1
|
Lu Q, Liu J, Xiong Y, Jian J, Wang J, Chen Z, Wan S, Liu X, Wang L. Cyanidin-3-glucoside upregulated NDRG2 through the PI3K/AKT pathway to alleviate EMT and ECM in renal fibrosis. Sci Rep 2025; 15:10695. [PMID: 40155416 PMCID: PMC11953473 DOI: 10.1038/s41598-025-94918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Renal fibrosis is a critical progression of chronic kidney disease, and epithelial-to-mesenchymal transition (EMT) and extracellular matrix(ECM) deposition are crucial pathologic change of renal fibrosis, which still lacks of effective treatment. In this study, it was found that cyanidin-3-O-glucoside (C3G) could inhibit EMT and ECM activated by unilateral ureteral obstruction (UUO) and transforming growth factor-β1 (TGF-β1) stimulation. Moreover, N-Myc downstream-regulated gene 2(NDRG2), which involved in the progression of renal fibrosis, was down-regulated in vivo and in vitro model. However, C3G pretreatment could reverse the reductive expression of NDRG2. Furthermore, we found that the combined treatment of C3G and si-NDRG2 could reverse the decreased EMT and ECM, which induced by C3G treatment only. And the activation of Phosphatidylinositol 3-kinase (PI3K)/ Protein Kinase B (AKT) pathway significantly enhanced EMT and ECM, which was decreased by C3G treatment only in TGF-β1 induced Human Kidney 2 (HK-2) cells. In conclusion, our results demonstrated that C3G alleviated EMT and ECM by elevating NDRG2 expression through the PI3K/AKT pathway, indicating that C3G could be a potential treatment against renal fibrosis.
Collapse
Affiliation(s)
- Qianxue Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jin Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yufeng Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jun Jian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingsong Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
2
|
Wang Q, Saadati S, Kabthymer RH, Gadanec LK, Lawton A, Tripodi N, Apostolopoulos V, de Courten B, Feehan J. The impact of carnosine on biological ageing - A geroscience approach. Maturitas 2024; 189:108091. [PMID: 39153379 DOI: 10.1016/j.maturitas.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Biological ageing involves a gradual decline in physiological function and resilience, marked by molecular, cellular, and systemic changes across organ systems. Geroscience, an interdisciplinary field, studies these mechanisms and their role in age-related diseases. Genomic instability, inflammation, telomere attrition, and other indicators contribute to conditions like cardiovascular disease and neurodegeneration. Geroscience identifies geroprotectors, such as resveratrol and metformin, targeting ageing pathways to extend the healthspan. Carnosine, a naturally occurring dipeptide (b-alanine and l-histidine), has emerged as a potential geroprotector with antioxidative, anti-inflammatory, and anti-glycating properties. Carnosine's benefits extend to muscle function, exercise performance, and cognitive health, making it a promising therapeutic intervention for healthy ageing and oxidative stress-related pathologies. In this review, we summarize the evidence describing carnosine's effects in promoting healthy ageing, providing new insights into improving geroscience.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Robel Hussen Kabthymer
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Amy Lawton
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
3
|
Wang Q, Tripodi N, Valiukas Z, Bell SM, Majid A, de Courten B, Apostolopoulos V, Feehan J. The protective role of carnosine against type 2 diabetes-induced cognitive impairment. Food Sci Nutr 2024; 12:3819-3833. [PMID: 38873448 PMCID: PMC11167184 DOI: 10.1002/fsn3.4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
The morbidity and mortality associated with type 2 diabetes mellitus (T2DM) have grown exponentially over the last 30 years. Together with its associated complications, the mortality rates have increased. One important complication in those living with T2DM is the acceleration of age-related cognitive decline. T2DM-induced cognitive impairment seriously affects memory, executive function, and quality of life. However, there is a lack of effective treatment for both diabetes and cognitive decline. Thus, finding novel treatments which are cheap, effective in both diabetes and cognitive impairment, are easily accessible, are needed to reduce impact on patients with diabetes and health-care systems. Carnosine, a histidine containing dipeptide, plays a protective role in cognitive diseases due to its antioxidant, anti-inflammation, and anti-glycation properties, all of which may slow the development of neurodegenerative diseases and ischemic injury. Furthermore, carnosine is also involved in regulating glucose and insulin in diabetes. Herein, we discuss the neuroprotective role of carnosine and its mechanisms in T2DM-induced cognitive impairment, which may provide a theoretical basis and evidence base to evaluate whether carnosine has therapeutic effects in alleviating cognitive dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Zachary Valiukas
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Simon M. Bell
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Barbora de Courten
- STEM college, RMIT UniversityMelbourneVictoriaAustralia
- School of Clinical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
- Australian Institute for Musculoskeletal Sciences, Immunology Program, Western HealthThe University of Melbourne and Victoria UniversityMelbourneVictoriaAustralia
| | - Jack Feehan
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| |
Collapse
|
4
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
5
|
Meftahi GH, Jahromi GP. Biochemical Mechanisms of Beneficial Effects of Beta-Alanine Supplements on Cognition. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1181-1190. [PMID: 37758316 DOI: 10.1134/s0006297923080114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 10/03/2023]
