1
|
Liu C, Shen J, Niu G, Khusbu K, Wang Z, Liu X, Bi Y. Lycopene Protects Corneal Endothelial Cells from Oxidative Stress by Regulating the P62-Autophagy-Keap1/Nrf2 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10230-10245. [PMID: 40243144 DOI: 10.1021/acs.jafc.4c12371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Oxidative stress is a key mechanism in corneal endothelial damage-related diseases, which is induced by environmental factors and genetic mutations. Lycopene (LYC), one of the most potent natural antioxidants, has been shown to offer significant protection against various diseases. However, its role and mechanisms in corneal endothelial damage remain unclear. In this study, an oxidative stress-induced injury model was created using the B4G12 cell line, and a disease model for Fuchs' endothelial corneal dystrophy (FECD) was established using genetically edited mice, both of which were treated with LYC. The results demonstrated that lycopene effectively protected corneal endothelial cells and slowed the progression of FECD. The protective mechanism involves upregulating P62 and activating autophagy, leading to Keap1 degradation, Nrf2 nuclear translocation, and activation of downstream antioxidant proteins. This study broadens the potential application of lycopene in protecting the corneal endothelium and provides a new non-surgical approach for treating corneal endothelial damage-related diseases.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University, Shanghai 200065, People's Republic of China
| | - Jiaqi Shen
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University, Shanghai 200065, People's Republic of China
| | - Guozhen Niu
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University, Shanghai 200065, People's Republic of China
| | - Keyal Khusbu
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University, Shanghai 200065, People's Republic of China
| | - Ziqian Wang
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University, Shanghai 200065, People's Republic of China
| | - Xin Liu
- Department of Ophthalmology, Guizhou Provincial People's Hospital, Guiyang 550000, People's Republic of China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital Affiliated with Tongji University, Shanghai 200065, People's Republic of China
| |
Collapse
|
2
|
Steane SS, Das T, Kalisch‐Smith JI, Mahaliyanage DT, Akison LK, Moritz KM, Cuffe JSM. Effects of periconceptional ethanol on mitochondrial content and oxidative stress in maternal liver and placentas from male and female fetuses in rats. J Physiol 2025; 603:1281-1298. [PMID: 39924874 PMCID: PMC11870040 DOI: 10.1113/jp287566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Alcohol exposure during pregnancy disrupts fetal development and programs lifelong disease. We have shown, in rats, that alcohol exposure during the periconceptional period (PC:EtOH), causes placental dysfunction and cardiometabolic disease in offspring. The process of metabolising alcohol can cause oxidative stress and damage mitochondrial DNA (mtDNA). It is unknown whether alcohol metabolism in a rat model of PC:EtOH impacts oxidative stress markers and mitochondrial content in maternal and placental tissues. We aimed to determine whether PC:EtOH induced oxidative stress and reduced mtDNA in maternal liver and the placental labyrinth and junctional zone. Sprague-Dawley rats were given an ethanol liquid (12.5% v/v) or control (0%) diet for one oestrous cycle before mating to embryonic day (E) 4. Maternal livers were collected at E5 and E20. Placentas were collected at E20 and separated into the junctional zone and labyrinth zone. PC:EtOH reduced Cyp2e1 mRNA levels and mtDNA in the E5 liver with lower mtDNA persisting to E20, at which time mitochondrial proteins were also decreased. PC:EtOH also reduced mitochondrial content in the E20 junctional zone, although mitochondrial protein levels were unaffected. Superoxide dismutase activity was increased in the placental junctional zone and there was no evidence of oxidative stress. The present study demonstrates that alcohol exposure around conception, reduces mitochondrial content within the maternal liver and the junctional zone of the placenta towards the end of pregnancy. These prolonged deficits may have disrupted metabolic processes required for a healthy pregnancy. The study further supports avoiding alcohol when planning a pregnancy. KEY POINTS: Even when alcohol is consumed only around conception (PC:EtOH), it can have profound impacts on the developing baby. Here, we use our established rat model to investigate if PC:EtOH causes oxidative stress and reduces mitochondrial content in the maternal liver immediately after exposure on embryonic day (E) 5. We also investigate these parameters at the end of pregnancy (E20) in maternal liver and the placenta. PC:EtOH reduced mitochondrial DNA content in the maternal liver by 77% at E5 and by 40% at E20. At E20, expression of proteins that form the electron transport chain were also reduced. The placenta had a more subtle reduction in mitochondrial DNA content, but protein levels of mitochondrial complexes were unchanged. There was no evidence of oxidative stress in the maternal liver or placenta in response to PC:EtOH. The lack of oxidative stress in the placenta may be a result of compensatory increases in antioxidants.
Collapse
Affiliation(s)
- Sarah S. Steane
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Tulika Das
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | | | | | - Lisa K. Akison
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - James S. M. Cuffe
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
3
|
Chaves AS, Ventura RD, Pacini MF, Magalhães NS, Silva PMRE, Martins MA, Pérez AR, Carvalho VF. Activation of the Nrf2/HO-1 pathway restores N-acetylcysteine-induced impairment of the hypothalamus-pituitary-adrenal axis negative feedback by up-regulating GRα expression and down-regulating GRβ expression into pituitary glands. Front Endocrinol (Lausanne) 2025; 16:1500630. [PMID: 39959616 PMCID: PMC11827418 DOI: 10.3389/fendo.2025.1500630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
We previously showed that antioxidants induced an impairment of negative feedback of the hypothalamus-pituitary-adrenal (HPA) axis in rats, in parallel to a down-regulation of the glucocorticoid receptor (GR) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression in the pituitary gland. This study evaluated the role of the Nrf2-heme-oxygenase-1 (HO-1) pathway on the impairment of the negative feedback of the HPA axis induced by N-acetylcysteine (NAC). Male Swiss-Webster mice were orally supplemented with NAC for 5 consecutive days. The Nrf2-HO-1 pathway activator cobalt protoporphyrin IX (CoPPIX) was injected intraperitoneally on days 2 and 5 after the starting of NAC supplementation. NAC reduced the expression of Nrf2 in the pituitary of mice. Furthermore, NAC induced adrenal enlargement and hypercorticoidism, along with a decrease in the GRα expression and an increase of GRβ expression in the pituitary gland. Treatment with CoPPIX reduced adrenal enlargement, systemic corticosterone levels, and GRβ expression in the pituitary gland of mice supplemented with NAC, besides increasing the expression of GRα. CoPPIX treatment also restored the failure in the negative feedback of the HPA axis induced by NAC. In conclusion, these findings showed that NAC reduced the Nrf2-HO-1 pathway activation in the pituitary gland, in a mechanism probably related to a local downregulation of GRα and an up-regulation of GRβ, leading to a failure of negative feedback of the HPA axis and consequently to the hyperactivity of this neuroendocrine axis.
Collapse
Affiliation(s)
- Amanda Silva Chaves
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Raíssa Duarte Ventura
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Florencia Pacini
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
| | - Nathalia Santos Magalhães
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Rosa Pérez
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Center for Research, Innovation, and Surveillance in Covid-19 and Health Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Dong Y, Yue T, Wang X, Huo Q, Li W, Zhang S, Zhao Y, Li D. MS4A3 regulates hematopoietic myeloid differentiation through ROS/TGF-β/p38MAPK pathway. Int Immunopharmacol 2024; 143:113578. [PMID: 39532018 DOI: 10.1016/j.intimp.2024.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The hematopoietic homeostasis relies on the intricate regulation of hematopoietic stem cells during their proliferation and differentiation. Myeloid differentiation disorders can lead to chronic myeloid leukemia and acute myeloid leukemia. Previous studies have shown increased expression of MS4A3 in myeloid cells, suggesting that MS4A3 may play a critical role in hematopoietic myeloid differentiation. However, the underlying mechanism and its role in hematopoietic myeloid differentiation require further elucidation. In this study, using K562 cell lines with MS4A3 over-expression (oeMS4A3) and MS4A3 knockdown (shMS4A3), we demonstrated that the overexpression of MS4A3 resulted in an augmented skewing towards myeloid differentiation and cell cycle arrest at G0/G1. In addition, inhibition of ROS, TGF-β, and p38MAPK in oeMS4A3 K562 cells attenuated the skewing of myeloid differentiation. Furthermore, in vivo experiments revealed a slight myeloid differentiation suppression tendency in MS4A3 knockout mice. Taken together, we show that MS4A3 overexpression promote myeloid differentiation skewing through the activation of the ROS/p38MAPK/TGFβ pathway. This study underscored the role of MS4A3 in the hematopoietic myeloid differentiation.
Collapse
Affiliation(s)
- Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Tongpeng Yue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Shiyi Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
5
|
Chen J, Lu C, Xie W, Cao X, Zhang J, Luo J, Li J. Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish (Danio rerio). Int J Nanomedicine 2024; 19:13789-13803. [PMID: 39723177 PMCID: PMC11669342 DOI: 10.2147/ijn.s485091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood. Methods This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos. Subsequent RNA sequencing (RNA-seq) identified genes related to CVP deformities and hematopoietic stem/progenitor cells (HSPCs) in zebrafish embryos exposed to NPs. Additionally, single cell RNA sequencing (scRNA-seq) analysis identified genes associated with the development of CVP and HSPCs. RT-qPCR assessed changes in expression of these genes in zebrafish embryos exposed to different NP concentrations. Results The impact of NPs on zebrafish embryos was investigated, revealing significant reductions in survival and hatching rates and decreases in body length alongside increased heart rates. Exposure to NPs at 8 mg/L severely impaired zebrafish CVP development. RNA-seq revealed that NPs exposure altered the activity of oxidative enzymes, hydrolases, and the extracellular matrix in zebrafish embryos. Treatment with 10 µM NAC effectively rescued the CVP defects induced by NPs. Additionally, scRNA-seq identified genes associated with EC and HSPC development, and subsequent RT-qPCR validation confirmed significant expression changes in these genes. Conclusion The results of this study suggest that NPs induce oxidative stress in vascular ECs and HSPCs, which mediates CVP damage and impairs hematopoiesis in zebrafish embryos.
