1
|
Shu L, Chen X, Sun X. Glaucoma and brain functional networks: a bidirectional Mendelian randomisation study. BMJ Open Ophthalmol 2025; 10:e001902. [PMID: 40221145 PMCID: PMC11997818 DOI: 10.1136/bmjophth-2024-001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/02/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE Glaucoma is a complex neurodegenerative ocular disorder accompanied by brain functional abnormalities that extend beyond the visual system. However, the causal association between the two remains unclear at present. This study aimed to investigate the potential causal relationships between glaucoma and brain functional networks in order to provide novel insights into the neuropathic mechanism of glaucoma. METHODS AND ANALYSIS Based on the genome-wide association studies data of glaucoma and resting-state functional MRI (Rs-fMRI), a bidirectional Mendelian randomisation (MR) analysis was conducted between glaucoma and brain functional networks. Inverse variance weighting was applied as the primary method to estimate causality with false discovery rate correction. Additional sensitivity analyses were conducted to evaluate the robustness of the results. RESULTS Forward MR analysis suggested that glaucoma was causally associated with two brain networks between the subcortical cerebellum and the attention or visual network (p=0.022), as well as the default mode and central executive network (p=0.008), but without significance after false discovery rate correction (q>0.1). Reverse MR analysis revealed 19 Rs-fMRI traits related to glaucoma risk, including the salience or central executive network in the frontal region (p=0.0005, q=0.08) and the motor network (p=0.0009, q=0.08) with significant causality. CONCLUSIONS This MR study revealed potentially causal relationships between glaucoma and brain functional networks. Especially, the functional connectivity of the motor network between the postcentral or precentral areas may potentially lead to increased risk of glaucoma.
Collapse
Affiliation(s)
- Lian Shu
- Fudan University Eye Ear Nose and Throat Hospital Department of Ophthalmology, Shanghai, China
| | - Xiaoxiao Chen
- Fudan University Eye Ear Nose and Throat Hospital Department of Ophthalmology, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Fudan University Eye Ear Nose and Throat Hospital, Shanghai, China
- Fudan University Institutes of Brain Science, Shanghai, China
| |
Collapse
|
2
|
Li Z, Dai C, Fan SJ, Tang G, Liu C, Qu B, Chang X, Jiang J, Cheng Y, Zhang Y, Zhang Q, Wang NL, He M, Li S. Trabeculectomy versus stepwise treatment for breaking the attack of acute primary angle closure in patients with long attack duration: study design and protocol for a multicentre randomised controlled trial (LAAAC). BMJ Open Ophthalmol 2025; 10:e001934. [PMID: 39915238 PMCID: PMC11804192 DOI: 10.1136/bmjophth-2024-001934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
INTRODUCTION Acute primary angle closure (APAC) is a common ophthalmic emergency for Chinese patients causing potential visual disabilities. According to current guidelines published by developed countries, a stepwise protocol (medication laser or paracentesis surgery) is recommended for emergency management of APAC. However, patients with APAC in China and developed countries differ in disease characteristics as the Chinese have longer attack duration and lower success rate in breaking the attack with solely medication or laser therapy. It has been proved that long attack duration is a risk factor for failed medical or laser therapies in subsiding APAC. Since prompt and effective treatment is pivotal in preserving visual function as well as avoiding APAC-induced blindness, direct trabeculectomy may largely benefit long-attacking patients with APAC in China. PURPOSE The Long-Attacking Acute Angle Closure study aims to compare long-term visual function and safety after different initial treatment strategies: direct surgery (trabeculectomy) or stepwise protocol for patients with APAC with attack duration longer than 72 hours. METHODS AND ANALYSIS This is a pragmatic, multicentre, randomised controlled trial targeting Chinese patients with APAC duration longer than 72 hours. Eligible participants will be identified at either emergency department or glaucoma clinics, then randomised into stepped treatment group or trabeculectomy group using a computer central randomisation service. The patients will be followed up for 1 year after initial treatment. MAIN OUTCOMES AND MEASURES The primary outcome is logMAR BCVA 1 year post initial treatment. Secondary outcomes consist of complete success rate in breaking the attack, intraocular pressure value, mean deviation on Humphrey visual field testing and vision-related quality of life collected using the National Eye Institute Visual Function Questionnaire (25 items) 1 year post initial treatment. TRIAL REGISTRATION NUMBER ChiCTR2200057289.
Collapse
Affiliation(s)
- Zhi Li
- Capital Medical University, Beijing, China
| | - Chao Dai
- Shanxi Aier Eye Hospital, Taiyuan, China
| | - Su Jie Fan
- Department of Ophthalmology, Third Hospital of Handan, Handan, Hebei, China
| | - Guangxian Tang
- Department of Ophthalmology, First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chi Liu
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Bo Qu
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Jing Jiang
- Department of Glaucoma, Fushun Eye Hospital, Fushun, China
| | | | - Ye Zhang
- Beijing Tongren Hospital CMU, Beijing, China
| | - Qing Zhang
- Beijing Institute of Ophthalmology, Beijing, China
| | - Ning-Li Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing, China
- Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Mingguang He
- The Hong Kong Polytechnic University, Hong Kong, China
| | - Shuning Li
- Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing, Beijing, China
| |
Collapse
|
3
|
Carrero L, Antequera D, Municio C, Carro E. Circadian rhythm disruption and retinal dysfunction: a bidirectional link in Alzheimer's disease? Neural Regen Res 2024; 19:1967-1972. [PMID: 38227523 DOI: 10.4103/1673-5374.390962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024] Open
Abstract
Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer's disease. A predominant function of the retina is circadian synchronization, carrying information to the brain through the retinohypothalamic tract, which projects to the suprachiasmatic nucleus. Notably, Alzheimer's disease hallmarks, including amyloid-β, are present in the retinas of Alzheimer's disease patients, followed/associated by structural and functional disturbances. However, the mechanistic link between circadian dysfunction and the pathological changes affecting the retina in Alzheimer's disease is not fully understood, although some studies point to the possibility that retinal dysfunction could be considered an early pathological process that directly modulates the circadian rhythm.
Collapse
Affiliation(s)
- Laura Carrero
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Desireé Antequera
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain; Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Cristina Municio
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Eva Carro
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain; Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Badhon RH, Thompson AC, Lim JI, Leng T, Alam MN. Quantitative Characterization of Retinal Features in Translated OCTA. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.23.24303275. [PMID: 38464168 PMCID: PMC10925340 DOI: 10.1101/2024.02.23.24303275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Purpose This study explores the feasibility of using generative machine learning (ML) to translate Optical Coherence Tomography (OCT) images into Optical Coherence Tomography Angiography (OCTA) images, potentially bypassing the need for specialized OCTA hardware. Methods The method involved implementing a generative adversarial network framework that includes a 2D vascular segmentation model and a 2D OCTA image translation model. The study utilizes a public dataset of 500 patients, divided into subsets based on resolution and disease status, to validate the quality of TR-OCTA images. The validation employs several quality and quantitative metrics to compare the translated images with ground truth OCTAs (GT-OCTA). We then quantitatively characterize vascular features generated in TR-OCTAs with GT-OCTAs to assess the feasibility of using TR-OCTA for objective disease diagnosis. Result TR-OCTAs showed high image quality in both 3 and 6 mm datasets (high-resolution, moderate structural similarity and contrast quality compared to GT-OCTAs). There were slight discrepancies in vascular metrics, especially in diseased patients. Blood vessel features like tortuosity and vessel perimeter index showed a better trend compared to density features which are affected by local vascular distortions. Conclusion This study presents a promising solution to the limitations of OCTA adoption in clinical practice by using vascular features from TR-OCTA for disease detection. Translation relevance This study has the potential to significantly enhance the diagnostic process for retinal diseases by making detailed vascular imaging more widely available and reducing dependency on costly OCTA equipment.