Abstract
Using nutritional interventions to cure and manage psychiatric disorders is a promising tool. In this regard, accumulating documents support strong relationships between the diet and brain health throughout the lifespan. Evidence from animal and human studies demonstrated that β-alanine (Beta-alanine; BA), a natural amino acid, provides several benefits in fight against cognitive decline promoting mental health. This review summarizes and reports state-of-the-art evidence on how BA affects cognitive health and argues existence of potential unrevealed biochemical mechanisms and signaling cascades. There is a growing body of evidence showing that BA supplement has a significant role in mental health mediating increase of the cell carnosine and brain-derived neurotrophic factor (BDNF) content. BDNF is one of the most studied neurotrophins in the mammalian brain, which activates several downstream functional cascades via the tropomyosin-related kinase receptor type B (TrkB). Activation of TrkB induces diverse processes, such as programmed cell death and neuronal viability, dendritic branching growth, dendritic spine formation and stabilization, synaptic development, cognitive-related processes, and synaptic plasticity. Carnosine exerts its main effect via its antioxidant properties. This critical antioxidant also scavenges hypochlorous acid (HOCl), another toxic species produced in mammalian cells. Carnosine regulates transcription of hundreds of genes related to antioxidant mechanisms by increasing expression of the nuclear erythroid 2-related factor 2 (Nrf2) and translocating Nrf2 to the nucleus. Another major protective effect of carnosine on the central nervous system (CNS) is related to its anti-glycating, anti-aggregate activities, anti-inflammatory, metal ion chelator activity, and regulation of pro-inflammatory cytokine secretion. These effects could be associated with the carnosine ability to form complexes with metal ions, particularly with zinc (Zn2+). Thus, it seems that BA via BDNF and carnosine mechanisms may improve brain health and cognitive function over the entire human lifespan.
Collapse
Affiliation(s)
- Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Caruso G, Di Pietro L, Caraci F. Gap Junctions and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for Drug Discovery. Biomolecules 2023; 13:biom13030505. [PMID: 36979440 PMCID: PMC10046203 DOI: 10.3390/biom13030505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Microglia represent the immune system of the brain. Their role is central in two phenomena, neuroinflammation and oxidative stress, which are at the roots of different pathologies related to the central nervous system (CNS). In order to maintain the homeostasis of the brain and re-establish the equilibrium after a threatening imbalance, microglia communicate with each other and other cells within the CNS by receiving specific signals through membrane-bound receptors and then releasing neurotrophic factors into either the extracellular milieu or directly into the cytoplasm of nearby cells, such as astrocytes and neurons. These last two mechanisms rely on the activity of protein structures that enable the formation of channels in the membrane, namely, connexins and pannexins, that group and form gap junctions, hemichannels, and pannexons. These channels allow the release of gliotransmitters, such as adenosine triphosphate (ATP) and glutamate, together with calcium ion (Ca2+), that seem to play a pivotal role in inter-cellular communication. The aim of the present review is focused on the physiology of channel protein complexes and their contribution to neuroinflammatory and oxidative stress-related phenomena, which play a central role in neurodegenerative disorders. We will then discuss how pharmacological modulation of these channels can impact neuroinflammatory phenomena and hypothesize that currently available nutraceuticals, such as carnosine and N-acetylcysteine, can modulate the activity of connexins and pannexins in microglial cells and reduce oxidative stress in neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-0957385036
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
7
|
Caruso G, Di Pietro L, Cardaci V, Maugeri S, Caraci F. The therapeutic potential of carnosine: Focus on cellular and molecular mechanisms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023. [DOI: 10.1016/j.crphar.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
8
|
Jin Q, Liu T, Chen D, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Therapeutic potential of artemisinin and its derivatives in managing kidney diseases. Front Pharmacol 2023; 14:1097206. [PMID: 36874000 PMCID: PMC9974673 DOI: 10.3389/fphar.2023.1097206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Artemisinin, an antimalarial traditional Chinese herb, is isolated from Artemisia annua. L, and has shown fewer side effects. Several pieces of evidence have demonstrated that artemisinin and its derivatives exhibited therapeutic effects on diseases like malaria, cancer, immune disorders, and inflammatory diseases. Additionally, the antimalarial drugs demonstrated antioxidant and anti-inflammatory activities, regulating the immune system and autophagy and modulating glycolipid metabolism properties, suggesting an alternative for managing kidney disease. This review assessed the pharmacological activities of artemisinin. It summarized the critical outcomes and probable mechanism of artemisinins in treating kidney diseases, including inflammatory, oxidative stress, autophagy, mitochondrial homeostasis, endoplasmic reticulum stress, glycolipid metabolism, insulin resistance, diabetic nephropathy, lupus nephritis, membranous nephropathy, IgA nephropathy, and acute kidney injury, suggesting the therapeutic potential of artemisinin and its derivatives in managing kidney diseases, especially the podocyte-associated kidney diseases.