Collapse
Affiliation(s)
- Juntao Chen
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Wenjie Xie
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Xiaoqian Cao
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Jiannan Zhang
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Juan Li
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Wang B, Jiang H, Sun N, Wang Z, Wang C, Yang T, Wang Y, Wang L. Angelica sinensis polysaccharides ameliorate 5-FU-induced stress anemia via promoting extramedullary erythroblastic island central macrophage-mediated erythroid differentiation. Int Immunopharmacol 2024; 142:113061. [PMID: 39260313 DOI: 10.1016/j.intimp.2024.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Chronic anemia, especially chemotherapy-induced anemia, is a common and intractable symptom. Puzzlingly, the conventional anemic treatment may lead to various side effects, and the mechanism of stress anemia remains unclear. METHODS Here, peripheral blood, histopathological and transmission electron microscopical examination, colony forming test, flow cytometry, and qRT-PCR assay were used to investigate the effects of Angelia sinensis polysaccharide (ASP), one main active ingredient of Chinese herb medicine Angelica sinensis, on ameliorating 5-fluorouracil (5-FU)-induced stress anemia. RESULTS We found that intraperitoneal injection to a C57BL/6J mouse ASP 100 mg/kg per day for consecutive 10 days or 14 days, remarkably accelerated the recovery of RBC, hemoglobin, and hematocrit in blood. ASP alleviated 5-FU-caused impairment of bone marrow cell and BFU-E enumeration. Meanwhile, ASP antagonized 5-FU promoting extramedullary erythropoiesis in the spleen, inducing splenomegaly due to stress erythroblastic islands, and occurrence of megakaryocytes and hematopoietic precursors in splenic colonies. ASP increased splenic stress BFU-E enumeration, driving BFU-E differentiation towards Pro-E and end-stage erythroblasts. Furthermore, ASP increased the number of F4/80+VCAM-1+ splenic erythroblastic island central macrophages, upregulating genetic expression of EPOR, Emp, VCAM-1, Hmox-1, Trf, TfR1, Fpn1, Spi-C, DNase2a, Tim4, MertK, and Klf1 in splenocytes. CONCLUSIONS Our findings indicate that the possible mechanism of chemotherapy-induced anemia is related to stress erythroid maturation arrest. Whereas, ASP may promote stress erythroid differentiation via elevated EPO sensitivity in extramedullary hematopoietic organs and enhanced macrophage-mediated adhesion, iron homeostasis and transfer, and nuclear engulfment, which may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Biyao Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Honghui Jiang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Nianci Sun
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Ziling Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Cheng Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Ting Yang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Abbasi H, Alem E, Bakhshimoghaddam F, Khoshdooz S, Doaei S. Effects of coffee and tea consumption on glioma risk: An umbrella review of systematic reviews and meta-analyses. Clin Nutr ESPEN 2024; 64:37-43. [PMID: 39178989 DOI: 10.1016/j.clnesp.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Coffee and tea are considered to have some effects on the risk of glioma as one of the most prevalent intracranial malignant tumors in adults. However, the precise effect of coffee and tea consumption on glioma is not obvious. This umbrella review aimed to evaluate the impact of tea and coffee consumption on glioma risk. METHODS Three online databases containing Scopus, Web of Science, and PubMed were thoroughly searched from the beginning to February 23, 2024 with no language constraints. Relying on I2 and Q statistics, a random-effect model or a fixed-effect model was applied. The PICO structure was followed as Population (Patients with glioma), Intervention (Coffee and tea consumption), Comparison (Standard treatment or placebo), and Outcome (Risk of glioma). RESULTS Totally, seven meta-analyses and systematic reviews contain 23,591 patients were included in this umbrella review. Coffee and tea consumption led to significant 15% and 16% reductions in glioma risk, respectively (RR = 0.85; 95% CI: 0.74, 0.98; RR = 0.84; 95% CI: 0.79, 0.89). The results did not change after subgroup analyses. CONCLUSION This umbrella review revealed that the coffee and tea consumption may decrease the glioma risk. Consumption of tea and coffee may be considered as dietary strategies against glioma. PROSPERO REGISTRATION CODE CRD42024521525.
Collapse
Affiliation(s)
- Hamid Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emad Alem
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farnush Bakhshimoghaddam
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sara Khoshdooz
- Faculty of Medicine, Guilan University of Medical Science, Rasht, Iran.
| | - Saeid Doaei
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Li Y, Wu A, Jin X, Shen H, Zhao C, Yi X, Nie H, Wang M, Yin S, Zuo H, Ju Z, Jiang Z, Wang H. DDO1002, an NRF2-KEAP1 inhibitor, improves hematopoietic stem cell aging and stress response. LIFE MEDICINE 2024; 3:lnae043. [PMID: 39872153 PMCID: PMC11748272 DOI: 10.1093/lifemedi/lnae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025]
Abstract
Oxidative stress diminishes the functionality of hematopoietic stem cells (HSCs) as age advances, with heightened reactive oxygen species (ROS) levels exacerbating DNA damage, cellular senescence, and hematopoietic impairment. DDO1002, a potent inhibitor of the NRF2-KEAP1 pathway, modulates the expression of antioxidant genes. Yet, the extent to which it mitigates hematopoietic decline post-total body irradiation (TBI) or in the context of aging remains to be elucidated. Our study has elucidated the role of DDO1002 in modulating NRF2 activity, which, in turn, activates the NRF2-driven antioxidant response element (ARE) signaling cascade. This activation can diminish intracellular levels of ROS, thereby attenuating cellular senescence. In addition, DDO1002 has been demonstrated to ameliorate DNA damage and avert HSC apoptosis, underscoring its potential to mitigate hematopoietic injury precipitated by TBI. Competitive transplantation assay revealed that the administration of DDO1002 can improve the reconstitution and self-renewal capacity of HSCs in aged mice. Single-cell sequencing analysis elucidated that DDO1002 treatment attenuated intracellular inflammatory signaling pathways and mitigated ROS pathway in aged HSCs, suggesting its potential to restore the viability of these cells. Consequently, DDO1002 effectively activated the NRF2-ARE pathway, delaying cellular senescence and ameliorating impaired hematopoiesis, thereby demonstrating its potential as a therapeutic agent for age-related hematopoietic disorders.
Collapse
Affiliation(s)
- Yuwen Li
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Haiping Shen
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyan Zhao
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao Yi
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui Nie
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingwei Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongna Zuo
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenyu Ju
- MOE Key Laboratory of Regenerative Medicine, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Zhenyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People’s Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Fateh K, Mansoori F, Atashi A. The Evaluation of Mass/DNA Copy Number of Mitochondria in Umbilical Cord Blood-derived Hematopoietic Stem Cells Cocultured with MSCs. Indian J Hematol Blood Transfus 2024; 40:638-646. [PMID: 39469179 PMCID: PMC11512953 DOI: 10.1007/s12288-024-01774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 10/30/2024] Open
Abstract
Over recent decades, UCB has been widely used as an excellent alternative source of HSCs for treating many hematologic disorders. Recent studies suggest using mesenchymal stroma cell co-cultures to increase the number of HSCs prior to transplantation. Considering the critical role of mitochondria in the cell's fate and the importance of the self-renewal capacity of HSCs in HSCT, we decided to investigate the mass/DNA copy number of mitochondria in HSCs while co-cultured with MSCs and alone after seven days. UCB units were collected from full-term deliveries. MSCs and HSCs were isolated from UCB and the purity of cells was confirmed by flow cytometry. The mtDNA-Copy Number of HSCs was calculated using prob-based real-time PCR. Furthermore, Mito Tracker Green dye measured the mass of mitochondria of HSCs. HSCs from MSC co-culture group showed significantly fewer mtDNA-CN compared to HSCs alone after seven days (p < 0.001). Besides, by comparing the two groups on day seven to HSCs on day zero, we observed a mild increase in the mitochondrial mass of HSCs alone compared to the MSC-HSC co-culture group (p < 0.05). Concerning previous studies that have proved the association between lower mass/DNA-copy number of mitochondria in CD34 + HSCs and lower metabolic activity along with higher quiescence maintenance, and by considering the results of this experiment, it seems that the MSC-HSC co-cultures might be associated with a higher expansion of HSCs as well as stemness maintenance leading to the improvement in engraftment. Nevertheless, further investigations are required to clarify the exact connection between lower mass/DNA-copy number of mitochondria and stemness maintenance in HSCs.