Collapse
Affiliation(s)
- Rashadul Hasan Badhon
- Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Atalie Carina Thompson
- Department of Surgical Ophthalmology, Atrium-Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Jennifer I. Lim
- Department of Ophthalmology and Visual Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Theodore Leng
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, United States
| | - Minhaj Nur Alam
- Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
5
|
Huang L, Li Q, Lu Y, Pan F, Cui L, Wang Y, Miao Y, Chen T, Li Y, Wu J, Chen X, Jia J, Guo Q. Consensus on rapid screening for prodromal Alzheimer's disease in China. Gen Psychiatr 2024; 37:e101310. [PMID: 38313393 PMCID: PMC10836380 DOI: 10.1136/gpsych-2023-101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia, characterised by cerebral amyloid-β deposition, pathological tau and neurodegeneration. The prodromal stage of AD (pAD) refers to patients with mild cognitive impairment (MCI) and evidence of AD's pathology. At this stage, disease-modifying interventions should be used to prevent the progression to dementia. Given the inherent heterogeneity of MCI, more specific biomarkers are needed to elucidate the underlying AD's pathology. Although the uses of cerebrospinal fluid and positron emission tomography are widely accepted methods for detecting AD's pathology, their clinical applications are limited by their high costs and invasiveness, particularly in low-income areas in China. Therefore, to improve the early detection of Alzheimer's disease (AD) pathology through cost-effective screening methods, a panel of 45 neurologists, psychiatrists and gerontologists was invited to establish a formal consensus on the screening of pAD in China. The supportive evidence and grades of recommendations are based on a systematic literature review and focus group discussion. National meetings were held to allow participants to review, vote and provide their expert opinions to reach a consensus. A majority (two-thirds) decision was used for questions for which consensus could not be reached. Recommended screening methods are presented in this publication, including neuropsychological assessment, peripheral biomarkers and brain imaging. In addition, a general workflow for screening pAD in China is established, which will help clinicians identify individuals at high risk and determine therapeutic targets.
Collapse
Affiliation(s)
- Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yatian Li
- Shanghai BestCovered, Shanghai, China
| | | | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianping Jia
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Cotta Ramusino M, Scanu L, Gritti L, Imbimbo C, Farina LM, Cosentino G, Perini G, Costa A. Neurophysiological Alterations of the Visual Pathway in Posterior Cortical Atrophy: Systematic Review and a Case Series. J Alzheimers Dis 2024; 98:53-67. [PMID: 38363610 DOI: 10.3233/jad-231123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background The clinical features of posterior cortical atrophy (PCA), a rare condition often caused by Alzheimer's disease, have been recently defined, while little is known about its neurophysiological correlates. Objective To describe neurophysiological alterations of the visual pathway as assessed using visual field test (VF), visual evoked potentials (VEP), and electroretinogram (ERG) in PCA patients. Methods Studies reporting VF, VEPs, and ERG in PCA patients were selected according PRISMA method. Of the 323 articles that emerged from the literature, 17 included the outcomes of interest. To these data, we added those derived from a patient cohort enrolled at our clinic. Results The literature review included 140 patients, half of them (50%) presented with homonymous hemianopia or quadrantanopia. VEPs were available in 4 patients (2 normal findings, 1 decreased amplitude, and 1 increased latency) and ERG in 3 patients (substantially normal findings). Our case series included 6 patients, presenting with homonymous lateral hemianopia in 50% and contralateral cortical atrophy. VEPs showed normal amplitude in 66-83% according to the stimulation check, and increased latency in 67% in absence of myelin damage on MRI. Latency was increased in both eyes in 50% and only on one side in the other 50%. Such alterations were observed in patients with more severe and symmetric atrophy. ERG showed normal findings. Conclusions Neurophysiological investigations of the visual pathway in PCA are almost absent in literature. Alterations involve both amplitude and latency and can be also monocular. A multiple-point involvement of the optical pathway can be hypothesized.
Collapse
Affiliation(s)
- Matteo Cotta Ramusino
- Clinical Neuroscience Unit of Dementia, Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Lucia Scanu
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Linda Gritti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Maria Farina
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giulia Perini
- Clinical Neuroscience Unit of Dementia, Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia (CDCD), IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Harding P, Gore S, Malka S, Rajkumar J, Oluonye N, Moosajee M. Real-world clinical and molecular management of 50 prospective patients with microphthalmia, anophthalmia and/or ocular coloboma. Br J Ophthalmol 2023; 107:1925-1935. [PMID: 36192130 DOI: 10.1136/bjo-2022-321991] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIMS Microphthalmia, anophthalmia and coloboma (MAC) are clinically and genetically heterogenous rare developmental eye conditions, which contribute to a significant proportion of childhood blindness worldwide. Clear understanding of MAC aetiology and comorbidities is essential to providing patients with appropriate care. However, current management is unstandardised and molecular diagnostic rates remain low, particularly in those with unilateral presentation. To further understanding of clinical and genetic management of patients with MAC, we charted their real-world experience to ascertain optimal management pathways and yield from molecular analysis. METHODS A prospective cohort study of consecutive patients with MAC referred to the ocular genetics service at Moorfields Eye Hospital between 2017-2020. RESULTS Clinical analysis of 50 MAC patients (15 microphthalmia; 2 anophthalmia; 11 coloboma; and 22 mixed) from 44 unrelated families found 44% had additional ocular features (complex) and 34% had systemic involvement, most frequently intellectual/developmental delay (8/17). Molecular analysis of 39 families using targeted gene panels, whole genome sequencing and microarray comparative genomic hybridisation identified genetic causes in, 28% including novel variants in six known MAC genes (SOX2, KMT2D, MAB21L2, ALDH1A3, BCOR and FOXE3), and a molecular diagnostic rate of 33% for both bilateral and unilateral cohorts. New phenotypic associations were found for FOXE3 (bilateral sensorineural hearing loss) and MAB21L2 (unilateral microphthalmia). CONCLUSION This study highlights the importance of thorough clinical and molecular phenotyping of MAC patients to provide appropriate multidisciplinary care. Routine genetic testing for both unilateral and bilateral cases in the clinic may increase diagnostic rates in the future, helping elucidate genotype-phenotype correlations and informing genetic counselling.