Collapse
Affiliation(s)
- Qi Jin
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Tongtong Liu
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Danqian Chen
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Huimin Mao
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Fang Ma
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Yuyang Wang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| |
Collapse
|
9
|
The Therapeutic Potential of Carnosine as an Antidote against Drug-Induced Cardiotoxicity and Neurotoxicity: Focus on Nrf2 Pathway. Molecules 2022; 27:molecules27144452. [PMID: 35889325 PMCID: PMC9324774 DOI: 10.3390/molecules27144452] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Different drug classes such as antineoplastic drugs (anthracyclines, cyclophosphamide, 5-fluorouracil, taxanes, tyrosine kinase inhibitors), antiretroviral drugs, antipsychotic, and immunosuppressant drugs are known to induce cardiotoxic and neurotoxic effects. Recent studies have demonstrated that the impairment of the nuclear factor erythroid 2–related factor 2 (Nrf2) pathway is a primary event in the pathophysiology of drug-induced cardiotoxicity and neurotoxicity. The Nrf2 pathway regulates the expression of different genes whose products are involved in antioxidant and inflammatory responses and the detoxification of toxic species. Cardiotoxic drugs, such as the anthracycline doxorubicin, or neurotoxic drugs, such as paclitaxel, suppress or impair the Nrf2 pathway, whereas the rescue of this pathway counteracts both the oxidative stress and inflammation that are related to drug-induced cardiotoxicity and neurotoxicity. Therefore Nrf2 represents a novel pharmacological target to develop new antidotes in the field of clinical toxicology. Interestingly, carnosine (β-alanyl-l-histidine), an endogenous dipeptide that is characterized by strong antioxidant, anti-inflammatory, and neuroprotective properties is able to rescue/activate the Nrf2 pathway, as demonstrated by different preclinical studies and preliminary clinical evidence. Starting from these new data, in the present review, we examined the evidence on the therapeutic potential of carnosine as an endogenous antidote that is able to rescue the Nrf2 pathway and then counteract drug-induced cardiotoxicity and neurotoxicity.
Collapse
|
10
|
Busa P, Lee SO, Huang N, Kuthati Y, Wong CS. Carnosine Alleviates Knee Osteoarthritis and Promotes Synoviocyte Protection via Activating the Nrf2/HO-1 Signaling Pathway: An In-Vivo and In-Vitro Study. Antioxidants (Basel) 2022; 11:antiox11061209. [PMID: 35740105 PMCID: PMC9220310 DOI: 10.3390/antiox11061209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
The most common joint disease in the elderly is knee osteoarthritis (OA). It is distinguished by cartilage degradation, subchondral bone loss, and a decrease in joint space. We studied the effects of carnosine (CA) on knee OA in male Wistar rats. OA is induced by anterior cruciate ligament transection combined with medial meniscectomy (ACLT+MMx) method and in vitro studies are conducted in fibroblast-like synoviocyte cells (FLS). The pain was assessed using weight-bearing and paw-withdrawal tests. CA supplementation significantly reduced pain. The enzyme-linked immunosorbent assay (ELISA) method was used to detect inflammatory proteins in the blood and intra-articular synovial fluid (IASF), and CA reduced the levels of inflammatory proteins. Histopathological studies were performed on knee-tissue samples using toluidine blue and hematoxylin and eosin (H and E) assays. CA treatment improved synovial protection and decreased cartilage degradation while decreasing zonal depth lesions. Furthermore, Western blotting studies revealed that the CA-treated group activated nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase (HO-1) and reduced the expression of cyclooxygenase-2 (COX-2). FLS cells were isolated from the knee joints and treated with IL-1β to stimulate the inflammatory response and increase reactive oxygen species (ROS). The matrix metalloproteinase protein (MMP's) levels (MMP-3, and MMP-13) were determined using the reverse transcription-polymerase chain reaction (RT-PCR), and CA treatment reduced the MMP's expression levels. When tested using the 2',7'-dicholorodihydrofluroscene diacetate (DCFDA) assay and the 5,5',6,6'-tetracholoro-1,1',3,3'-tertraethylbenzimidazolcarboc janine iodide (JC-1) assay in augmented ROS FLS cells, CA reduced the ROS levels and improved the mitochondrial membrane permeability. This study's investigation suggests that CA significantly alleviates knee OA both in vitro and in vivo.