Collapse
Affiliation(s)
- Kosar Fateh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mansoori
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
10
|
Sahu Y, Jamadade P, Ch Maharana K, Singh S. Role of mitochondrial homeostasis in D-galactose-induced cardiovascular ageing from bench to bedside. Mitochondrion 2024; 78:101923. [PMID: 38925493 DOI: 10.1016/j.mito.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Ageing is an inevitable phenomenon which affects the cellular to the organism level in the progression of the time. Oxidative stress and inflammation are now widely regarded as the key processes involved in the aging process, which may then cause significant harm to mitochondrial DNA, leading to apoptosis. Normal circulatory function is a significant predictor of disease-free life expectancy. Indeed, disorders affecting the cardiovascular system, which are becoming more common, are the primary cause of worldwide morbidity, disability, and mortality. Cardiovascular aging may precede or possibly underpin overall, age-related health decline. Numerous studies have foundmitochondrial mechanistc approachplays a vital role in the in the onset and development of aging. The D-galactose (D-gal)-induced aging model is well recognized and commonly used in the aging study. In this review we redeposit the association of the previous and current studies on mitochondrial homeostasis and its underlying mechanisms in D-galactose cardiovascular ageing. Further we focus the novel and the treatment strategies to combat the major complication leading to the cardiovascular ageing.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Pratiksha Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India.
| |
Collapse
|
11
|
Zhang H, Li Y, Liu Y. An updated review of the pharmacological effects and potential mechanisms of hederagenin and its derivatives. Front Pharmacol 2024; 15:1374264. [PMID: 38962311 PMCID: PMC11220241 DOI: 10.3389/fphar.2024.1374264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Hederagenin (HG) is a natural pentacyclic triterpenoid that can be isolated from various medicinal herbs. By modifying the structure of HG, multiple derivatives with superior biological activities and safety profiles have been designed and synthesized. Accumulating evidence has demonstrated that HG and its derivatives display multiple pharmacological activities against cancers, inflammatory diseases, infectious diseases, metabolic diseases, fibrotic diseases, cerebrovascular and neurodegenerative diseases, and depression. Previous studies have confirmed that HG and its derivatives combat cancer by exerting cytotoxicity, inhibiting proliferation, inducing apoptosis, modulating autophagy, and reversing chemotherapy resistance in cancer cells, and the action targets involved mainly include STAT3, Aurora B, KIF7, PI3K/AKT, NF-κB, Nrf2/ARE, Drp1, and P-gp. In addition, HG and its derivatives antagonize inflammation through inhibiting the production and release of pro-inflammatory cytokines and inflammatory mediators by regulating inflammation-related pathways and targets, such as NF-κB, MAPK, JAK2/STAT3, Keap1-Nrf2/HO-1, and LncRNA A33/Axin2/β-catenin. Moreover, anti-pathogen, anti-metabolic disorder, anti-fibrosis, neuroprotection, and anti-depression mechanisms of HG and its derivatives have been partially elucidated. The diverse pharmacological properties of HG and its derivatives hold significant implications for future research and development of new drugs derived from HG, which can lead to improved effectiveness and safety profiles.
Collapse
Affiliation(s)
- Huize Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Cox LA, Thompson WJ, Mundt KA. Interventional probability of causation (IPoC) with epidemiological and partial mechanistic evidence: benzene vs. formaldehyde and acute myeloid leukemia (AML). Crit Rev Toxicol 2024; 54:252-289. [PMID: 38753561 DOI: 10.1080/10408444.2024.2337435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates and University of Colorado, Denver, CO, USA
| | | | - Kenneth A Mundt
- Independent Consultants in Epidemiology, Amherst, MA, USA
- Adjunct Professor of Epidemiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
13
|
Shirdare M, Amiri F, Samiee MP, Safari A. Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture. Mol Biol Rep 2024; 51:189. [PMID: 38270694 DOI: 10.1007/s11033-023-09041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/13/2023] [Indexed: 01/26/2024]
Abstract
Mesenchymal stem cells (MSCs) and Hematopoietic stem cells (HSCs) are two types of bone marrow stem cells that can proliferate and differentiate into different cell lineages. HSCs interact with MSCs under protective conditions, called niche. Numerous studies have indicated supportive effects of MSCs on HSCs proliferation and differentiation. Furthermore, HSCs have many clinical applications and could treat different hematologic and non-hematologic diseases. For this purpose, there is a need to perform in vitro studies to optimize their expansion. Therefore, various methods including co-culture with MSCs are used to address the limitations of HSCs culture. Some parameters that might be effective for improving the MSC/ HSC co-culture systems. Manipulating culture condition to enhance MSC paracrine activity, scaffolds, hypoxia, culture medium additives, and the use of various MSC sources, have been examined in different studies. In this article, we investigated the potential factors for optimizing HSCs/ MSCs co-culture. It might be helpful to apply a suitable approach for providing high-quality HSCs and improving their therapeutic applications.
Collapse
Affiliation(s)
- Mandana Shirdare
- Central Medical Laboratory, Vice Chancellor for Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Pouya Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
14
|
Harifi-Mood MS, Daroudi M, Darroudi M, Naseri K, Samarghandian S, Farkhondeh T. Targeting the NF-E2-related factor 2 pathway for overcoming leukemia. Int J Biol Macromol 2023; 253:127594. [PMID: 37890739 DOI: 10.1016/j.ijbiomac.2023.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Leukemia is cancer of the body's blood-forming tissues, including the bone marrow and the lymphatic system. There are many types of leukemia that some of them occur in children and the others are more common in adults. Currently, there are many different chemotherapy agents for leukemia while chemoresistance increases the survival of the leukemic cells. One of the main reasons of chemoresistance, is a transcription factor called Nuclear factor erythroid 2-Related Factor 2 (NRF2). An increase in NRF2 expression in leukemic cells which are being treated with chemotherapy agents, can increase the survival of these cells in the presence of therapeutics. Accordingly, the inhibition of NRF2 by different methods as a cotreatment with classical chemotherapy agents, can be a promising procedure in leukemia treatment. In this study we focus on the association of NRF2 and leukemia and targeting it as a new therapeutic method in leukemia treatment.
Collapse
Affiliation(s)
| | - Mahtab Daroudi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kobra Naseri
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
15
|
Moradi S, Foshati S, Poorbaferani F, Talebi S, Bagheri R, Amirian P, Parvizi F, Nordvall M, Wong A, Zobeiri M. The effects of spirulina supplementation on serum iron and ferritin, anemia parameters, and fecal occult blood in adults with ulcerative colitis: A randomized, double-blinded, placebo-controlled trial. Clin Nutr ESPEN 2023; 57:755-763. [PMID: 37739734 DOI: 10.1016/j.clnesp.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS The present clinical trial aimed to evaluate the efficacy of spirulina administration on serum iron, ferritin, anemia parameters, and fecal occult blood test (FOBT) in adults with ulcerative colitis (UC). METHODS Eighty participants with UC were randomly assigned to take, either 1 g/day (two 500 mg capsules) spirulina (n = 40) or placebo (n = 40) in a double-blinded clinical trial for eight weeks. Dietary intake, physical activity status, serum iron and ferritin levels, anemia parameters, and FOBT were assessed in each participant at baseline and following the intervention. Seventy-three participants completed the trial. RESULTS Our results indicated significantly increased (p = 0.04) serum iron after eight weeks of spirulina supplementation compared to the placebo group. The spirulina group also demonstrated significantly increased mean corpuscular volume (p = 0.004) whereas red blood cell count (p = 0.01) and hematocrit (p = 0.03) were significantly lowered in the placebo group. No significant changes in FOBT outcomes were seen between groups at baseline (p = 0.12) and the end of the trial (p = 0.34). Eight weeks of 1 g/day spirulina supplementation improved anemia parameters in adults with UC compared to placebo. CONCLUSIONS These outcomes suggest that spirulina administration may be beneficial in the management of anemia in UC. Further clinical trials of longer duration are necessary to corroborate and expand our findings. Registered at: http://www.IRCT.ir (code: IRCT20170802035460N3).
Collapse
Affiliation(s)
- Sajjad Moradi
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sahar Foshati
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariborz Poorbaferani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepide Talebi
- Department of Clinical Nutrition, School of Nutritional Science, Tehran University of Medical Science, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran
| | - Parsa Amirian
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Fatemeh Parvizi
- Department of Internal Medicine, School of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Michael Nordvall
- Marymount University, School of Health Sciences, Department of Health and Human Performance, Arlington, VA, USA
| | - Alexei Wong
- Marymount University, School of Health Sciences, Department of Health and Human Performance, Arlington, VA, USA
| | - Mehdi Zobeiri
- Department of Internal Medicine, School of Medicine, Kermanshah University of Medical Sciences, Iran.
| |
Collapse
|
16
|
Pfau LC, Glasow A, Seidel C, Patties I. Imidazolyl Ethanamide Pentandioic Acid (IEPA) as Potential Radical Scavenger during Tumor Therapy in Human Hematopoietic Stem Cells. Molecules 2023; 28:molecules28052008. [PMID: 36903253 PMCID: PMC10004037 DOI: 10.3390/molecules28052008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Radiochemotherapy-associated leuco- or thrombocytopenia is a common complication, e.g., in head and neck cancer (HNSCC) and glioblastoma (GBM) patients, often compromising treatments and outcomes. Currently, no sufficient prophylaxis for hematological toxicities is available. The antiviral compound imidazolyl ethanamide pentandioic acid (IEPA) has been shown to induce maturation and differentiation of hematopoietic stem and progenitor cells (HSPCs), resulting in reduced chemotherapy-associated cytopenia. In order for it to be a potential prophylaxis for radiochemotherapy-related hematologic toxicity in cancer patients, the tumor-protective effects of IEPA should be precluded. In this study, we investigated the combinatorial effects of IEPA with radio- and/or chemotherapy in human HNSCC and GBM tumor cell lines and HSPCs. Treatment with IEPA was followed by irradiation (IR) or chemotherapy (ChT; cisplatin, CIS; lomustine, CCNU; temozolomide, TMZ). Metabolic activity, apoptosis, proliferation, reactive oxygen species (ROS) induction, long-term survival, differentiation capacity, cytokine release, and DNA double-strand breaks (DSBs) were measured. In tumor cells, IEPA dose-dependently diminished IR-induced ROS induction but did not affect the IR-induced changes in metabolic activity, proliferation, apoptosis, or cytokine release. In addition, IEPA showed no protective effect on the long-term survival of tumor cells after radio- or chemotherapy. In HSPCs, IEPA alone slightly enhanced CFU-GEMM and CFU-GM colony counts (2/2 donors). The IR- or ChT-induced decline of early progenitors could not be reversed by IEPA. Our data indicate that IEPA is a potential candidate for the prevention of hematologic toxicity in cancer treatment without affecting therapeutic benefits.