Collapse
Affiliation(s)
- Philippa Harding
- Institute of Ophthalmology, University College London, London, UK
| | - Sri Gore
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital For Children NHS Trust, London, UK
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Ngozi Oluonye
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital For Children NHS Trust, London, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital For Children NHS Trust, London, UK
| |
Collapse
|
8
|
Mauschitz MM, Verzijden T, Schuster AK, Elbaz H, Pfeiffer N, Khawaja A, Luben RN, Foster PJ, Rauscher FG, Wirkner K, Kirsten T, Jonas JB, Bikbov MM, Hogg R, Peto T, Cougnard-Grégoire A, Bertelsen G, Erke MG, Topouzis F, Giannoulis DA, Brandl C, Heid IM, Creuzot-Garcher CP, Gabrielle PH, Hense HW, Pauleikhoff D, Barreto P, Coimbra R, Piermarocchi S, Daien V, Holz FG, Delcourt C, Finger RP. Association of lipid-lowering drugs and antidiabetic drugs with age-related macular degeneration: a meta-analysis in Europeans. Br J Ophthalmol 2023; 107:1880-1886. [PMID: 36344262 DOI: 10.1136/bjo-2022-321985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/AIMS To investigate the association of commonly used systemic medications with prevalent age-related macular degeneration (AMD) in the general population. METHODS We included 38 694 adults from 14 population-based and hospital-based studies from the European Eye Epidemiology consortium. We examined associations between the use of systemic medications and any prevalent AMD as well as any late AMD using multivariable logistic regression modelling per study and pooled results using random effects meta-analysis. RESULTS Between studies, mean age ranged from 61.5±7.1 to 82.6±3.8 years and prevalence ranged from 12.1% to 64.5% and from 0.5% to 35.5% for any and late AMD, respectively. In the meta-analysis of fully adjusted multivariable models, lipid-lowering drugs (LLD) and antidiabetic drugs were associated with lower prevalent any AMD (OR 0.85, 95% CI=0.79 to 0.91 and OR 0.78, 95% CI=0.66 to 0.91). We found no association with late AMD or with any other medication. CONCLUSION Our study indicates a potential beneficial effect of LLD and antidiabetic drug use on prevalence of AMD across multiple European cohorts. Our findings support the importance of metabolic processes in the multifactorial aetiology of AMD.
Collapse
Affiliation(s)
| | - Timo Verzijden
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Hisham Elbaz
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Anthony Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Robert N Luben
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Paul J Foster
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
| | - Franziska G Rauscher
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, 04107 Leipzig, Germany
- Leipzig Research Centre for Civilization Diseases (LIFE), Leipzig University, 04103 Leipzig, Germany
| | - Kerstin Wirkner
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, 04107 Leipzig, Germany
- Leipzig Research Centre for Civilization Diseases (LIFE), Leipzig University, 04103 Leipzig, Germany
| | - Toralf Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, 04107 Leipzig, Germany
- Leipzig Research Centre for Civilization Diseases (LIFE), Leipzig University, 04103 Leipzig, Germany
- Leipzig University Medical Center, Medical Informatics Center - Dept. of Medical Data Science, 04107 Leipzig, Germany
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | - Ruth Hogg
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Tunde Peto
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Audrey Cougnard-Grégoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Team LEHA, F-33000 Bordeaux, France
| | - Geir Bertelsen
- Department of Community Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
- Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway
| | - Maja Gran Erke
- Directorate of eHealth, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Fotis Topouzis
- Department of Ophthalmology, Aristotle University of Thessaloniki, School of Medicine, AHEPA Hospital, Thessaloniki, Greece
| | - Dimitrios A Giannoulis
- Department of Ophthalmology, Aristotle University of Thessaloniki, School of Medicine, AHEPA Hospital, Thessaloniki, Greece
| | - Caroline Brandl
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | | | | | - Hans-Werner Hense
- University of Münster, Faculty of Medicine, Institute of Epidemiology, Münster, Germany
| | | | - Patricia Barreto
- AIBILI - Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Centre for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Rita Coimbra
- AIBILI - Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Stefano Piermarocchi
- Padova-Camposampiero Hospital, Padova, Italy
- University of Padova, Department of Neuroscience, Padova, Italy
| | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, F-34000 Montpellier, France
- Institute for Neurosciences of Montpellier INM, Univ. Montpellier, INSERM, F-34091 Montpellier, France
- The Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Cecile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Team LEHA, F-33000 Bordeaux, France
| | - Robert P Finger
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Rappon J, Chung C, Young G, Hunt C, Neitz J, Neitz M, Chalberg T. Control of myopia using diffusion optics spectacle lenses: 12-month results of a randomised controlled, efficacy and safety study (CYPRESS). Br J Ophthalmol 2023; 107:1709-1715. [PMID: 36126105 PMCID: PMC10646852 DOI: 10.1136/bjo-2021-321005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/16/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mutations in the L/M cone opsin gene array cause abnormally high perceived retinal contrast and the development of myopia. Environmental factors may also lead to high visual contrast and cause myopia. Diffusion optics technology (DOT) lenses are designed to reduce contrast signalling in the retina and slow myopia progression. METHODS The Control of Myopia Using Peripheral Diffusion Lenses Efficacy and Safety Study (CYPRESS, NCT03623074) is a 36-month, multicentre, randomised, controlled, double-masked trial evaluating two investigational spectacle lenses versus control lenses in myopic children aged 6-10, with a planned interim analysis at 12 months. The primary endpoints are change from baseline in axial length (AL) and spherical equivalent refraction (SER). RESULTS 256 children (58% female; mean age at screening, 8.1 years) were dispensed spectacles. Across all groups, baseline averages were AL 24.02 mm (SD±0.77 mm), SER -2.01 D (SD±0.9 D) using manifest refraction, and SER -1.94 D (SD±1.0 D) using cycloplegic autorefraction. At 12 months, mean difference in SER progression for test 1 versus control was -0.40 D (p<0.0001), representing a 74% reduction and -0.32 D for Test 2 (p<0.0001), representing a 59% reduction. The difference in AL progression for test 1 versus control was 0.15 mm (p<0.0001) and test 2 versus control was 0.10 mm (p=0.0018). CONCLUSION 12-month results from this ongoing trial demonstrate the safety and effectiveness of DOT spectacles for reducing myopic progression.
Collapse
Affiliation(s)
- Joe Rappon
- SightGlass Vision Inc, Palo Alto, California, USA
| | - Carol Chung
- Carol Chung Statistics Consulting Inc, Pacifica, California, USA
| | | | | | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
10
|
Liu TYA, Ling C, Hahn L, Jones CK, Boon CJ, Singh MS. Prediction of visual impairment in retinitis pigmentosa using deep learning and multimodal fundus images. Br J Ophthalmol 2023; 107:1484-1489. [PMID: 35896367 PMCID: PMC10579177 DOI: 10.1136/bjo-2021-320897] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The efficiency of clinical trials for retinitis pigmentosa (RP) treatment is limited by the screening burden and lack of reliable surrogate markers for functional end points. Automated methods to determine visual acuity (VA) may help address these challenges. We aimed to determine if VA could be estimated using confocal scanning laser ophthalmoscopy (cSLO) imaging and deep learning (DL). METHODS Snellen corrected VA and cSLO imaging were obtained retrospectively. The Johns Hopkins University (JHU) dataset was used for 10-fold cross-validations and internal testing. The Amsterdam University Medical Centers (AUMC) dataset was used for external independent testing. Both datasets had the same exclusion criteria: visually significant media opacities and images not centred on the central macula. The JHU dataset included patients with RP with and without molecular confirmation. The AUMC dataset only included molecularly confirmed patients with RP. Using transfer learning, three versions of the ResNet-152 neural network were trained: infrared (IR), optical coherence tomography (OCT) and combined image (CI). RESULTS In internal testing (JHU dataset, 2569 images, 462 eyes, 231 patients), the area under the curve (AUC) for the binary classification task of distinguishing between Snellen VA 20/40 or better and worse than Snellen VA 20/40 was 0.83, 0.87 and 0.85 for IR, OCT and CI, respectively. In external testing (AUMC dataset, 349 images, 166 eyes, 83 patients), the AUC was 0.78, 0.87 and 0.85 for IR, OCT and CI, respectively. CONCLUSIONS Our algorithm showed robust performance in predicting visual impairment in patients with RP, thus providing proof-of-concept for predicting structure-function correlation based solely on cSLO imaging in patients with RP.
