1
|
Sun Y, Jin S, Chen J, Zhang J, Lu Y, Gu Q, Yan Z, Chen W, Chen A, Fang Y, Geng W, Xu X, Song N. Cordycepin Ameliorates Renal Interstitial Fibrosis by Inhibiting Drp1-Mediated Mitochondrial Fission. Drug Des Devel Ther 2025; 19:1271-1287. [PMID: 40026334 PMCID: PMC11869758 DOI: 10.2147/dddt.s498525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Objective This study aimed to investigate the mechanisms and specific targets of cordycepin in the treatment of renal fibrosis using a unilateral ischemia-reperfusion (UIR) model. Methods A UIR mouse model was established, followed by intraperitoneal injections of cordycepin and Mdivi-1. Masson's trichrome staining and PAS staining were used to identify renal tubulointerstitial fibrosis and assess the degree of renal injury. Fibrosis markers and mitochondrial dynamics-related proteins were evaluated using Western blotting, while differential gene expression and pathway enrichment were analyzed by RNA-seq. Molecular docking, molecular dynamics simulations and surface plasmon resonance were conducted to validate the specific binding sites of cordycepin on the target protein Drp1. Immunofluorescence and in vitro experiments further elucidated the therapeutic mechanism of cordycepin. Results In vivo experiments showed that intraperitoneal injection of cordycepin significantly reduced renal inflammation and fibrosis, lowered serum creatinine levels, and decreased collagen deposition. Transcriptome analysis revealed that cordycepin treatment downregulated the mitochondrial fission pathway and upregulated the mitochondrial fusion pathway. Western blotting showed reduced levels of fibrosis markers α-SMA and FN, as well as downregulation of Drp1, MFF, and Fis1, and upregulation of OPA1 and Mfn2. In vitro, cordycepin inhibited TGF-β-induced injury in NRK-52E cells, reducing Drp1 expression and IL-6 secretion. Crosstalk experiments confirmed that decreased IL-6 levels were crucial for cordycepin anti-fibrotic effects by suppressing fibroblast activation. Conclusion Cordycepin ameliorates renal fibrosis by targeting Drp1 to inhibit mitochondrial fission in injured renal tubular epithelial cells, reducing IL-6 secretion and inhibiting fibroblast activation.
Collapse
Affiliation(s)
- Yingxue Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Jun Chen
- Department of Pathology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Qiuyu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Zhixin Yan
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Weize Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Annan Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Wenye Geng
- Scientific Research Department of Shanghai Medical College, Fudan Zhangjiang Institute, Fudan University, Shanghai, 201203, People’s Republic of China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
2
|
Saxena J, Agarwal G, Das S, Kumar A, Thakkar K, Kaushik S, Srivatsava VK, Siddiqui AJ, Jyoti A. Immunopharmacological Insights into Cordyceps spp.: Harnessing Therapeutic Potential for Sepsis. Curr Pharm Des 2025; 31:823-842. [PMID: 39694962 DOI: 10.2174/0113816128326301240920040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 12/20/2024]
Abstract
Cordyceps spp. (CS), a well-known medicinal mushroom that belongs to Tibetan medicine and is predominantly found in the high altitudes in the Himalayas. CS is a rich reservoir of various bioactive substances including nucleosides, sterols flavonoids, peptides, and phenolic compounds. The bioactive compounds and CS extract have antibacterial, antioxidant, immunomodulatory, and inflammatory properties in addition to organ protection properties across a range of disease states. The study aimed to review the potential of CS, a medicinal mushroom, as a treatment for sepsis. While current sepsis drugs have side effects, CS shows promise due to its anti-inflammatory, antioxidant, and antibacterial properties. We have performed an extensive literature search based on published original and review articles in Scopus and PubMed. The keywords used were Cordyceps, sepsis, and inflammation. Studies indicate that CS extract and bioactive compounds target free radicals including oxidative as well as nitrosative stress, lower inflammation, and modulate the immune system, all of which are critical components in sepsis. The brain, liver, kidneys, lungs, and heart are among the organs that CS extracts may be able to shield against harm during sepsis. Traditional remedies with anti-inflammatory and protective qualities, such as Cordyceps mushrooms, are promising in sepsis. However, more research including clinical trials is required to validate the usefulness of CS metabolites in terms of organ protection and fight infections in sepsis.