Collapse
|
17
|
Jiang XS, Cai MY, Li XJ, Zhong Q, Li ML, Xia YF, Shen Q, Du XG, Gan H. Activation of the Nrf2/ARE signaling pathway protects against palmitic acid-induced renal tubular epithelial cell injury by ameliorating mitochondrial reactive oxygen species-mediated mitochondrial dysfunction. Front Med (Lausanne) 2022; 9:939149. [PMID: 36177332 PMCID: PMC9513042 DOI: 10.3389/fmed.2022.939149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is often accompanied by dyslipidemia, and abnormal lipid metabolism in proximal tubule cells is considered closely related to the dysfunction of proximal tubule cells and eventually leads to accelerated kidney damage. Nuclear factor E2-related factor 2 (Nrf2), known as a redox-sensitive transcription factor, is responsible for regulating cellular redox homeostasis. However, the exact role of Nrf2 in dyslipidemia-induced dysfunction of proximal tubule cells is still not fully elucidated. In the present study, we showed that palmitic acid (PA) induced mitochondrial damage, excessive mitochondrial reactive oxygen species (ROS) (mtROS) generation, and cell injury in HK-2 cells. We further found that mtROS generation was involved in PA-induced mitochondrial dysfunction, cytoskeletal damage, and cell apoptosis in HK-2 cells. In addition, we demonstrated that the Nrf2/ARE signaling pathway was activated in PA-induced HK-2 cells and that silencing Nrf2 dramatically aggravated PA-induced mtROS production, mitochondrial damage, cytoskeletal damage and cell apoptosis in HK-2 cells. However, the mitochondrial antioxidant MitoTEMPOL effectively eliminated these negative effects of Nrf2 silencing in HK-2 cells under PA stimulation. Moreover, activation of the Nrf2/ARE signaling pathway with tBHQ attenuated renal injury, significantly reduced mtROS generation, and improved mitochondrial function in rats with HFD-induced obesity. Taken together, these results suggest that the Nrf2/ARE-mediated antioxidant response plays a protective role in hyperlipidemia-induced renal injury by ameliorating mtROS-mediated mitochondrial dysfunction and that enhancing Nrf2 antioxidant signaling provides a potential therapeutic strategy for kidney injury in CKD with hyperlipidemia.
Collapse
Affiliation(s)
- Xu-shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng-yao Cai
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun-jia Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Man-li Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-feng Xia
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Shen
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-gang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Xiao-gang Du,
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hua Gan,
| |
Collapse
|
18
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Castrillo A, Boscá L. Unraveling the interplay between iron homeostasis, ferroptosis and extramedullary hematopoiesis. Pharmacol Res 2022; 183:106386. [PMID: 35933006 DOI: 10.1016/j.phrs.2022.106386] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Iron participates in myriad processes necessary to sustain life. During the past decades, great efforts have been made to understand iron regulation and function in health and disease. Indeed, iron is associated with both physiological (e.g., immune cell biology and function and hematopoiesis) and pathological (e.g., inflammatory and infectious diseases, ferroptosis and ferritinophagy) processes, yet few studies have addressed the potential functional link between iron, the aforementioned processes and extramedullary hematopoiesis, despite the obvious benefits that this could bring to clinical practice. Further investigation in this direction will shape the future development of individualized treatments for iron-linked diseases and chronic inflammatory disorders, including extramedullary hematopoiesis, metabolic syndrome, cardiovascular diseases and cancer.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
19
|
Investigation of the multi-targeted protection potential of tannic acid against doxorubicin-induced kidney damage in rats. Chem Biol Interact 2022; 365:110111. [PMID: 35987278 DOI: 10.1016/j.cbi.2022.110111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Doxorubicin (DOX) is an antitumor drug that is powerful but can cause worse outcomes, including nephrotoxicity, and therefore has limited clinical use. Therefore, it is necessary to identify safer agents that can minimize the damage caused by the drug without shifting the treatment performance, in addition to clarifying the underlying mechanisms of DOX-induced aberrant in vivo renal activation. In this study, we tested the prophylactic capacity and mechanisms of action of tannic acid (TA) against DOX-mediated kidney damage in rats and evaluated the nephrotoxic activity of DOX when used with TA. Rats were treated during the two weeks with cumulative (18 mg/kg with six different injections) DOX, daily TA (50 mg/kg), and the DOX + TA combination. Changes in major metabolites and components involved in antioxidant metabolism were evaluated in the kidney tissues of all animals. Further, the gene expression levels of regulatory factors that have critical importance in cell metabolism, inflammation, and apoptosis were investigated. Both biochemical and molecular examinations showed that TA improved DOX-induced dysregulations at both protein and gene levels in the kidneys. Increased lipid peroxidation and decreased glutathione levels were reversed. Consistent with oxidative stress marker metabolites, suppressed antioxidant enzyme activities and transcript levels of antioxidant system members were restored. Of note, combination treatment with TA could overcome doxorubicin-induced gene expressions markedly altered by DOX, suggesting that nephroprotection conferred by TA involved the remodeling of stress resistance, cell metabolism, inflammation, and apoptosis. Collectively, the present in vivo study suggests that TA could be used as a multitarget and effective agent for the mitigation of doxorubicin-induced nephrotoxicity without changing the therapeutic efficacy of the drug.
Collapse
|
20
|
Mann Z, Sengar M, Verma YK, Rajalingam R, Raghav PK. Hematopoietic Stem Cell Factors: Their Functional Role in Self-Renewal and Clinical Aspects. Front Cell Dev Biol 2022; 10:664261. [PMID: 35399522 PMCID: PMC8987924 DOI: 10.3389/fcell.2022.664261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess two important properties such as self-renewal and differentiation. These properties of HSCs are maintained through hematopoiesis. This process gives rise to two subpopulations, long-term and short-term HSCs, which have become a popular convention for treating various hematological disorders. The clinical application of HSCs is bone marrow transplant in patients with aplastic anemia, congenital neutropenia, sickle cell anemia, thalassemia, or replacement of damaged bone marrow in case of chemotherapy. The self-renewal attribute of HSCs ensures long-term hematopoiesis post-transplantation. However, HSCs need to be infused in large numbers to reach their target site and meet the demands since they lose their self-renewal capacity after a few passages. Therefore, a more in-depth understanding of ex vivo HSCs expansion needs to be developed to delineate ways to enhance the self-renewability of isolated HSCs. The multifaceted self-renewal process is regulated by factors, including transcription factors, miRNAs, and the bone marrow niche. A developed classical hierarchical model that outlines the hematopoiesis in a lineage-specific manner through in vivo fate mapping, barcoding, and determination of self-renewal regulatory factors are still to be explored in more detail. Thus, an in-depth study of the self-renewal property of HSCs is essentially required to be utilized for ex vivo expansion. This review primarily focuses on the Hematopoietic stem cell self-renewal pathway and evaluates the regulatory molecular factors involved in considering a targeted clinical approach in numerous malignancies and outlining gaps in the current knowledge.
Collapse
Affiliation(s)
- Zoya Mann
- Independent Researcher, New Delhi, India
| | - Manisha Sengar
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Yogesh Kumar Verma
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
New insights into Human Hematopoietic Stem and Progenitor Cells via Single-Cell Omics. Stem Cell Rev Rep 2022; 18:1322-1336. [PMID: 35318612 PMCID: PMC8939482 DOI: 10.1007/s12015-022-10330-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 10/25/2022]
Abstract
Residing at the apex of the hematopoietic hierarchy, hematopoietic stem and progenitor cells (HSPCs) give rise to all mature blood cells. In the last decade, significant progress has been made in single-cell RNA sequencing as well as multi-omics technologies that have facilitated elucidation of the heterogeneity of previously defined human HSPCs. From the embryonic stage through the adult stage to aging, single-cell studies have enabled us to trace the origins of hematopoietic stem cells (HSCs), demonstrating different hematopoietic differentiation during development, as well as identifying novel cell populations. In both hematological benign diseases and malignancies, single-cell omics technologies have begun to reveal tissue heterogeneity and have permitted mapping of microenvironmental ecosystems and tracking of cell subclones, thereby greatly broadening our understanding of disease development. Furthermore, advances have also been made in elucidating the molecular mechanisms for relapse and identifying therapeutic targets of hematological disorders and other non-hematological diseases. Extensive exploration of hematopoiesis at the single-cell level may thus have great potential for broad clinical applications of HSPCs, as well as disease prognosis.