Collapse
Affiliation(s)
- Tin Yan Alvin Liu
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Carlthan Ling
- Department of Ophthalmology, University of Maryland Medical System, Baltimore, Maryland, USA
| | - Leo Hahn
- Department of Ophthalmology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Craig K Jones
- Malone Center for Engineering in Healthcare, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Camiel Jf Boon
- Department of Ophthalmology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Constable PA, Lim JKH, Thompson DA. Retinal electrophysiology in central nervous system disorders. A review of human and mouse studies. Front Neurosci 2023; 17:1215097. [PMID: 37600004 PMCID: PMC10433210 DOI: 10.3389/fnins.2023.1215097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The retina and brain share similar neurochemistry and neurodevelopmental origins, with the retina, often viewed as a "window to the brain." With retinal measures of structure and function becoming easier to obtain in clinical populations there is a growing interest in using retinal findings as potential biomarkers for disorders affecting the central nervous system. Functional retinal biomarkers, such as the electroretinogram, show promise in neurological disorders, despite having limitations imposed by the existence of overlapping genetic markers, clinical traits or the effects of medications that may reduce their specificity in some conditions. This narrative review summarizes the principal functional retinal findings in central nervous system disorders and related mouse models and provides a background to the main excitatory and inhibitory retinal neurotransmitters that have been implicated to explain the visual electrophysiological findings. These changes in retinal neurochemistry may contribute to our understanding of these conditions based on the findings of retinal electrophysiological tests such as the flash, pattern, multifocal electroretinograms, and electro-oculogram. It is likely that future applications of signal analysis and machine learning algorithms will offer new insights into the pathophysiology, classification, and progression of these clinical disorders including autism, attention deficit/hyperactivity disorder, bipolar disorder, schizophrenia, depression, Parkinson's, and Alzheimer's disease. New clinical applications of visual electrophysiology to this field may lead to earlier, more accurate diagnoses and better targeted therapeutic interventions benefiting individual patients and clinicians managing these individuals and their families.
Collapse
Affiliation(s)
- Paul A. Constable
- College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Jeremiah K. H. Lim
- Discipline of Optometry, School of Allied Health, University of Western Australia, Perth, WA, Australia
| | - Dorothy A. Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
12
|
Gokhale KM, Adderley NJ, Subramanian A, Lee WH, Han D, Coker J, Braithwaite T, Denniston AK, Keane PA, Nirantharakumar K. Metformin and risk of age-related macular degeneration in individuals with type 2 diabetes: a retrospective cohort study. Br J Ophthalmol 2023; 107:980-986. [PMID: 35115301 DOI: 10.1136/bjophthalmol-2021-319641] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) in its late stages is a leading cause of sight loss in developed countries. Some previous studies have suggested that metformin may be associated with a reduced risk of developing AMD, but the evidence is inconclusive. AIMS To explore the relationship between metformin use and development of AMD among patients with type 2 diabetes in the UK. METHODS A large, population-based retrospective open cohort study with a time-dependent exposure design was carried out using IQVIA Medical Research Data, 1995-2019. Patients aged ≥40 with diagnosed type 2 diabetes were included.The exposed group was those prescribed metformin (with or without any other antidiabetic medications); the comparator (unexposed) group was those prescribed other antidiabetic medications only. The exposure status was treated as time varying, collected at 3-monthly time intervals.Extended Cox proportional hazards regression was used to calculate the adjusted HRs for development of the outcome, newly diagnosed AMD. RESULTS A total of 173 689 patients, 57% men, mean (SD) age 62.8 (11.6) years, with incident type 2 diabetes and a record of one or more antidiabetic medications were included in the study. Median follow-up was 4.8 (IQR 2.3-8.3, range 0.5-23.8) years. 3111 (1.8%) patients developed AMD. The adjusted HR for diagnosis of AMD was 1.02 (95% CI 0.92 to 1.12) in patients prescribed metformin (with or without other antidiabetic medications) compared with those prescribed any other antidiabetic medication only. CONCLUSION We found no evidence that metformin was associated with risk of AMD in primary care patients requiring treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Krishna M Gokhale
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Nicola J Adderley
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | | | - Wen Hwa Lee
- Action Against Age-Related Macular Degeneration, London, UK
| | - Diana Han
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jesse Coker
- Action Against Age-Related Macular Degeneration, London, UK
| | - Tasanee Braithwaite
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- The School of Immunology and Microbial Sciences and The School of Life Course Sciences, King's College London, London, UK
- The Medical Eye Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Alastair K Denniston
- Department of Ophthalmology, University Hospitals Birmingham NHSFT, Birmingham, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and Institute of Ophthalmology, University College London, London, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Health Data Research UK, London, UK
| | - Pearse A Keane
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and Institute of Ophthalmology, University College London, London, UK
| | - Krishnarajah Nirantharakumar
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Health Data Research UK, London, UK
| |
Collapse
|
13
|
Tursini K, Remy I, Le Cam S, Louis-Dorr V, Malka-Mahieu H, Schwan R, Gross G, Laprévote V, Schwitzer T. Subsequent and simultaneous electrophysiological investigation of the retina and the visual cortex in neurodegenerative and psychiatric diseases: what are the forecasts for the medicine of tomorrow? Front Psychiatry 2023; 14:1167654. [PMID: 37333926 PMCID: PMC10272854 DOI: 10.3389/fpsyt.2023.1167654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Visual electrophysiological deficits have been reported in neurodegenerative disorders as well as in mental disorders. Such alterations have been mentioned in both the retina and the cortex, notably affecting the photoreceptors, retinal ganglion cells (RGCs) and the primary visual cortex. Interestingly, such impairments emphasize the functional role of the visual system. For this purpose, the present study reviews the existing literature with the aim of identifying key alterations in electroretinograms (ERGs) and visual evoked potentials electroencephalograms (VEP-EEGs) of subjects with neurodegenerative and psychiatric disorders. We focused on psychiatric and neurodegenerative diseases due to similarities in their neuropathophysiological mechanisms. Our research focuses on decoupled and coupled ERG/VEP-EEG results obtained with black-and-white checkerboards or low-level visual stimuli. A decoupled approach means recording first the ERG, then the VEP-EEG in the same subject with the same visual stimuli. The second method means recording both ERG and VEP-EEG simultaneously in the same participant with the same visual stimuli. Both coupled and decoupled results were found, indicating deficits mainly in the N95 ERG wave and the P100 VEP-EEG wave in Parkinson’s, Alzheimer’s, and major depressive disorder. Such results reinforce the link between the retina and the visual cortex for the diagnosis of psychiatric and neurodegenerative diseases. With that in mind, medical devices using coupled ERG/VEP-EEG measurements are being developed in order to further investigate the relationship between the retina and the visual cortex. These new techniques outline future challenges in mental health and the use of machine learning for the diagnosis of mental disorders, which would be a crucial step toward precision psychiatry.