Collapse
Affiliation(s)
- Prabhakar Busa
- Department of Anesthesiology, Cathay General Hospital, Taipei City 106, Taiwan; (P.B.); (S.-O.L.); (Y.K.)
| | - Sing-Ong Lee
- Department of Anesthesiology, Cathay General Hospital, Taipei City 106, Taiwan; (P.B.); (S.-O.L.); (Y.K.)
| | - Niancih Huang
- Department of Anesthesiology, Tri-Service General Hospital, Taipei City 114, Taiwan;
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei City 114, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei City 106, Taiwan; (P.B.); (S.-O.L.); (Y.K.)
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei City 106, Taiwan; (P.B.); (S.-O.L.); (Y.K.)
- Department of Anesthesiology, Tri-Service General Hospital, Taipei City 114, Taiwan;
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei City 114, Taiwan
- Correspondence: ; Tel.: +886-2-2708-2121
| |
Collapse
|
11
|
Yu X, Jiang N, Li J, Li X, He S. Upregulation of BRD7 protects podocytes against high glucose-induced apoptosis by enhancing Nrf2 in a GSK-3β-dependent manner. Tissue Cell 2022; 76:101813. [PMID: 35550209 DOI: 10.1016/j.tice.2022.101813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022]
Abstract
Bromodomain-containing protein 7 (BRD7) is linked to a variety of pathophysiological conditions. However, it is still unclear whether BRD7 is connected with diabetic nephropathy. This research explored the relevance of BRD7 in diabetic nephropathy using high glucose (HG)-stimulated podocytes in vitro. BRD7 expression in podocytes was decreased after HG stimulation. Podocytes with forced BRD7 expression were protected from HG-induced apoptosis, oxidative stress and inflammation. Further data revealed that forced expression of BRD7 led to enhanced nuclear factor erythroid-2-related factor 2 (Nrf2) activation in HG-stimulated podocytes, associated with the upregulation of glycogen synthase kinase-3β (GSK-3β) phosphorylation. Reactivation of GSK-3β diminished BRD7-elicited Nrf2 activation. In addition, restraining of Nrf2 diminished the BRD7 overexpression-induced beneficial effects on HG-induced podocyte damage. Taken together, these data document that BRD7 defends against HG-induced podocyte damage by enhancing Nrf2 via regulation of GSK-3β. Our work indicates that the BRD7/GSK-3β/Nrf2 axis may play a key role in mediating podocyte injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Xiangyou Yu
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Ning Jiang
- Taihua Road Community Health Service Center, Xincheng District, Xi'an 710065, China
| | - Jing Li
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| | - Xiaofeng Li
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Shenglin He
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
12
|
Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103303. [PMID: 35630780 PMCID: PMC9143376 DOI: 10.3390/molecules27103303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous dipeptide and an over-the-counter food supplement with a well-demonstrated multimodal mechanism of action that includes the detoxification of reactive oxygen and nitrogen species, the down-regulation of the production of pro-inflammatory mediators, the inhibition of aberrant protein formation, and the modulation of cells in the peripheral (macrophages) and brain (microglia) immune systems. Since its discovery more than 100 years ago, a plethora of in vivo preclinical studies have been carried out; however, there is still substantial heterogeneity regarding the route of administration, the dosage, the duration of the treatment, and the animal model selected, underlining the urgent need for "coordinated/aligned" preclinical studies laying the foundations for well-defined future clinical trials. The main aim of the present position paper is to critically and concisely consider these key points and open a discussion on the possible "alignment" for future studies, with the goal of validating the full therapeutic potential of this intriguing molecule.