Collapse
|
22
|
Sarker MT, Wan X, Yang H, Wang Z. Dietary Lycopene Supplementation Could Alleviate Aflatoxin B 1 Induced Intestinal Damage through Improving Immune Function and Anti-Oxidant Capacity in Broilers. Animals (Basel) 2021; 11:3165. [PMID: 34827896 PMCID: PMC8614560 DOI: 10.3390/ani11113165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
The present study aims to evaluate the effects of lycopene (LYC) supplementation on the intestinal immune function, barrier function, and antioxidant capacity of broilers fed with aflatoxinB1 (AFB1) contaminated diet. A total of 144 one-day-old male Arbor Acres broilers were randomly divided into three dietary treatment groups; each group consisted of six replicates (eight birds in each cage). Treatments were: (1) a basal diet containing neither AFB1 nor LYC (Control), (2) basal diet containing 100 µg/kg AFB1, and (3) basal diets with 100 µg/kg AFB1 and 200 mg/kg LYC (AFB1 and LYC). The results showed that dietary LYC supplementation ameliorated the AFB1 induced broiler intestinal changes by decreasing the inflammatory cytokines interferon-γ (IFN-γ), interleukin 1beta (IL-1β), and increasing mRNA abundances of cludin-1 (CLDN-1) and zonula occludens-1 (ZO-1) in the jejunum mucosa. On the other hand, AFB1-induced increases in serum diamine oxidase (DAO) activities, D-lactate concentration, mucosal malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations were reversed by dietary LYC supplementation (p < 0.05). Additionally, LYC supplementation ameliorated the redox balance through increasing the antioxidant enzyme activities and their related mRNA expression abundances compared to AFB1 exposed broilers. In conclusion, dietary supplementation with LYC could alleviate AFB1 induced broiler intestinal immune function and barrier function damage and improve antioxidants status.
Collapse
Affiliation(s)
| | | | | | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, No. 48 Wenhui East Road, Yangzhou 225009, China; (M.T.S.); (X.W.); (H.Y.)
| |
Collapse
|
23
|
Zhao X, Gao J, Hogenkamp A, Knippels LMJ, Garssen J, Bai J, Yang A, Wu Y, Chen H. Selenium-Enriched Soy Protein Has Antioxidant Potential via Modulation of the NRF2-HO1 Signaling Pathway. Foods 2021; 10:foods10112542. [PMID: 34828827 PMCID: PMC8623322 DOI: 10.3390/foods10112542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Selenium (Se)-enriched proteins are an important dietary source of Se for humans; however, only a few Se-enriched proteins have been identified. In the present study, we tested for potential antioxidant activity by Se-enriched soy protein, both in vitro and in vivo. Se-enriched soy protein isolate (S-SPI) was shown to have a higher free radical scavenging ability compared to ordinary soy protein isolate (O-SPI). Furthermore, Caco-2 cell viability was improved by S-SPI at low doses, whereas O-SPI did not. In addition, S-SPI was shown to inhibit oxidative stress via modulation of the NRF2-HO1 signaling pathway, upregulating the expression of downstream antioxidant enzymes (GPx, SOD). To further study the antioxidant capacity of S-SPI, BALB/c female mice were given oral gavages with 0.8 mL of S-SPI or O-SPI (5 g/kg/d, 20 g/kg/d and 40 g/kg/d) or saline as control. Hepatic GPx and SOD activity increased with increasing S-SPI dosage, but not with O-SPI. Taken together, our results suggest that Se-enriched soy protein has a high antioxidant ability and may be used as a dietary supplement for people with oxidative dam-age-mediated diseases.
Collapse
Affiliation(s)
- Xiaoli Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Leon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone/Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone/Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Jing Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
24
|
Protective Role of 4-Octyl Itaconate in Murine LPS/D-GalN-Induced Acute Liver Failure via Inhibiting Inflammation, Oxidative Stress, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932099. [PMID: 34457120 PMCID: PMC8387163 DOI: 10.1155/2021/9932099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023]
Abstract
Oxidative stress, inflammation, and apoptosis are crucial in the pathogenesis of acute liver failure (ALF). 4-Octyl itaconate (OI) showed antioxidative and anti-inflammatory properties in many disease models. However, its role in lipopolysaccharide- (LPS-)/D-galactosamine- (D-GalN-) induced ALF is still not investigated. Here, we established an ALF murine model induced by LPS/D-GalN administration. And we found that OI improved survival rate in the murine ALF model. Our results also showed that OI alleviated LPS/D-GalN-induced hepatic histopathological injury and reduced the serum activities of alanine transaminase and aspartate transaminase. Moreover, OI reduced serum levels of proinflammatory cytokines such as monocyte chemotactic protein-1, tumor necrosis factors-α, and interlukin-6. Additionally, OI mitigated oxidative stress and alleviated lipid peroxidation in a murine model of ALF. This was evaluated by a reduction of thiobarbituric acid reactive substances (TBARS) in liver tissues. In addition, OI increased the ratio of reduced glutathione/oxidized glutathione and the activities of antioxidant enzymes including catalase and superoxide dismutase. Moreover, the apoptosis of hepatocytes in the liver was inhibited by OI. Furthermore, we found that OI inhibited LPS-induced nuclear translocation and activation of factor-kappa B (NF-κB) p65 in macrophages which could be inhibited by OI-induced activation of nuclear factor erythroid-2-related factor (Nrf2) signaling. Additionally, D-GalN-induced reactive oxygen species (ROS) generation and apoptosis in hepatocytes were inhibited by OI-induced activation of Nrf2 signaling. Therefore, the underlying mechanism for OI's protective effect in LPS/D-GalN-induced ALF may be associated with deactivation of NF-κB signaling in macrophages to reduce inflammation and inhibition of ROS-related hepatocyte apoptosis by activating Nrf2. In conclusion, OI showed a protective role in LPS/D-GalN-induced ALF by reducing inflammation, enhancing antioxidant capacity, and inhibiting cell apoptosis.
Collapse
|
25
|
Wagle S, Sim HJ, Bhattarai G, Choi KC, Kook SH, Lee JC, Jeon YM. Supplemental Ferulic Acid Inhibits Total Body Irradiation-Mediated Bone Marrow Damage, Bone Mass Loss, Stem Cell Senescence, and Hematopoietic Defect in Mice by Enhancing Antioxidant Defense Systems. Antioxidants (Basel) 2021; 10:antiox10081209. [PMID: 34439457 PMCID: PMC8388974 DOI: 10.3390/antiox10081209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
While total body irradiation (TBI) is an everlasting curative therapy, the irradiation can cause long-term bone marrow (BM) injuries, along with senescence of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) via reactive oxygen species (ROS)-induced oxidative damages. Thus, ameliorating or preventing ROS accumulation and oxidative stress is necessary for TBI-requiring clinical treatments. Here, we explored whether administration of ferulic acid, a dietary antioxidant, protects against TBI-mediated systemic damages, and examined the possible mechanisms therein. Sublethal TBI (5 Gy) decreased body growth, lifespan, and production of circulating blood cells in mice, together with ROS accumulation, and senescence induction of BM-conserved HSCs and MSCs. TBI also impaired BM microenvironment and bone mass accrual, which was accompanied by downregulated osteogenesis and by osteoclastogenic and adipogenic activation in BM. Long-term intraperitoneal injection of ferulic acid (50 mg/kg body weight, once per day for 37 consecutive days) protected mice from TBI-mediated mortality, stem cell senescence, and bone mass loss by restoring TBI-stimulated disorders in osteogenic, osteoclastic, and adipogenic activation in BM. In vitro experiments using BM stromal cells supported radioprotective effects of ferulic acid on TBI-mediated defects in proliferation and osteogenic differentiation. Overall, treatment with ferulic acid prevented TBI-mediated liver damage and enhanced endogenous antioxidant defense systems in the liver and BM. Collectively, these results support an efficient protection of TBI-mediated systemic defects by supplemental ferulic acid, indicating its clinical usefulness for TBI-required patients.
Collapse
Affiliation(s)
- Sajeev Wagle
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
| | - Hyun-Jaung Sim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Govinda Bhattarai
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
| | - Ki-Choon Choi
- Grassland and Forages Research Center, National Institute of Animal Science, Cheonan 31002, Korea;
| | - Sung-Ho Kook
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (S.-H.K.); (J.-C.L.); (Y.-M.J.); Tel.: +82-63-270-3327 (S.-H.K.); +82-63-270-4049 (J.-C.L.); +82-63-250-2130 (Y.-M.J.); Fax: +82-63-270-4312 (S.-H.K.); +82-63-270-4004 (J.-C.L.); +82-63-270-4312 (Y.-M.J.)
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (S.-H.K.); (J.-C.L.); (Y.-M.J.); Tel.: +82-63-270-3327 (S.-H.K.); +82-63-270-4049 (J.-C.L.); +82-63-250-2130 (Y.-M.J.); Fax: +82-63-270-4312 (S.-H.K.); +82-63-270-4004 (J.-C.L.); +82-63-270-4312 (Y.-M.J.)
| | - Young-Mi Jeon
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju 54896, Korea; (S.W.); (H.-J.S.); (G.B.)