Collapse
Affiliation(s)
- Katelyne Tursini
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- BioSerenity, Paris, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
| | - Irving Remy
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- BioSerenity, Paris, France
- INSERM U1114, Université de Strasbourg, Strasbourg, France
| | - Steven Le Cam
- CRAN, CNRS UMR 7039, Université de Lorraine, Nancy, France
| | | | | | - Raymund Schwan
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Grégory Gross
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
| | - Vincent Laprévote
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1114, Université de Strasbourg, Strasbourg, France
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d’Adultes et d’Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, Laxou, France
- INSERM U1254, Université de Lorraine, IADI, Nancy, France
- Faculté de Médecine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
14
|
Carrero L, Antequera D, Alcalde I, Megías D, Figueiro-Silva J, Merayo-Lloves J, Municio C, Carro E. Disturbed circadian rhythm and retinal degeneration in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2023; 11:55. [PMID: 37004084 PMCID: PMC10067208 DOI: 10.1186/s40478-023-01529-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/11/2023] [Indexed: 04/03/2023] Open
Abstract
The circadian clock is synchronized to the 24 h day by environmental light which is transmitted from the retina to the suprachiasmatic nucleus (SCN) primarily via the retinohypothalamic tract (RHT). Circadian rhythm abnormalities have been reported in neurodegenerative disorders such as Alzheimer's disease (AD). Whether these AD-related changes are a result of the altered clock gene expression, retina degeneration, including the dysfunction in RHT transmission, loss of retinal ganglion cells and its electrophysiological capabilities, or a combination of all of these pathological mechanisms, is not known. Here, we evaluated transgenic APP/PS1 mouse model of AD and wild-type mice at 6- and 12-month-old, as early and late pathological stage, respectively. We noticed the alteration of circadian clock gene expression not only in the hypothalamus but also in two extra-hypothalamic brain regions, cerebral cortex and hippocampus, in APP/PS1 mice. These alterations were observed in 6-month-old transgenic mice and were exacerbated at 12 months of age. This could be explained by the reduced RHT projections in the SCN of APP/PS1 mice, correlating with downregulation of hypothalamic GABAergic response in APP/PS1 mice in advanced stage of pathology. Importantly, we also report retinal degeneration in APP/PS1 mice, including Aβ deposits and reduced choline acetyltransferase levels, loss of melanopsin retinal ganglion cells and functional integrity mainly of inner retina layers. Our findings support the theory that retinal degeneration constitutes an early pathological event that directly affects the control of circadian rhythm in AD.
Collapse
Affiliation(s)
- Laura Carrero
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Autonoma de Madrid University, Madrid, Spain
| | - Desireé Antequera
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo and Fundación de Investigación Oftalmológica, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, Madrid, Spain
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo and Fundación de Investigación Oftalmológica, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Cristina Municio
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain.
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Early visual alterations in individuals at-risk of Alzheimer's disease: a multidisciplinary approach. Alzheimers Res Ther 2023; 15:19. [PMID: 36694201 PMCID: PMC9872347 DOI: 10.1186/s13195-023-01166-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/08/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND The earliest pathological features of Alzheimer's disease (AD) appear decades before the clinical symptoms. The pathology affects the brain and the eye, leading to retinal structural changes and functional visual alterations. Healthy individuals at high risk of developing AD present alterations in these ophthalmological measures, as well as in resting-state electrophysiological activity. However, it is unknown whether the ophthalmological alterations are related to the visual-related electrophysiological activity. Elucidating this relationship is paramount to understand the mechanisms underlying the early deterioration of the system and an important step in assessing the suitability of these measures as early biomarkers of disease. METHODS In total, 144 healthy subjects: 105 with family history of AD and 39 without, underwent ophthalmologic analysis, magnetoencephalography recording, and genotyping. A subdivision was made to compare groups with less demographic and more risk differences: 28 high-risk subjects (relatives/APOEɛ4 +) and 16 low-risk (non-relatives/APOEɛ4 -). Differences in visual acuity, contrast sensitivity, and macular thickness were evaluated. Correlations between each variable and visual-related electrophysiological measures (M100 latency and time-frequency power) were calculated for each group. RESULTS High-risk groups showed increased visual acuity. Visual acuity was also related to a lower M100 latency and a greater power time-frequency cluster in the high-risk group. Low-risk groups did not show this relationship. High-risk groups presented trends towards a greater contrast sensitivity that did not remain significant after correction for multiple comparisons. The highest-risk group showed trends towards the thinning of the inner plexiform and inner nuclear layers that did not remain significant after correction. The correlation between contrast sensitivity and macular thickness, and the electrophysiological measures were not significant after correction. The difference between the high- and low- risk groups correlations was no significant. CONCLUSIONS To our knowledge, this paper is the first of its kind, assessing the relationship between ophthalmological and electrophysiological measures in healthy subjects at distinct levels of risk of AD. The results are novel and unexpected, showing an increase in visual acuity among high-risk subjects, who also exhibit a relationship between this measure and visual-related electrophysiological activity. These results have not been previously explored and could constitute a useful object of research as biomarkers for early detection and the evaluation of potential interventions' effectiveness.
Collapse
|
16
|
Dysfunction of the glutamatergic photoreceptor synapse in the P301S mouse model of tauopathy. Acta Neuropathol Commun 2023; 11:5. [PMID: 36631898 PMCID: PMC9832799 DOI: 10.1186/s40478-022-01489-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/04/2022] [Indexed: 01/13/2023] Open
Abstract
Tauopathies, including Alzheimer's disease, are characterized by retinal ganglion cell loss associated with amyloid and phosphorylated tau deposits. We investigated the functional impact of these histopathological alterations in the murine P301S model of tauopathy. Visual impairments were demonstrated by a decrease in visual acuity already detectable at 6 months, the onset of disease. Visual signals to the cortex and retina were delayed at 6 and 9 months, respectively. Surprisingly, the retinal output signal was delayed at the light onset and advanced at the light offset. This antagonistic effect, due to a dysfunction of the cone photoreceptor synapse, was associated with changes in the expression of the vesicular glutamate transporter and a microglial reaction. This dysfunction of retinal glutamatergic synapses suggests a novel interpretation for visual deficits in tauopathies and it highlights the potential value of the retina for the diagnostic assessment and the evaluation of therapies in Alzheimer's disease and other tauopathies.
Collapse
|
17
|
Guven TK, Alexander A, Smith GT. Hydroxychloroquine retinopathy screening guidelines: a false positive. BMJ Case Rep 2023; 16:e249052. [PMID: 36593073 PMCID: PMC9809213 DOI: 10.1136/bcr-2022-249052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2022] [Indexed: 01/03/2023] Open
Abstract
Hydroxychloroquine sulphate (HCQ) is widely used for the treatment of a variety of rheumatological and dermatological conditions. Despite the advantages of HCQ as a treatment option, it is important to be aware of its potential retinal toxicity, which may be irreversible and progressive. In December 2020, The Royal College of Ophthalmologists published revised recommendations on monitoring HCQ retinopathy. Our case report highlights some of the shortcomings of blindly following their monitoring algorithm by presenting a case where apparent HCQ retinopathy resolved after Yttrium Aluminium Garnet (YAG) laser capsulotomy. The case reiterates the importance of thorough clinical examination. We suggest that while the acquisition of the spectral domain optical coherence tomography and fundus autofluorescence may be objective, their interpretation is subjective. Even with the use of artificial intelligence algorithms, false positives may be generated if the tests are confounded by copathology. There is no gold-standard test for detecting HCQ toxicity.