Collapse
|
13
|
Ma J, Yu Q, Han L. The effect of postmortem pH decline rate on caspase-3 activation and tenderness of bovine skeletal muscle during aging. J Food Biochem 2022; 46:e14215. [PMID: 35484879 DOI: 10.1111/jfbc.14215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the effect of postmortem pH decline rate on caspase-3 activity and bovine muscle tenderness during aging. Protein denaturation, reactive oxygen species (ROS) levels, mitochondrial apoptosis factors, and shear force were assessed in bovine muscles with different pH decline rates. The results showed that, compared with the slow group, the fast pH decline group had a 1.79% and 1.39% higher sarcoplasmic protein denaturation at 6 and 12 h, respectively (p < .05), and a significantly or extremely significantly higher ROS levels at 6-24 (p < .05, p < .01). Moreover, the fast group had a 14.05%, 22.39%,18.34%, and 25.28% of higher mitochondrial dysfunction at 6, 12, 24, and 72 h, respectively (p < .05); a 16.71%, 23.39%, 17.05%, and 26.61% of lower cytochrome c reduction levels at 6, 12, 24, and 120 h, respectively (p < .05); a significantly increased caspase-3 activity and proportion of apoptotic nuclei at 12-168 and 24-168 h, respectively (p < .05); and a 5.70%, 7.24%, 12.16%, 10.10% and 10.49% decreased shear force at 12, 24, 72,120, and 168 h, respectively (p < .05). These results demonstrated that the fast postmortem pH decline enhanced caspase-3 activation and bovine muscle tenderization by mitochondrial dysfunction-induced apoptosis during aging. PRACTICAL APPLICATIONS: Beef tenderness has long been one of the most important concerns for consumers and the meat industry. To date, the postmortem aging process has been an effective way to improve the tenderness of chilled beef. However, changes in many of the elements in a cattle's muscle after slaughter might actually determine the final tenderness of the meat. The present study suggested that the fast postmortem pH decline could promote the activation of caspase-3 and improve the tenderness of beef during aging. This finding can provide a basis for the meat processing industry to produce beef with high tenderness. In the future, beef tenderness could even be improved by adjusting the glycolytic rate and pH of muscle for a short time after slaughter.
Collapse
Affiliation(s)
- Jibing Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Solana-Manrique C, Sanz FJ, Martínez-Carrión G, Paricio N. Antioxidant and Neuroprotective Effects of Carnosine: Therapeutic Implications in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11050848. [PMID: 35624713 PMCID: PMC9137727 DOI: 10.3390/antiox11050848] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Neurodegenerative diseases (NDs) constitute a global challenge to human health and an important social and economic burden worldwide, mainly due to their growing prevalence in an aging population and to their associated disabilities. Despite their differences at the clinical level, NDs share fundamental pathological mechanisms such as abnormal protein deposition, intracellular Ca2+ overload, mitochondrial dysfunction, redox homeostasis imbalance and neuroinflammation. Although important progress is being made in deciphering the mechanisms underlying NDs, the availability of effective therapies is still scarce. Carnosine is a natural endogenous molecule that has been extensively studied during the last years due to its promising beneficial effects for human health. It presents multimodal mechanisms of action, being able to exert antioxidant, anti-inflammatory and anti-aggregate activities, among others. Interestingly, most NDs exhibit oxidative and nitrosative stress, protein aggregation and inflammation as molecular hallmarks. In this review, we discuss the neuroprotective functions of carnosine and its implications as a therapeutic strategy in different NDs. We summarize the existing works that study alterations in carnosine metabolism in Alzheimer’s disease and Parkinson’s disease, the two most common NDs. In addition, we review the beneficial effect that carnosine supplementation presents in models of such diseases as well as in aging-related neurodegeneration.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Guillermo Martínez-Carrión
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (G.M.-C.)
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
- Correspondence: ; Tel.: +34-96-354-3005; Fax: +34-96-354-3029
| |
Collapse
|
15
|
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022; 12:biom12030403. [DOI: 10.3390/biom12030403] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathies are kidney diseases that are driven by podocyte injury with proteinuria and proteinuria-related symptoms as the main clinical presentations. Albeit podocytopathies are the major contributors to end-stage kidney disease, the underlying molecular mechanisms of podocyte injury remain to be elucidated. Mitochondrial oxidative stress is associated with kidney diseases, and increasing evidence suggests that oxidative stress plays a vital role in the pathogenesis of podocytopathies. Accumulating evidence has placed mitochondrial oxidative stress in the focus of cell death research. Excessive generated reactive oxygen species over antioxidant defense under pathological conditions lead to oxidative damage to cellular components and regulate cell death in the podocyte. Conversely, exogenous antioxidants can protect podocyte from cell death. This review provides an overview of the role of mitochondrial oxidative stress in podocytopathies and discusses its role in the cell death of the podocyte, aiming to identify the novel targets to improve the treatment of patients with podocytopathies.