- Correspondence: (S.-H.K.); (J.-C.L.); (Y.-M.J.); Tel.: +82-63-270-3327 (S.-H.K.); +82-63-270-4049 (J.-C.L.); +82-63-250-2130 (Y.-M.J.); Fax: +82-63-270-4312 (S.-H.K.); +82-63-270-4004 (J.-C.L.); +82-63-270-4312 (Y.-M.J.)
| |
Collapse
|
26
|
Deficiency of Antioxidative Paraoxonase 2 (Pon2) Leads to Increased Number of Phenotypic LT-HSCs and Disturbed Erythropoiesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3917028. [PMID: 34257800 PMCID: PMC8253644 DOI: 10.1155/2021/3917028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023]
Abstract
Background Long-term hematopoietic stem cells (LT-HSCs) reside in bone marrow niches with tightly controlled reactive oxygen species (ROS) levels. ROS increase results into LT-HSC differentiation and stem cell exhaustion. Paraoxonase 2 (PON2) has been shown to be important for ROS control. Objectives We investigate the effects of inactivation of the PON2 gene on hematopoietic cell differentiation and activity. Methods and Results In young mice with inactivated Pon2 gene (Pon2−/−, <3 months), we observed an increase of LT-HSCs and a reduced frequency of progenitor cells. In competitive transplantations, young Pon2−/− BM outcompeted WT BM at early time points. ROS levels were significantly increased in Pon2−/− whole BM, but not in Pon2−/− LT-HSCs. In more differentiated stages of hematopoiesis, Pon2 deficiency led to a misbalanced erythropoiesis both in physiologic and stress conditions. In older mice (>9 months), Pon2 depletion caused an increase in LT-HSCs as well as increased levels of granulocyte/macrophage progenitors (GMPs) and myeloid skewing, indicating a premature aging phenotype. No significant changes in ROS levels in old Pon2−/− LT- and short-term (ST-) HSCs were observed, but a significant reduction of spontaneous apoptotic cell death was measured. RNA-seq analysis in Pon2−/− LT-HSCs identified overrepresentation of genes involved in the C-X-C chemokine receptor type 4 (Cxcr4) signaling, suggesting compensatory mechanisms to overcome ROS-mediated accelerated aging in hematopoietic progenitor cells. Conclusions In summary, our current data indicate that PON2 is involved in the regulation of HSC functions.
Collapse
|
27
|
Radiation-induced bystander effects impair transplanted human hematopoietic stem cells via oxidative DNA damage. Blood 2021; 137:3339-3350. [PMID: 33881475 DOI: 10.1182/blood.2020007362] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Total body irradiation (TBI) is commonly used in host conditioning regimens for human hematopoietic stem cell (HSC) transplantation to treat various hematological disorders. Exposure to TBI not only induces acute myelosuppression and immunosuppression, but also injures the various components of the HSC niche in recipients. Our previous study demonstrated that radiation-induced bystander effects (RIBE) of irradiated recipients decreased the long-term repopulating ability of transplanted mouse HSCs. However, RIBE on transplanted human HSCs have not been studied. Here, we report that RIBE impaired the long-term hematopoietic reconstitution of human HSCs as well as the colony-forming ability of human hematopoietic progenitor cells (HPCs). Our further analyses revealed that the RIBE-affected human hematopoietic cells showed enhanced DNA damage responses, cell-cycle arrest, and p53-dependent apoptosis, mainly because of oxidative stress. Moreover, multiple antioxidants could mitigate these bystander effects, though at different efficacies in vitro and in vivo. Taken together, these findings suggest that RIBE impair human HSCs and HPCs by oxidative DNA damage. This study provides definitive evidence for RIBE on transplanted human HSCs and further justifies the necessity of conducting clinical trials to evaluate different antioxidants to improve the efficacy of HSC transplantation for the patients with hematological or nonhematological disorders.
Collapse
|
28
|
Mochizuki-Kashio M, Shiozaki H, Suda T, Nakamura-Ishizu A. Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism. Int J Mol Sci 2021; 22:4627. [PMID: 33924874 PMCID: PMC8124492 DOI: 10.3390/ijms22094627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis.
Collapse
Affiliation(s)
- Makiko Mochizuki-Kashio
- Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Hiroko Shiozaki
- Department of Hematology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, Singapore 117599, Singapore;
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Ayako Nakamura-Ishizu
- Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| |
Collapse
|
29
|
β3-Adrenoreceptors as ROS Balancer in Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2021; 22:ijms22062835. [PMID: 33799536 PMCID: PMC8000316 DOI: 10.3390/ijms22062835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decades, the therapeutic potential of hematopoietic stem cell transplantation (HSCT) has acquired a primary role in the management of a broad spectrum of diseases including cancer, hematologic conditions, immune system dysregulations, and inborn errors of metabolism. The different types of HSCT, autologous and allogeneic, include risks of severe complications including acute and chronic graft-versus-host disease (GvHD) complications, hepatic veno-occlusive disease, lung injury, and infections. Despite being a dangerous procedure, it improved patient survival. Hence, its use was extended to treat autoimmune diseases, metabolic disorders, malignant infantile disorders, and hereditary skeletal dysplasia. HSCT is performed to restore or treat various congenital conditions in which immunologic functions are compromised, for instance, by chemo- and radiotherapy, and involves the administration of hematopoietic stem cells (HSCs) in patients with depleted or dysfunctional bone marrow (BM). Since HSCs biology is tightly regulated by oxidative stress (OS), the control of reactive oxygen species (ROS) levels is important to maintain their self-renewal capacity. In quiescent HSCs, low ROS levels are essential for stemness maintenance; however, physiological ROS levels promote HSC proliferation and differentiation. High ROS levels are mainly involved in short-term repopulation, whereas low ROS levels are associated with long-term repopulating ability. In this review, we aim summarize the current state of knowledge about the role of β3-adrenoreceptors (β3-ARs) in regulating HSCs redox homeostasis. β3-ARs play a major role in regulating stromal cell differentiation, and the antagonist SR59230A promotes differentiation of different progenitor cells in hematopoietic tumors, suggesting that β3-ARs agonism and antagonism could be exploited for clinical benefit.
Collapse
|
30
|
Mohrin M. Mito-managing ROS & redox to reboot the immune system: Tapping mitochondria & redox management to extend the reach of hematopoietic stem cell transplantation. Free Radic Biol Med 2021; 165:38-53. [PMID: 33486089 DOI: 10.1016/j.freeradbiomed.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) are responsible for life-long production of blood and immune cells. HSC transplantation (HSCT) is the original cell therapy which can cure hematological disorders but also has the potential to treat other diseases if technical and safety barriers are overcome. To maintain homeostatic hematopoiesis or to restore hematopoiesis during transplantation HSCs must perform both self-renewal, replication of themselves, and differentiation, generation of mature blood and immune cells. These are just two of the cell fate choices HSCs have; the transitional phases where HSCs undergo these cell fate decisions are regulated by reduction-oxidation (redox) signaling, mitochondrial activity, and cellular metabolism. Recent studies revealed that mitochondria, a key source of redox signaling components, are central to HSC cell fate decisions. Here we highlight how mitochondria serve as hubs in HSCs to manage redox signaling and metabolism and thus guide HSC fate choices. We focus on how mitochondrial activity is modulated by their clearance, biogenesis, dynamics, distribution, and quality control in HSCs. We also note how modulating mitochondria in HSCs can help overcome technical barriers limiting further use of HSCT.
Collapse
Affiliation(s)
- Mary Mohrin
- Immunology Discovery, Genentech, Inc. 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
31
|
Yuan S, Sun G, Zhang Y, Dong F, Cheng H, Cheng T. Understanding the "SMART" features of hematopoietic stem cells and beyond. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2030-2044. [PMID: 34341896 PMCID: PMC8328818 DOI: 10.1007/s11427-021-1961-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Since the huge success of bone marrow transplantation technology in clinical practice, hematopoietic stem cells (HSCs) have become the gold standard for defining the properties of adult stem cells (ASCs). Here, we describe the "self-renewal, multi-lineage differentiation, apoptosis, rest, and trafficking" or "SMART" model, which has been developed based on data derived from studies of HSCs as the most well-characterized stem cell type. Given the potential therapeutic applications of ASCs, we delineate the key characteristics of HSCs using this model and speculate on the physiological relevance of stem cells identified in other tissues. Great strides are being made in understanding the biology of ASCs, and efforts are now underway to develop safe and effective ASC-based therapies in this emerging area.
Collapse
Affiliation(s)
- Shiru Yuan
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Guohuan Sun
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Yawen Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Fang Dong
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Hui Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| | - Tao Cheng
- grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020 China ,grid.506261.60000 0001 0706 7839Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020 China
| |
Collapse
|
32
|
Gureev AP, Sadovnikova IS, Starkova NN, Starkov AA, Popov VN. p62-Nrf2-p62 Mitophagy Regulatory Loop as a Target for Preventive Therapy of Neurodegenerative Diseases. Brain Sci 2020; 10:brainsci10110847. [PMID: 33198234 PMCID: PMC7696015 DOI: 10.3390/brainsci10110847] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Turnover of the mitochondrial pool due to coordinated processes of mitochondrial biogenesis and mitophagy is an important process in maintaining mitochondrial stability. An important role in this process is played by the Nrf2/ARE signaling pathway, which is involved in the regulation of the expression of genes responsible for oxidative stress protection, regulation of mitochondrial biogenesis, and mitophagy. The p62 protein is a multifunctional cytoplasmic protein that functions as a selective mitophagy receptor for the degradation of ubiquitinated substrates. There is evidence that p62 can positively regulate Nrf2 by binding to its negative regulator, Keap1. However, there is also strong evidence that Nrf2 up-regulates p62 expression. Thereby, a regulatory loop is formed between two important signaling pathways, which may be an important target for drugs aimed at treating neurodegeneration. Constitutive activation of p62 in parallel with Nrf2 would most likely result in the activation of mTORC1-mediated signaling pathways that are associated with the development of malignant neoplasms. The purpose of this review is to describe the p62-Nrf2-p62 regulatory loop and to evaluate its role in the regulation of mitophagy under various physiological conditions.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (V.N.P.)
- Correspondence:
| | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (V.N.P.)
| | | | - Anatoly A. Starkov
- Neuroscience Department, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (V.N.P.)
