on CPC discs with/without PLGA fibers (5% and 10%) in the absence of osteogenic medium for 3, 7, and 14 d. Gene expression of osteogenic markers (Runx2, osterix, alkaline phosphatase, collagen I, osteonectin, osteopontin, osteocalcin), chondrogenic markers (collagen II, Sox9, aggrecan), adipogenic markers (PPARG, Leptin, and FABP4), and pluripotency markers (Nanog, Tert, Rex) was analyzed by RT-PCR. The ability of hASCs to synthesize alkaline phosphatase was also evaluated. Cell number and viability were determined by fluorescein diacetate/propidium iodide staining. Compared to pure CPC, cultivation of hASCs on fiber-reinforced CPC transiently induced the gene expression of Runx2 and osterix (day 3), and long-lastingly augmented the expression of alkaline phosphatase (and its enzyme activity), collagen I, and osteonectin (until day 14). In contrast, augmented expression of all chondrogenic, adipogenic, and pluripotency markers was limited to day 3, followed by significant downregulation. Cultivation of hASCs on fiber-reinforced CPC reduced the cell number, but not the proportion of viable cells (viability > 95%). The PLGA component of fiber-reinforced, brushite-forming CPC supports long-lasting osteogenic differentiation of hASCs, whereas chondrogenesis, adipogenesis, and pluripotency are initially augmented, but subsequently suppressed. In view of parallel animal results, PLGA fibers may represent an interesting clinical target for future improvement of CPC- based bone regeneration.
Collapse
Affiliation(s)
- Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|