Collapse
Affiliation(s)
- Tolga Kamil Guven
- Ophthalmology, Great Western Hospital Foundation NHS Trust, Swindon, UK
| | - Adam Alexander
- Ophthalmology, Great Western Hospitals NHS Foundation Trust, Swindon, UK
| | - Guy T Smith
- Ophthalmology, Great Western Hospitals NHS Foundation Trust, Swindon, UK
| |
Collapse
|
18
|
Vuhahula EA, Jumanne S, Yahaya J. Expression of Ki67 as detected by MIB-1 and its association with histopathological high-risk factors among patients with retinoblastoma tumour: a cross-sectional study. BMJ Open Ophthalmol 2022; 7:bmjophth-2022-000984. [PMID: 36161862 PMCID: PMC9472146 DOI: 10.1136/bmjophth-2022-000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives This study aims to investigate the expression of Ki67 in formalin-fixed paraffin-embedded tissue blocks from patients with a diagnosis of retinoblastoma tumour (RbT) as well as determining its association with histopathological high-risk factors (HHRFs). Methods and analysis Retrospectively, a total of 194 eyeball specimens from 163 children with RbT were reviewed at Muhimbili National Hospital between 2009 and 2013. Immunohistochemical expression of Ki67 using MIB-1 antibody (Abcam, batch ab93680, Cambridge, UK) was determined and correlated with the conventional HHRFs. The predictors of Ki67 expression were determined using binary logistic regression model in multivariate analysis. A two-tailed p<0.05 was considered statistically significant. Results Majority (67.5%) of the patients had leukocoria and extraocular disease was found in 20.9% of all the patients. High expression of Ki67 was present in 63.8% of the 80 eyeballs that were tested. Massive choroidal invasion (adjusted OR (AOR)=9.32, 95% CI=2.82 to 10.89), positive retrolaminar optic nerve invasion (AOR=3.01, 95% CI=4.43 to 9.11), positive surgical margin (AOR=7.10, 95% CI=1.63 to 11.40) and pT4 (AOR=7.49, 95% CI=0.12 to 0.89) were the potential HHRFs that were associated with Ki67 overexpression. Conclusion Overexpression of Ki67 may be of prognostic value for patients with RbT as it has been shown in the present study that high expression was common in tumours with massive choroidal invasion, positive retrolaminar optic nerve invasion, positive surgical margin and advanced tumour stage, which are the conventional HHRFs associated with prognosis of RbT.
Collapse
Affiliation(s)
- Edda Am Vuhahula
- Pathology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
| | - Shakilu Jumanne
- Pediatrics and Child Health, University of Dodoma College of Health and Allied Sciences, Dodoma, United Republic of Tanzania
| | - James Yahaya
- Department of Pathology, University of Dodoma College of Health and Allied Sciences, Dodoma, United Republic of Tanzania
| |
Collapse
|
19
|
Araya-Arriagada J, Garay S, Rojas C, Duran-Aniotz C, Palacios AG, Chacón M, Medina LE. Multiscale entropy analysis of retinal signals reveals reduced complexity in a mouse model of Alzheimer's disease. Sci Rep 2022; 12:8900. [PMID: 35614075 PMCID: PMC9132967 DOI: 10.1038/s41598-022-12208-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most significant health challenges of our time, affecting a growing number of the elderly population. In recent years, the retina has received increased attention as a candidate for AD biomarkers since it appears to manifest the pathological signatures of the disease. Therefore, its electrical activity may hint at AD-related physiological changes. However, it is unclear how AD affects retinal electrophysiology and what tools are more appropriate to detect these possible changes. In this study, we used entropy tools to estimate the complexity of the dynamics of healthy and diseased retinas at different ages. We recorded microelectroretinogram responses to visual stimuli of different nature from retinas of young and adult, wild-type and 5xFAD-an animal model of AD-mice. To estimate the complexity of signals, we used the multiscale entropy approach, which calculates the entropy at several time scales using a coarse graining procedure. We found that young retinas had more complex responses to different visual stimuli. Further, the responses of young, wild-type retinas to natural-like stimuli exhibited significantly higher complexity than young, 5xFAD retinas. Our findings support a theory of complexity-loss with aging and disease and can have significant implications for early AD diagnosis.
Collapse
Affiliation(s)
- Joaquín Araya-Arriagada
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile
- Centro de Investigación e Innovación en Gerontología Aplicada (CIGAP), Facultad de Salud, Universidad Santo Tomás, Antofagasta, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastián Garay
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristóbal Rojas
- Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez, Santiago, Chile
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Sistemas Complejos de Valparaíso, Valparaíso, Chile
| | - Max Chacón
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Leonel E Medina
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile.
- Millennium Nucleus for Applied Control and Inverse Problems, Santiago, Chile.
| |
Collapse
|
20
|
Frame G, Schuller A, Smith MA, Crish SD, Dengler-Crish CM. Alterations in Retinal Signaling Across Age and Sex in 3xTg Alzheimer’s Disease Mice. J Alzheimers Dis 2022; 88:471-492. [PMID: 35599482 PMCID: PMC9398084 DOI: 10.3233/jad-220016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: Visual disturbances often precede cognitive dysfunction in patients with Alzheimer’s disease (AD) and may coincide with early accumulation of amyloid-β (Aβ) protein in the retina. These findings have inspired critical research on in vivo ophthalmic Aβ imaging for disease biomarker detection but have not fully answered mechanistic questions on how retinal pathology affects visual signaling between the eye and brain. Objective: The goal of this study was to provide a functional and structural assessment of eye-brain communication between retinal ganglion cells (RGCs) and their primary projection target, the superior colliculus, in female and male 3xTg-AD mice across disease stages. Methods: Retinal electrophysiology, axonal transport, and immunofluorescence were used to determine RGC projection integrity, and retinal and collicular Aβ levels were assessed with advanced protein quantitation techniques. Results: 3xTg mice exhibited nuanced deficits in RGC electrical signaling, axonal transport, and synaptic integrity that exceeded normal age-related decrements in RGC function in age- and sex-matched healthy control mice. These deficits presented in sex-specific patterns among 3xTg mice, differing in the timing and severity of changes. Conclusion: These data support the premise that retinal Aβ is not just a benign biomarker in the eye, but may contribute to subtle, nuanced visual processing deficits. Such disruptions might enhance the biomarker potential of ocular amyloid and differentiate patients with incipient AD from patients experiencing normal age-related decrements in visual function.