Collapse
Affiliation(s)
- Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Gaurang Agarwal
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Sarvjeet Das
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Anshu Kumar
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Krish Thakkar
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | | | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
3
|
Teh YM, Mualif SA, Mohd Noh NI, Lim SK. The Potential of Naturally Derived Compounds for Treating Chronic Kidney Disease: A Review of Autophagy and Cellular Senescence. Int J Mol Sci 2024; 26:3. [PMID: 39795863 PMCID: PMC11719669 DOI: 10.3390/ijms26010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by irreversible progressive worsening of kidney function leading to kidney failure. CKD is viewed as a clinical model of premature aging and to date, there is no treatment to reverse kidney damage. The well-established treatment for CKD aims to control factors that may aggravate kidney progression and to provide kidney protection effects to delay the progression of kidney disease. As an alternative, Traditional Chinese Medicine (TCM) has been shown to have fewer adverse effects for CKD patients. However, there is a lack of clinical and molecular studies investigating the mechanisms by which natural products used in TCM can improve CKD. In recent years, autophagy and cellular senescence have been identified as key contributors to aging and age-related diseases. Exploring the potential of natural products in TCM to target these processes in CKD patients could slow disease progression. A better understanding of the characteristics of these natural products and their effects on autophagy and cellular senescence through clinical studies, coupled with the use of these products as complementary therapy alongside mainstream treatment, may maximize therapeutic benefits and minimize adverse effects for CKD patients. While promising, there is currently a lack of thorough research on the potential synergistic effects of these natural products. This review examines the use of natural products in TCM as an alternative treatment for CKD and discusses their active ingredients in terms of renoprotection, autophagy, and cellular senescence.
Collapse
Affiliation(s)
- Yoong Mond Teh
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Siti Aisyah Mualif
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - Soo Kun Lim
- Department of Medicine, Faculty of Medicine, University of Malaysia (UM), Kuala Lumpur 59100, Malaysia
| |
Collapse
|
4
|
Zheng J, Yang H, Liu C, Zhang R, Yibulayimu N, Jin X. Ethanol Extract of Anacyclus pyrethrum Root Ameliorates Cough-Variant Asthma Through the TLR4/NF-κB Pathway and Wnt/β-Catenin Pathway. Mol Biotechnol 2024; 66:3274-3284. [PMID: 37910337 DOI: 10.1007/s12033-023-00935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Cough-variant asthma (CVA) has been recognized as the initial stage or pre-asthmatic state of classic asthma, which characterized by cough as the primary clinical presentation. Inhaled glucocorticoids, oral leukotriene receptor antagonists and antihistamines are the clinical treatments, but their efficacy is not satisfactory. Some traditional Chinese medicine (TCM) has been reported to have certain advantages in the treatment of CVA, but the underlying molecular mechanisms are still unclear. Recent research has indicated that Anacyclus pyerhrurm (L) DC. is commonly used in the treatment of human diseases. The aim of our study was to evaluate the anti-inflammatory and anti-oxidative mechanism of the ethanol extract of Anacyclus pyrethrum (L) DC. root (EEAP) in a model of CVA. In our study, we indicated that EEAP ameliorated CVA by reducing cough frequency and inflammatory effect and oxidative stress in an in vivo rat model of CVA. In addition, EEAP ameliorated LPS-induced cell apoptosis and regulated inflammatory effect and oxidative stress in vitro. Mechanistically, EEAP exerted anti-inflammatory effects through regulating the TLR4/NF-κB pathway and Wnt/β-catenin pathway, and overexpressing TLR4 or activating the Wnt/β-catenin pathway by SKL2001 reversed EEAP-exerted effects in LPS-exposed BEAS-2B and 16-HBE cells. In conclusion, EEAP attenuated cell apoptosis, inflammation and oxidative stress through restraining the TLR4/NF-κB pathway and Wnt/β-catenin pathway in CVA, which shown that EEAP might be a promising therapeutic agent for CVA and may provide a theoretical basis for clinical treatment with CVA patients.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hao Yang
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, No. 39, Wuxing South Road, TianShan District, Urumqi, 830000, China
| | - Changjiang Liu
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, No. 39, Wuxing South Road, TianShan District, Urumqi, 830000, China
| | - Rui Zhang
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, No. 39, Wuxing South Road, TianShan District, Urumqi, 830000, China
| | - Nadire Yibulayimu
- Market Supervision and Administration Bureau of Huocheng County, HuoCheng, Ili, China
| | - Xiaoyue Jin
- Department of Pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, No. 39, Wuxing South Road, TianShan District, Urumqi, 830000, China.