Collapse
|
16
|
Effect of fucoidan on kidney injury in type 2 diabetic rats based on PI3K/AKT/Nrf2. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Hsieh SL, Li JH, Dong CD, Chen CW, Wu CC. Carnosine suppresses human colorectal cancer cell proliferation by inducing necroptosis and autophagy and reducing angiogenesis. Oncol Lett 2022; 23:44. [PMID: 34976156 PMCID: PMC8674876 DOI: 10.3892/ol.2021.13162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is found in beef and fish. The present study aimed to investigate the effects of carnosine on the cell proliferation of human colorectal cancer cells. After human colorectal cancer HCT-116 cells were treated carnosine for 72 or 96 h, the cell proliferation, apoptosis, autophagy, necroptosis, angiogenesis and the expression of related regulatory molecules were detected using MTT assays, fluorescence image analysis and RT-qPCR in this study. Treatment of HCT-116 cells with 5, 10 or 15 mM carnosine for 72 or 96 h significantly decreased cell viability (P<0.05). The mRNA expression of β-catenin and transcription factor 4 (Tcf-4) was significantly reduced by 15–23% and 11–80%, respectively (P<0.05). When HCT-116 cells were treated with 15 mM carnosine, the mRNA levels of 1A/1B-light chain 3 and phosphatidylinositol 3-kinase were significantly increased by 235% and 249%, respectively (P<0.05). The mRNA level of Beclin-1 and autophagy levels were significantly increased by 137–141% in HCT-116 cells treated with 5, 10 or 15 mM carnosine (P<0.05). Carnosine (15 mM) also increased reactive oxygen species levels and mixed lineage kinase domain-like protein mRNA expression and depleted ATP levels (P<0.05). The angiogenesis-regulating molecules vascular endothelial growth factor, epidermal growth factor receptor and hypoxia-inducible factor 1-α were all significantly decreased by 10 or 15 mM carnosine treatment. These results showed that carnosine could suppress human colorectal cell proliferation by reducing β-catenin/Tcf-4 signaling, inducing autophagy and necroptosis and inhibiting angiogenesis. It was demonstrated that carnosine is a potential compound from dietary food for the future clinical treatment and/or prevention of colorectal cancer.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Jia-Huei Li
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Cheng-Di Dong
- Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Chiu-Wen Chen
- Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan, R.O.C
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan, R.O.C
| |
Collapse
|
18
|
Siriwattanasit N, Satirapoj B, Supasyndh O. Effect of Oral carnosine supplementation on urinary TGF-β in diabetic nephropathy: a randomized controlled trial. BMC Nephrol 2021; 22:236. [PMID: 34174842 PMCID: PMC8235831 DOI: 10.1186/s12882-021-02434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 06/09/2021] [Indexed: 11/26/2022] Open
Abstract
Background Activation of the transforming growth factor beta (TGF-β) pathway is a significant contributor to the pathogenesis of diabetic nephropathy. Carnosine is a dipeptide that can inhibit TGF-β synthesis. We tested the hypothesis that carnosine supplement added to standard therapy will result in reduced urinary TGF-β levels among patients with diabetic nephropathy. Methods We randomly assigned 40 patients with diabetic nephropathy and albuminuria 30–299 mg/day to treatment with carnosine (2 g/day) or placebo for 12 weeks. Urinary TGF-β level was determined using ELISA, urine albumin was ascertained by immunonephelometric assay, and renal function and metabolic profiles were determined at baseline and during 12 weeks of active treatment. Primary outcome was decrease in urinary levels of TGF-β. Results The 2 groups were comparable for baseline characteristics, blood pressure, urine albumin, urine TGF-β and renal function measurements. Urinary TGF-β significantly decreased with carnosine supplement (− 17.8% of the baseline values), whereas it tended to increase with placebo (+ 16.9% of the baseline values) (between-group difference P < 0.05). However, blood urea nitrogen, serum creatinine, glomerular filtration rate and other biochemical parameters remained unchanged during the study period including urinary albuminuria. Both groups were well tolerated with no serious side-effects. Conclusions These data indicated an additional renoprotective effect of oral supplementation with carnosine to decrease urinary TGF-β level that serves as a marker of renal injury in diabetic nephropathy. Trial registration Thai Clinical Trials, TCTR20200724002. Retrospectively Registered 24 July 2020.
Collapse
Affiliation(s)
- Narongrit Siriwattanasit
- Department of Medicine, Division of Nephrology, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand
| | - Bancha Satirapoj
- Department of Medicine, Division of Nephrology, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand.
| | - Ouppatham Supasyndh
- Department of Medicine, Division of Nephrology, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand
| |
Collapse
|
19
|
Faulkner S, Maksimovic I, David Y. A chemical field guide to histone nonenzymatic modifications. Curr Opin Chem Biol 2021; 63:180-187. [PMID: 34157651 DOI: 10.1016/j.cbpa.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022]
Abstract
Histone nonenzymatic covalent modifications (NECMs) have recently emerged as an understudied class of posttranslational modifications that regulate chromatin structure and function. These NECMs alter the surface topology of histone proteins, their interactions with DNA and chromatin regulators, as well as compete for modification sites with enzymatic posttranslational modifications. NECM formation depends on the chemical compatibility between a reactive molecule and its target site, in addition to their relative stoichiometries. Here we survey the chemical reactions and conditions that govern the addition of NECMs onto histones as a manual to guide the identification of new physiologically relevant chemical adducts. Characterizing NECMs on chromatin is critical to attain a comprehensive understanding of this new chapter of the so-called "histone code".