Collapse
Affiliation(s)
- Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, USA
| | - Adam Schuller
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH, USA
| | - Samuel D. Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
21
|
Sahoo S, Alluri H, Mitra S, Priyadarshini S, Sahu SK, Mohanty A, Das S. Multidrug-resistant keratitis: challenging yet manageable. Br J Ophthalmol 2022; 107:769-773. [DOI: 10.1136/bjophthalmol-2021-320203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/21/2021] [Indexed: 11/03/2022]
Abstract
PurposeTo study the incidence, clinical features and outcomes of multidrug-resistant (MDR) bacterial keratitis.MethodsAll cases of MDR-bacterial keratitis presenting to our institute over a period of 2 years were retrospectively analysed. Details of risk factors, size and depth of infiltrate, treatment, and outcome were noted. Antibiotic susceptibility tests were done on the ocular isolates from the culture of samples obtained from ocular infections, and resistance or sensitivity of the organisms to the commonly used antibiotics was studied.ResultsForty patients were diagnosed with MDR-bacterial keratitis in the study period. The mean age of patients was 50.9±25.4 years. Most common risk factors were vegetative trauma (n=12, 30.0%), followed by corneal transplantation (n=7, 17.5%) and systemic comorbidities (n=7, 17.5%). Infiltrate was small (<6 mm) in 22 (55%) and large (>6 mm) in 18 (45%) patients. It involved the superficial, mid and deep stroma in 11 (27.5%), 9 (22.5%) and 15 (37.5%) cases, respectively. Gram-negative bacilli (n=18, 45%) were the maximum, among which Pseudomonas aeruginosa (15%) was the most common. Resistance to 3 (n=17, 42.5%) and 4 (n=17, 42.5%) classes of antibiotics was the most commonly observed. One (2.5%) patient showed resistance to all seven classes of drugs tested. Complete resolution of infection was seen in 15 (37.5%) MDR patients on medical management alone. Five (12.5%) patients underwent therapeutic penetrating keratoplasty. Size of the infiltrate was found to have a significant correlation with the outcome (p=0.002).ConclusionMDR keratitis, despite being a challenge to treat, can be successfully managed by medical therapy alone, if appropriate therapy is started early in the clinical course.
Collapse
|
22
|
Choudhary RA, Siddiqui MAR, Moiz B, Ishaq S. Combined central retinal artery and vein occlusion associated with antiphospholipid syndrome. BMJ Case Rep 2022; 15:e248425. [PMID: 35246439 PMCID: PMC8900037 DOI: 10.1136/bcr-2021-248425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/04/2022] Open
Abstract
A female patient in early 50s presented to us several months after developing severe visual loss in her right eye. The patient was diagnosed with resolved central retinal vein occlusion (CRVO) based on the clinical picture at the time of presentation, however, retroactive evaluation of fundus imaging and further multi-disciplinary workup led to the rare diagnosis of combined central retinal artery and vein occlusion associated with antiphospholipid syndrome (APS). Only a few cases reporting retinal arterial and venous occlusions in patients with APS are found in the literature. To the best of our knowledge, no case of simultaneous CRAO and CRVO has been reported with APS. The patient was started on lifelong warfarin therapy to prevent a similar episode in the left eye. It is important to properly evaluate patients presenting with retinal vascular occlusions, as a missed diagnosis of APS can lead to recurrent and more devastating vascular events.
Collapse
Affiliation(s)
- Roha Ahmad Choudhary
- Dean's Clinical Research Fellowship Programme, The Aga Khan University, Karachi, Sindh, Pakistan
| | - M A Rehman Siddiqui
- Department of Ophthalmology and Visual Sciences, The Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Bushra Moiz
- Section of Haematology, Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Sindh, Pakistan
| | - Saliha Ishaq
- Section of Rheumatology, Department of Medicine, The Aga Khan University, Karachi, Sindh, Pakistan
| |
Collapse
|
23
|
Müllertz O, Hedengran A, Mouhammad ZA, Freiberg J, Nagymihály R, Jacobsen J, Larsen SW, Bair J, Utheim TP, Dartt DA, Heegaard S, Petrovski G, Kolko M. Impact of benzalkonium chloride-preserved and preservative-free latanoprost eye drops on cultured human conjunctival goblet cells upon acute exposure and differences in physicochemical properties of the eye drops. BMJ Open Ophthalmol 2021; 6:e000892. [PMID: 34993350 PMCID: PMC8689192 DOI: 10.1136/bmjophth-2021-000892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To investigate the short-term impact on human conjunctival goblet cell (GC) survival and mucin release of acute exposure to benzalkonium chloride (BAK) preserved and preservative-free (PF) 0.005% (w/v) latanoprost (LT) eye drops, and to compare the eye drops' physicochemical properties. METHODS AND ANALYSIS Primary GC cultures were established from human conjunctival donor tissue. The impact of eye drops on GC survival was assessed using a lactate dehydrogenase assay. Mucin release was evaluated through mucin-specific immunostaining. pH value, osmolality, drop mass and surface tension for all LT eye drops were measured. RESULTS After application with PF-LT for 30 min (min), the GC survival was maintained compared with control (p=0.9941), while all BAK-LT eye drops reduced survival with approximately 30% (p<0.02). Following application with PF-LT for 30 min, mucin was found around the GC nucleus, as seen in the vehicle control, indicating no secretion. In contrast, BAK-LT caused diffuse staining of mucin, similar to the secretagogue histamine, indicating stimulation of secretion. The pH value of the BAK-LT and PF-LT eye drops were 6.0-6.9 and 6.8, respectively. The osmolality was 258-288 mOsm/kg for the BAK-LT eye drops and 276 for PF-LT eye drops. The mean drop mass was 26-31 mg for the BAK-LT eye drops and 30 mg for PF-LT. The surface tension was lower for all BAK-LT eye drops (31.1-32.1 mN/m) compared with PF-LT (42 mN/m). CONCLUSION PF-LT compared with various branded and generic LT preparations containing BAK are less cytotoxic when applied to cultured GCs.
Collapse
Affiliation(s)
- Olivia Müllertz
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Hedengran
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Zaynab Ahmad Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Josefine Freiberg
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Richárd Nagymihály
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Susan Weng Larsen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey Bair
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Boston, Massachusetts, USA
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo Universitetssykehus, Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Darlene A Dartt
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Boston, Massachusetts, USA
| | - Steffen Heegaard
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Goran Petrovski
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
24
|
Liao C, Xu J, Chen Y, Ip NY. Retinal Dysfunction in Alzheimer's Disease and Implications for Biomarkers. Biomolecules 2021; 11:biom11081215. [PMID: 34439882 PMCID: PMC8394950 DOI: 10.3390/biom11081215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that manifests as cognitive deficits and memory decline, especially in old age. Several biomarkers have been developed to monitor AD progression. Given that the retina and brain share some similarities including features related to anatomical composition and neurological functions, the retina is closely associated with the progression of AD. Herein, we review the evidence of retinal dysfunction in AD, particularly at the early stage, together with the underlying molecular mechanisms. Furthermore, we compared the retinal pathologies of AD and other ophthalmological diseases and summarized potential retinal biomarkers measurable by existing technologies for detecting AD, providing insights for the future development of diagnostic tools.
Collapse
Affiliation(s)
- Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (C.L.); (J.X.)
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen 518057, China
- Division of Life Science, Molecular Neuroscience Center, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Correspondence: (Y.C.); (N.Y.I.); Tel.: +86-755-2692-5498 (Y.C.); +852-2358-6161 (N.Y.I.)
| |
Collapse
|
25
|
Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders. Surv Ophthalmol 2021; 67:411-426. [PMID: 34146577 DOI: 10.1016/j.survophthal.2021.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.