- Voronezh State University of Engineering Technologies, 394018 Voronezh, Russia
| |
Collapse
|
33
|
Yao WL, Wen Q, Zhao HY, Tang SQ, Zhang YY, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Different subsets of haematopoietic cells and immune cells in bone marrow between young and older donors. Clin Exp Immunol 2020; 203:137-149. [PMID: 33020903 DOI: 10.1111/cei.13531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Young donors are reported to be associated with better transplant outcomes than older donors in allogeneic hematopoietic stem cell transplantation (allo-HSCT), but the mechanism is still unclear. The current study compared the different subsets of haematopoietic stem cells (HSCs) and their progenitors as well as immune cells in bone marrow (BM) between young and older donors. The frequencies of HSCs, multipotent progenitors (MPPs) and myeloid progenitors, including common myeloid progenitors (CMPs) and megakaryocyte-erythroid progenitors (MEPs), were decreased, whereas those of lymphoid progenitors, including multi-potent lymphoid progenitors (MLPs) and common lymphoid progenitors (CLPs), were increased in the BM of young donors compared with in that of older donors. Lower reactive oxygen species (ROS) levels were observed in BM HSCs and six progenitor lines in young donors. Furthermore, young donors demonstrated higher frequencies of naive T cells and immune suppressor cells, such as alternative macrophages (M2) and lower frequencies of memory T cells and immune effectors, including T helper-1 and T cytotoxic-1 cells, in BM than older donors. Multivariate analysis demonstrated that donor age was independently correlated with BM HSC frequency. Although further validation is required, our results suggest that the differences in the frequency and immune differentiation potential of HSCs in BM between young donors and older donors may partly explain the different outcomes of allo-HSCT.
Collapse
Affiliation(s)
- W-L Yao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Q Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - H-Y Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - S-Q Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Y-Y Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - L-P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - X-H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - X-J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Y Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
34
|
Poudel SB, So HS, Sim HJ, Cho JS, Cho ES, Jeon YM, Kook SH, Lee JC. Osteoblastic Wntless deletion differentially regulates the fate and functions of bone marrow-derived stem cells in relation to age. Stem Cells 2020; 39:103-114. [PMID: 33038284 DOI: 10.1002/stem.3289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
Although functional association between Wnt signaling and bone homeostasis has been well described through genetic ablation of Wntless (Wls), the mechanisms of how osteoblastic Wls regulates the fate of bone marrow stromal cells (BMSCs) and hematopoietic stem cells (HSCs) in relation to age are not yet understood. Here, we generated Col2.3-Cre;Wlsfl/fl mice that were free from premature lethality and investigated age-related impacts of osteoblastic Wls deficiency on hematopoiesis, BM microenvironment, and maintenance of BMSCs (also known as BM-derived mesenchymal stem/stromal cells) and HSCs. Ablation of osteoblastic Wls deteriorated BM microenvironment and bone mass accrual along with age-independent effects on functions of BMSCs. Osteoblastic Wls deletion impaired HSC repopulation and progeny with skewing toward myeloid lineage cells only at old stage. As proven by hallmarks of stem cell senescence, osteoblastic Wls ablation differentially induced senescence of BMSCs and HSCs in relation to age without alteration in their BM frequency. Our findings support that deletion of Wls in Col2.3-expressing cells induces senescence of BMSCs and impairs BM microenvironment in age-independent manner. Overall, long-term deterioration in BM microenvironment contributes to age-related HSC senescence with impaired progeny and hematopoiesis, which also suggests possible roles of osteoblastic Wls on the maintenance of BM HSCs.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Han-Sol So
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Joon-Seok Cho
- Department of Medicine-Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California, USA
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Young-Mi Jeon
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea.,Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
35
|
Isokotomolide A from Cinnamomum kotoense Induce Melanoma Autophagy and Apoptosis In Vivo and In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3425147. [PMID: 33062137 PMCID: PMC7537700 DOI: 10.1155/2020/3425147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Melanoma is an aggressive cancer with high lethality. In order to find new anticancer agents, isokotomolide A (Iso A) and secokotomolide A (Sec A) isolated from Cinnamomum kotoense were identified to be potential bioactive agents against human melanoma but without strong antioxidative properties. Cell proliferation assay displayed Iso A and Sec A treated in the normal human skin cells showed high viabilities. It also verified that two of them possess strong antimelanoma effect in concentration-dependent manners, especially on B16F10, A2058, MeWo, and A375 cells. Wound healing assay presented their excellent antimigratory effects. Through 3-N,3-N,6-N,6-N-Tetramethylacridine-3,6-diamine (acridine orange, AO) staining and Western blot, the autophagy induced by treatment was confirmed, including autophagy-related proteins (Atgs). By using annexin V–FITC/PI double-stain, the apoptosis was confirmed, and both components also triggered the cell cycle arrest and DNA damage. We demonstrated the correlations between the mitogen-activated protein kinase (MAPK) pathway and antimelanoma, such as caspase cascade activations. To further evaluate in vivo experiments, the inhibition of tumor cell growth was verified through the histopathological staining in a xenograft model. In this study, it was confirmed that Iso A and Sec A can encourage melanoma cell death via early autophagy and late apoptosis processes.
Collapse
|
36
|
Ventura RD, Chaves AS, Magalhães NS, Gonzalez FB, Pacini MF, Pérez AR, Silva PMR, Martins MA, Carvalho VF. Activation of PPARγ reduces N-acetyl-cysteine -induced hypercorticoidism by down-regulating MC2R expression into adrenal glands. Free Radic Biol Med 2020; 156:137-143. [PMID: 32574682 DOI: 10.1016/j.freeradbiomed.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 01/24/2023]
Abstract
We previously demonstrated that oral supplementation with antioxidants induced hyperactivity of hypothalamus-pituitary-adrenal (HPA) axis, attested by hypercorticoidism, through an up-regulation of adrenocorticotrophic hormone (ACTH) receptors (MC2R) in adrenal. This study analyzed the role of peroxisome proliferator-activated receptor (PPAR)-γ on HPA axis hyperactivity induced by N-acetyl-cysteine (NAC). Male Swiss-Webster mice were orally treated with NAC for 1, 3, 5, 10, 15, or 18 consecutive days. The PPAR-γ agonist rosiglitazone and/or antagonist GW9662 were daily-injected i.p. for 5 consecutive days, starting concomitantly with NAC treatment. Rosiglitazone treatment inhibited NAC-induced adrenal hypertrophy and hypercorticoidism. Rosiglitazone also significantly reversed the NAC-induced increase in the MC2R expression in adrenal, but not steroidogenic acute regulatory protein (StAR). NAC treatment reduces the expression of PPARγ in the adrenals, but rosiglitazone did not restore the expression of this cytoprotective gene. In addition, GW9662 blocked the ability of rosiglitazone to decrease plasma corticosterone levels in NAC-treated mice. In conclusion, our findings showed that antioxidant supplementation induced a state of hypercorticoidism through down-regulation of PPARγ expression in the adrenals, in a mechanism probably related to a down-regulation of ACTH receptor expression.
Collapse
Affiliation(s)
- Raíssa D Ventura
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Amanda S Chaves
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Nathalia S Magalhães
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Florencia B Gonzalez
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
| | - Maria Florencia Pacini
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
| | - Ana Rosa Pérez
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
| | - Patrícia M R Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marco A Martins
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Vinicius F Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Purified Astaxanthin from Haematococcus pluvialis Promotes Tissue Regeneration by Reducing Oxidative Stress and the Secretion of Collagen In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4946902. [PMID: 32832000 PMCID: PMC7424503 DOI: 10.1155/2020/4946902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Intracellular reactive apoptosis and reactive oxygen species (ROS) play a crucial role in ultraviolet- (UV-) induced inflammation and aging reaction in human dermal tissues. This study determines the mechanism by which Haematococcus pluvialis extracts (HPE) and purified astaxanthin (HPA) to promote skin regeneration in the injured tissue in vitro and in vivo. The results show that HPE and HPA decrease the DNA damage and promote the secretion of collagen from the human normal fibroblast cell line (Hs68) in a dose-dependent manner. UV irradiation and HPA reduce oxidative stress damage due to phorbol-12-myristate-13-acetate (PMA). When skin cells are injured by free radicals, cells undergo a programmed cellular death. Cellular apoptotic death is determined using annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double staining to verify that there is no cell membrane asymmetry and that the nuclear membrane is broken. Inflammatory symptoms and apoptotic injuries to experimental rats in a group that is treated with HPA treated are decreased in a dose-dependent manner after UVB exposure (300 mJ/cm2) for 15 min in vivo, compared to the vehicle control group. These positive results show that HPA repairs UVB-triggered skin tissue injury and aging by conducting electrons out of cells to maintain a low level of oxidative stress so that collagen is synthesized in vitro and in vivo.