Collapse
Affiliation(s)
- Sarah Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Igor Maksimovic
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, United States
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, United States; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, United States.
| |
Collapse
|
20
|
Yang M, Sun L, Jiang T, Kawabata Y, Murayama F, Maegawa T, Taniyama S, Tachibana K, Hirasaka K. Safety Evaluation and Physiological Function of Dietary Balenine Derived From Opah Lampris guttatus on Skeletal Muscle of Mice. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10236-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Li H, Zhao K, Li Y. Gasdermin D Protects Mouse Podocytes Against High-Glucose-Induced Inflammation and Apoptosis via the C-Jun N-Terminal Kinase (JNK) Pathway. Med Sci Monit 2021; 27:e928411. [PMID: 33690262 PMCID: PMC7955578 DOI: 10.12659/msm.928411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The inflammation and apoptosis of podocytes contribute to the pathological progression of diabetic nephropathy. Gasdermin D (GSDMD) plays an executive role in pyroptosis, but its effect on high-glucose (HG)-induced inflammation and apoptosis remains unclear. The aim of this study was to investigate the effect of GSDMD on high-glucose-induced inflammation and apoptosis in podocytes. Material/Methods Mouse podocytes were cultivated by high- or normal-glucose medium. We used western blot analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence to detect the expression and localization of GSDMD in high-glucose-induced podocytes, and the expression of apoptosis-related proteins Bax and Bcl-2, inflammatory factors IL-1β, IL-6, and TNF-α, and JNK pathways in high-glucose-induced podocytes. Western blot and immunofluorescence were used to detect the expression and localization of synaptopodin under GSDMD knockdown and JNK-specific blocker SP600125. MitoSOX Red was used to detect the production of ROS in mitochondria under siGSDMD. The intracellular ROS generation was detected using a reactive oxygen species assay kit. Results We found that GSDMD knockdown and JNK inhibition reduced the expression of Bax, Bcl-2, cleaved caspase-3, IL-1β, IL-6, and TNF-α. Our results showed that GSDMD knockdown can inhibit HG-induced mitochondrial ROS production and JNK phosphorylation. Conclusions This study indicates that GSDMD knockdown can attenuate HG-induced inflammation and apoptosis by inhibiting the phosphorylation of JNK via mitochondrial ROS.
Collapse
Affiliation(s)
- Huifang Li
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Kunxiao Zhao
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ying Li
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
22
|
Cai D, Wang J, Chen S, Jiang L, Chen J, Wu J, Qin J. Coniferaldehyde prevents articular cartilage destruction in a murine model via Nrf2/HO‑1 pathway. Mol Med Rep 2021; 23:224. [PMID: 33495836 PMCID: PMC7851827 DOI: 10.3892/mmr.2021.11863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disorder characterized by progressive cartilage damage, resulting in gradual disability among the elderly. We previously provided in vivo evidence that nuclear factor erythroid 2‑related factor 2 (Nrf2) deficiency is associated with the development of OA. It has been reported that coniferaldehyde (CFA) acts as a potential Nrf2 activator. The aim of the present study was to investigate the protective effects of CFA against osteoarthritis. A murine model of surgical‑induced OA was used in the present study and CFA was administered by peritoneal injection every day, and the knee joints were assessed by histological analysis. The results demonstrated that CFA activated the Nrf2 signaling pathway in primary chondrocytes and articular cartilage from the knee joints. Cartilage damage in mice subjected to the destabilization of the medial meniscus was evidently alleviated by CFA treatment. CFA also robustly suppressed apoptosis induced by H2O2 in murine chondrocytes and reduced the expression of matrix metalloproteinase (MMP)1, MMP3, interleukin (IL)‑1 and IL‑6 in vivo. On the whole, the findings suggested that CFA exerts a therapeutic effect against OA, and the activation of the Nrf2/heme oxygenase‑1 pathway may play a crucial role in CFA‑mediated cartilage protection.