Collapse
|
26
|
Latina V, Giacovazzo G, Cordella F, Balzamino BO, Micera A, Varano M, Marchetti C, Malerba F, Florio R, Ercole BB, La Regina F, Atlante A, Coccurello R, Di Angelantonio S, Calissano P, Amadoro G. Systemic delivery of a specific antibody targeting the pathological N-terminal truncated tau peptide reduces retinal degeneration in a mouse model of Alzheimer's Disease. Acta Neuropathol Commun 2021; 9:38. [PMID: 33750467 PMCID: PMC7942014 DOI: 10.1186/s40478-021-01138-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer's Disease (AD). Amyloid-β (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications-such as truncation with generation of toxic fragments-nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody (12A12mAb) which selectively targets the neurotoxic 20-22 kDa NH2-derived peptide generated from pathological truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, morphological and metabolic parameters (i.e. APP/Aβ processing, tau hyperphosphorylation, neuroinflammation, synaptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitreous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; (2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for the clinical management of cerebral and extracerebral AD signs in human beings.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giacomo Giacovazzo
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Federica Cordella
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Monica Varano
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Cristina Marchetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bruno Bruni Ercole
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy
- Institute for Complex System (ISC)-CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
27
|
Lian TH, Jin Z, Qu YZ, Guo P, Guan HY, Zhang WJ, Ding DY, Li DN, Li LX, Wang XM, Zhang W. The Relationship Between Retinal Nerve Fiber Layer Thickness and Clinical Symptoms of Alzheimer's Disease. Front Aging Neurosci 2021; 12:584244. [PMID: 33584241 PMCID: PMC7878673 DOI: 10.3389/fnagi.2020.584244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022] Open
Abstract
Background/Aim: Retinal nerve fiber layer (RNFL) thickness (RT), which can reflect the status of the retinal optic nerve cells, may be affected in patients with Alzheimer's disease (AD). There are few studies on the correlation of RT of patients with AD (AD-RT) with clinical symptoms of various cognitive domains, neuropsychiatric symptoms, and activities of daily living (ADL). This study is to investigate the relationships between RT and the abovementioned clinical symptoms of AD. Methods: A total of 96 patients with AD were included in this study. RT was measured in these patients using optical coherence tomography (OCT). Demographic variables, RT, and clinical symptoms were compared between the normal and the abnormal AD-RT groups. Clinical symptoms, including cognitive symptoms, neuropsychiatric symptoms, and ADL, were evaluated using a series of rating scales. Results: The relationships between RT and cognitive symptoms scores were analyzed in patients with AD. Reduced RT was found in 54.4% of patients with AD. The average RT, RT of the superior 1/2 quadrant, and RT of the inferior 1/2 quadrant of both eyes were all significantly decreased in the abnormal AD-RT group (p < 0.001). Overall cognitive function and performance in multiple cognitive domains, including memory, language, attention, and executive function, were also significantly impaired in the abnormal AD-RT group (p < 0.05). For lower RT value, the global cognitive function and the performance in multiple cognitive domains were worse. ADL was significantly compromised in patients with AD having lower RT values (p < 0.05). Conclusions: Lower RT value appear to be correlated with cognitive impairment, and RT may be an indicator of cognitive decline in patients with AD. Further studies are required to confirm our findings.
Collapse
Affiliation(s)
- Teng-Hong Lian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhao Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan-Zhen Qu
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital University of Medical Sciences, Beijing, China
| | - Peng Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-Ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du-Yu Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Da-Ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Xia Li
- Department of Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory on Parkinson Disease, Beijing, China
| |
Collapse
|
28
|
Mirzaei N, Shi H, Oviatt M, Doustar J, Rentsendorj A, Fuchs DT, Sheyn J, Black KL, Koronyo Y, Koronyo-Hamaoui M. Alzheimer's Retinopathy: Seeing Disease in the Eyes. Front Neurosci 2020; 14:921. [PMID: 33041751 PMCID: PMC7523471 DOI: 10.3389/fnins.2020.00921] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
The neurosensory retina emerges as a prominent site of Alzheimer's disease (AD) pathology. As a CNS extension of the brain, the neuro retina is easily accessible for noninvasive, high-resolution imaging. Studies have shown that along with cognitive decline, patients with mild cognitive impairment (MCI) and AD often suffer from visual impairments, abnormal electroretinogram patterns, and circadian rhythm disturbances that can, at least in part, be attributed to retinal damage. Over a decade ago, our group identified the main pathological hallmark of AD, amyloid β-protein (Aβ) plaques, in the retina of patients including early-stage clinical cases. Subsequent histological, biochemical and in vivo retinal imaging studies in animal models and in humans corroborated these findings and further revealed other signs of AD neuropathology in the retina. Among these signs, hyperphosphorylated tau, neuronal degeneration, retinal thinning, vascular abnormalities and gliosis were documented. Further, linear correlations between the severity of retinal and brain Aβ concentrations and plaque pathology were described. More recently, extensive retinal pericyte loss along with vascular platelet-derived growth factor receptor-β deficiency were discovered in postmortem retinas of MCI and AD patients. This progressive loss was closely associated with increased retinal vascular amyloidosis and predicted cerebral amyloid angiopathy scores. These studies brought excitement to the field of retinal exploration in AD. Indeed, many questions still remain open, such as queries related to the temporal progression of AD-related pathology in the retina compared to the brain, the relations between retinal and cerebral changes and whether retinal signs can predict cognitive decline. The extent to which AD affects the retina, including the susceptibility of certain topographical regions and cell types, is currently under intense investigation. Advances in retinal amyloid imaging, hyperspectral imaging, optical coherence tomography, and OCT-angiography encourage the use of such modalities to achieve more accurate, patient- and user-friendly, noninvasive detection and monitoring of AD. In this review, we summarize the current status in the field while addressing the many unknowns regarding Alzheimer's retinopathy.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mia Oviatt
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
29
|
Singh N, Chaudhary S, Ashok A, Lindner E. Prions and prion diseases: Insights from the eye. Exp Eye Res 2020; 199:108200. [PMID: 32858007 DOI: 10.1016/j.exer.2020.108200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 12/30/2022]
Abstract
Prion diseases are invariably fatal neurodegenerative disorders that have gained much publicity due to their transmissible nature. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common human prion disorder, with an incidence of 1 in a million. Inherited prion disorders are relatively rare, and associated with mutations in the prion protein gene. More than 50 different point mutations, deletions, and insertions have been identified so far. Most are autosomal dominant and fully penetrant. Prion disorders also occur in animals, and are of major concern because of the potential for spreading to humans. The principal pathogenic event underlying all prion disorders is a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich isoform, PrP-scrapie (PrPSc). Accumulation of PrPSc in the brain parenchyma is the major cause of neuronal degeneration. The mechanism by which PrPSc is transmitted, propagates, and causes neurodegenerative changes has been investigated over the years, and several clues have emerged. Efforts are also ongoing for identifying specific and sensitive diagnostic tests for sCJD and animal prion disorders, but success has been limited. The eye is suitable for these evaluations because it shares several anatomical and physiological features with the brain, and can be observed in vivo during disease progression. The retina, considered an extension of the central nervous system, is involved extensively in prion disorders. Accordingly, Optical Coherence Tomography and electroretinogram have shown some promise as pre-mortem diagnostic tests for human and animal prion disorders. However, a complete understanding of the physiology of PrPC and pathobiology of PrPSc in the eye is essential for developing specific and sensitive tests. Below, we summarize recent progress in ocular physiology and pathology in prion disorders, and the eye as an anatomically accessible site to diagnose, monitor disease progression, and test therapeutic options.
Collapse
Affiliation(s)
- Neena Singh
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Suman Chaudhary
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ajay Ashok
- Departments of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| |
Collapse
|