Collapse
|
38
|
Gui Y, Yang Y, Xu D, Tao S, Li J. Schisantherin A attenuates sepsis-induced acute kidney injury by suppressing inflammation via regulating the NRF2 pathway. Life Sci 2020; 258:118161. [PMID: 32730835 DOI: 10.1016/j.lfs.2020.118161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
AIMS Tubulointerstitial inflammation is recognized as a key determinant of progressive sepsis-induced acute kidney injury (AKI). Schisantherin A (SchA) has been shown to be capable of regulating inflammatory processes. In the present study, we explored the possibility of SchA in preventing lipopolysaccharide (LPS)-induced kidney inflammation and injury. MATERIALS AND METHODS AKI was induced by a single intraperitoneal injection of LPS in CD1 mice, administration of SchA was used for treatment. The protective effect of SchA on renal function and inflammation were analyzed respectively; the NRK-52E cell line was employed for the in vitro study and relative molecular mechanism was explored. KEY FINDINGS Administration with SchA markedly attenuated LPS-induced damage on renal function and histopathological changes of the kidney. Additionally, pretreatment with SchA could inhibit the expression of inflammatory factors in the kidneys. In NRK-52E cells, SchA treatment significantly inhibited LPS-induced NF-κB activation and pro-inflammatory cytokine expression. Moreover, SchA could promote NRF2 pathway activation, and further blockade of NRF2 activation reversed the SchA-induced inhibition of NF-κB activation. SIGNIFICANCE These presented results indicated that SchA may have great potential for protecting against sepsis-induced AKI.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Deyu Xu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
39
|
Dong Y, Bai J, Zhang Y, Zhou Y, Pan X, Li X, Zhou Q, Chen Y, Lai M, Mao B, Bian G, Feng J, Xie F, Chen B, Nakahata T, Zhang Y, Ma F. Alpha lipoic acid promotes development of hematopoietic progenitors derived from human embryonic stem cells by antagonizing ROS signals. J Leukoc Biol 2020; 108:1711-1725. [PMID: 32640500 PMCID: PMC7754144 DOI: 10.1002/jlb.1a0520-179r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Antagonism of ROS signaling can inhibit cell apoptosis and autophagy, thus favoring the maintenance and expansion of hematopoietic stem cells. Alpha lipoic acid (ALA), a small antioxidant molecule, affects cell apoptosis by lowering the ROS level. In this study, we show that ALA promoted production of human pluripotent stem cells (hPSCs) derived hemogenic endothelial cells and hematopoietic stem/progenitor cells in vitro. Transcriptome analysis of hPSCs derived hemogenic endothelial cells showed that ALA promoted endothelial‐to‐hematopoietic transition by up‐regulating RUNX1, GFI1, GFI1B, MEIS2, and HIF1A and down‐regulating SOX17, TGFB1, TGFB2, TGFB3, TGFBR1, and TGFBR2. ALA also up‐regulated sensor genes of ROS signals, including HIF1A, FOXO1, FOXO3, ATM, PETEN, SIRT1, and SIRT3, during the process of hPSCs derived hemogenic endothelial cells generation. However, in more mature hPSC‐derived hematopoietic stem/progenitor cells, ALA reduced ROS levels and inhibited apoptosis. In particular, ALA enhanced development of hPSCs derived hematopoietic stem/progenitor cells by up‐regulating HIF1A in response to a hypoxic environment. Furthermore, addition of ALA in ex vivo culture greatly improved the maintenance of functional cord blood HSCs by in vivo transplantation assay. Our findings support the conjecture that ALA plays an important role in efficient regeneration of hematopoietic stem/progenitor cells from hPSCs and maintenance of functional HSCs, providing insight into understanding of regeneration of early hematopoiesis for engineering clinically useful hPSCs derived hematopoietic stem/progenitor cells transplantation. Thus, ALA can be used in the study of hPSCs derived HSCs.
Collapse
Affiliation(s)
- Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ju Bai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yimeng Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xiaohong Li
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bin Mao
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Guohui Bian
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Jia Feng
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Fangxin Xie
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| |
Collapse
|
40
|
Merino JJ, Cabaña-Muñoz ME, Pelaz MJ. The Bluegreen Algae (AFA) Consumption over 48 Hours Increases the Total Number of Peripheral CD34+ Cells in Healthy Patients: Effect of Short-Term and Long-Term Nutritional Supplementation (Curcumin/AFA) on CD34+ Levels (Blood). J Pers Med 2020; 10:E49. [PMID: 32521810 PMCID: PMC7354690 DOI: 10.3390/jpm10020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022] Open
Abstract
Several active principles from plants could trigger the release of stem cells from the bone marrow. Stem cell mobilizers have shown side effects in patients. Thus, the purpose of this paper is to find the natural products from plants (curcuminoids, glycosinolate of sulforaphane, AFA bluegreen algae), which could be potential stem mobilizes without adverse side effects. The antioxidant curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-2,5-dione], glycosinolate of sulforaphane (broccoli) or AFA (Aphanizomenon flos) extract promote beneficial effects in patients. The number of circulating stem cells were monitored by HSC marker-CD34 by flow cytometry in peripheral blood from healthy subjects. CD34 is a hematological stem cells (HSC) marker. A double-blind study was conducted in 22 healthy subjects. We have evaluated whether short-term AFA-Aphanizomenon flos aquae-algae or curcuminoids consumption (powder or liquid formulation) over 48 consecutive hours could increase the total number of peripheral CD34+ blood cells (n = 22, n = 5 subjects/group). The total number of circulating CD34+ cells were quantified after short-term and long-term nutritional supplementation; their levels were compared with their own basal levels (n = 5/group, controls: before taking any supplement) or placebo-treated patients (n = 7); their average age was 54 years old. We also evaluated whether long-term nutritional supplementation with several nutraceuticals could enhance HSC mobilization by increasing the total number of peripheral CD-34+ cell after seven or 38 consecutive days of administration (n = 5, with seven placebo-treated patients). The long-term administration take place with these doses/day [curcuminoids: 2000 mg/day, equivalent to 120 mg of curcuminoids/day), glycosinolate of sulforaphane (66 mg/day), plus AFA Algae bluegreen extract (400 mg/day)]. On the last day (10 A.M.) of treatment, blood samples were collected six hours after taking these supplements; the average age was 54 years old. Notably, the blue green AFA algae extract consumption over 48 h enhances HSC mobilization by increasing the total number of peripheral CD34+ cells. The long-term administration with curcuminoids, glycosinolate of sulforaphane, and AFA bluegreen algae extract also increased the total number of CD34-HSC cells after seven or 38 days of consecutive of administration in healthy subjects.
Collapse
Affiliation(s)
- José Joaquín Merino
- Dpto. Farmacologia, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
41
|
The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies. NANOMATERIALS 2020; 10:nano10050837. [PMID: 32349362 PMCID: PMC7712800 DOI: 10.3390/nano10050837] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Collapse
|
42
|
Lu Y, Zhou L, He S, Ren HL, Zhou N, Hu ZM. Lycopene alleviates disc degeneration under oxidative stress through the Nrf2 signaling pathway. Mol Cell Probes 2020; 51:101559. [PMID: 32151764 DOI: 10.1016/j.mcp.2020.101559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
Intervertebral disc degeneration (IDD) is a main cause of diseases such as discogenic low back pain, cervical and lumbar disc herniation, degenerative spinal stenosis, and lumbar spondylolisthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important transcription factor, regulates antioxidant genes and induces cellular defense mechanisms against oxidative stress. In this study, the protective effect of plant antioxidant lycopene on nucleus pulposus cells (NPCs) under oxidative stress was investigated. The results indicated that Nrf2 expression decreased in degenerated NPCs. We further found that lycopene was protective in NP tissue under oxidative stress and alleviated oxidative stress-induced apoptosis of degenerative human NPCs via Nrf2. The results also showed that lycopene reduced H2O2-induced decomposition of cartilage extracellular matrix in NPCs. In conclusion, our findings suggested that lycopene may alleviate disc degeneration under oxidative stress through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Li Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Shan He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Hong-Lei Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Nian Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| | - Zhen-Ming Hu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
43
|
Peng Z, Zhang R, Pan L, Pei H, Niu Z, Wang H, Lv J, Dang X. Glaucocalyxin A Protects H9c2 Cells Against Hypoxia/Reoxygenation-Induced Injury Through the Activation of Akt/Nrf2/HO-1 Pathway. Cell Transplant 2020; 29:963689720967672. [PMID: 33172292 PMCID: PMC7784558 DOI: 10.1177/0963689720967672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023] Open
Abstract
Myocardial infarction (MI) is one of the most serious cardiovascular diseases associated with myocardial ischemia/reperfusion (I/R) injury. Glaucocalyxin A (GLA) is a biologically active ent-kauranoid diterpenoid that has been found to ameliorate myocardial I/R injury in mice. However, the mechanism has not been fully investigated. In the present study, we aimed to investigate the effect of GLA on rat cardiomyocytes H9c2 cells exposed to hypoxia/reoxygenation (H/R). The results showed that GLA treatment improved cell viability of H/R-stimulated H9c2 cells. Administration with GLA suppressed the H/R-stimulated reactive oxygen species (ROS) production in H9c2 cells. GLA also elevated the activities of antioxidant enzymes, including superoxide dismutase and glutathione peroxidase in H/R-stimulated H9c2 cells. Moreover, GLA prevented H/R-stimulated cell apoptosis in H9c2 cells, as evidenced by increased bcl-2 expression, decreased bax expression, as well as reduced caspase-3 activity. Furthermore, GLA enhanced the activation of protein kinase B (Akt)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in H9c2 cells exposed to H/R. Additionally, treatment with LY294002 reserved the protective effects of GLA on H/R-stimulated oxidative injury in H9c2 cells. In conclusion, these findings suggested that GLA protected H9c2 cells from H/R-stimulated oxidative damage, which was mediated by the Akt/Nrf2/HO-1 signaling pathway. Thus, GLA might be a promising therapeutic agent for the prevention and treatment of myocardial I/R.
Collapse
Affiliation(s)
- Zhuo Peng
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Rui Zhang
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Longfei Pan
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Honghong Pei
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zequn Niu
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Hai Wang
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Junhua Lv
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xiaoyan Dang
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|