Collapse
Affiliation(s)
- Dawei Cai
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Jieling Wang
- Department of Critical Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230011, P.R. China
| | - Sichun Chen
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Longhai Jiang
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Jinwei Chen
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Ji Wu
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Jian Qin
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
23
|
Aldini G, de Courten B, Regazzoni L, Gilardoni E, Ferrario G, Baron G, Altomare A, D’Amato A, Vistoli G, Carini M. Understanding the antioxidant and carbonyl sequestering activity of carnosine: direct and indirect mechanisms. Free Radic Res 2020; 55:321-330. [DOI: 10.1080/10715762.2020.1856830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Palin MF, Lapointe J, Gariépy C, Beaudry D, Kalbe C. Characterisation of intracellular molecular mechanisms modulated by carnosine in porcine myoblasts under basal and oxidative stress conditions. PLoS One 2020; 15:e0239496. [PMID: 32946513 PMCID: PMC7500635 DOI: 10.1371/journal.pone.0239496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Carnosine is a naturally occurring histidine-containing dipeptide present at high concentration in mammalian skeletal muscles. Carnosine was shown to affect muscle contraction, prevent the accumulation of oxidative metabolism by-products and act as an intracellular proton buffer maintaining the muscle acid-base balance. The present study was undertaken to gain additional knowledge about the intracellular mechanisms activated by carnosine in porcine myoblast cells under basal and oxidative stress conditions. Satellite cells were isolated from the skeletal muscles of 3 to 4 day-old piglets to study the effect of 0, 10, 25 and 50 mM carnosine pre-treatments in cells that were exposed (0.3 mM H2O2) or not to an H2O2-induced oxidative stress. Study results demonstrated that carnosine acts differently in myoblasts under oxidative stress and in basal conditions, the only exception being with the reduction of reactive oxygen species and protein carbonyls observed in both experimental conditions with carnosine pre-treatment. In oxidative stress conditions, carnosine pre-treatment increased the mRNA abundance of the nuclear factor, erythroid 2 like 2 (NEF2L2) transcription factor and several of its downstream genes known to reduce H2O2. Carnosine prevented the H2O2-mediated activation of p38 MAPK in oxidative stress conditions, whereas it triggered the activation of mTOR under basal conditions. Current results support the protective effect of carnosine against oxidative damage in porcine myoblast cells, an effect that would be mediated through the p38 MAPK intracellular signaling pathway. The activation of the mTOR signaling pathway under basal condition also suggest a role for carnosine in myoblasts proliferation, growth and survival.
Collapse
Affiliation(s)
- Marie-France Palin
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Québec, Canada
| | - Jérôme Lapointe
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Québec, Canada
| | - Claude Gariépy
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, Québec, Canada
| | - Danièle Beaudry
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Québec, Canada
| | - Claudia Kalbe
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Dummerstorf, Germany
| |
Collapse
|
25
|
Dexamethasone-Induced Perturbations in Tissue Metabolomics Revealed by Chemical Isotope Labeling LC-MS analysis. Metabolites 2020; 10:metabo10020042. [PMID: 31973046 PMCID: PMC7074358 DOI: 10.3390/metabo10020042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Dexamethasone (Dex) is a synthetic glucocorticoid (GC) drug commonly used clinically for the treatment of several inflammatory and immune-mediated diseases. Despite its broad range of indications, the long-term use of Dex is known to be associated with specific abnormalities in several tissues and organs. In this study, the metabolomic effects on five different organs induced by the chronic administration of Dex in the Sprague–Dawley rat model were investigated using the chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS) platform, which targets the amine/phenol submetabolomes. Compared to controls, a prolonged intake of Dex resulted in significant perturbations in the levels of 492, 442, 300, 186, and 105 metabolites in the brain, skeletal muscle, liver, kidney, and heart tissues, respectively. The positively identified metabolites were mapped to diverse molecular pathways in different organs. In the brain, perturbations in protein biosynthesis, amino acid metabolism, and monoamine neurotransmitter synthesis were identified, while in the heart, pyrimidine metabolism and branched amino acid biosynthesis were the most significantly impaired pathways. In the kidney, several amino acid pathways were dysregulated, which reflected impairments in several biological functions, including gluconeogenesis and ureagenesis. Beta-alanine metabolism and uridine homeostasis were profoundly affected in liver tissues, whereas alterations of glutathione, arginine, glutamine, and nitrogen metabolism pointed to the modulation of muscle metabolism and disturbances in energy production and muscle mass in skeletal muscle. The differential expression of multiple dipeptides was most significant in the liver (down-regulated), brain (up-regulation), and kidney tissues, but not in the heart or skeletal muscle tissues. The identification of clinically relevant pathways provides holistic insights into the tissue molecular responses induced by Dex and understanding of the underlying mechanisms associated with their side effects. Our data suggest a potential role for glutathione supplementation and dipeptide modulators as novel therapeutic interventions to mitigate the side effects induced by Dex therapy.
Collapse
|