| |
Collapse
|
5
|
Park BJ, Dhong KR, Park HJ. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int J Mol Sci 2024; 25:10642. [PMID: 39408971 PMCID: PMC11477187 DOI: 10.3390/ijms251910642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Collapse
Affiliation(s)
- Byung-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Kyu-Ree Dhong
- Magicbullettherapeutics Inc., 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07292, Republic of Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
6
|
Krishna KV, Ulhas RS, Malaviya A. Bioactive compounds from Cordyceps and their therapeutic potential. Crit Rev Biotechnol 2024; 44:753-773. [PMID: 37518188 DOI: 10.1080/07388551.2023.2231139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023]
Abstract
The Clavicipitaceae family's largest and most diverse genus is Cordyceps. They are most abundant and diverse in humid temperate and tropical forests and have a wide distribution in: Europe, North America, and East and Southeast Asian countries, particularly: Bhutan, China, Japan, Nepal, Korea, Thailand, Vietnam, Tibet, and the Himalayan region of India, and Sikkim. It is a well-known parasitic fungus that feeds on insects and other arthropods belonging to 10 different orders. Over 200 bioactive metabolites, that include: nucleotides and nucleosides, polysaccharides, proteins, polypeptides, amino acids, sterols, and fatty acids, among others have been extracted from Cordyceps spp. demonstrating the phytochemical richness of this genus. These components have been associated with a variety of pharmacological effects, including: anti-microbial, anti-apoptotic, anti-cancer, anti-inflammatory, antioxidant, and immunomodulatory activities. In this paper, the bioactivity of various classes of metabolites produced by Cordyceps spp., and their therapeutic properties have been reviewed in an attempt to update the existing literature. Furthermore, one of its nucleoside and a key bioactive compound, cordycepin has been critically elaborated with regard to its biosynthesis pathway and the recently proposed protector-protégé mechanism as well as various biological and pharmacological effects, such as: suppression of purine and nucleic acid biosynthesis, induction of apoptosis, and cell cycle regulation with their mechanism of action. This review provides current knowledge on the bioactive potential of Cordyceps spp.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, Christ (Deemed-to-be University), Bangalore, Karnataka, India
| | - Rutwick Surya Ulhas
- Institute of Biochemistry and Biophysics, Faculty of Life Sciences, University of Jena (Friedrich-Schiller-Universität Jena), Jena, Germany
| | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, Christ (Deemed-to-be University), Bangalore, Karnataka, India
- Division of Life Sciences, Gyeongsang National University, Gyeongsangnam-do, South Korea
- QuaLife Biotech Pvt Ltd, Bangalore, India
| |
Collapse
|
7
|
Wang H, Gao L, Zhao C, Fang F, Liu J, Wang Z, Zhong Y, Wang X. The role of PI3K/Akt signaling pathway in chronic kidney disease. Int Urol Nephrol 2024; 56:2623-2633. [PMID: 38498274 DOI: 10.1007/s11255-024-03989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Chronic kidney disease (CKD), including chronic glomerulonephritis, IgA nephropathy and diabetic nephropathy, are common chronic diseases characterized by structural damage and functional decline of the kidneys. The current treatment of CKD is symptom relief. Several studies have reported that the phosphatidylinositol 3 kinases (PI3K)/protein kinase B (Akt) signaling pathway is a pathway closely related to the pathological process of CKD. It can ameliorate kidney damage by inhibiting this signal pathway which is involved with inflammation, oxidative stress, cell apoptosis, epithelial mesenchymal transformation (EMT) and autophagy. This review highlights the role of activating or inhibiting the PI3K/Akt signaling pathway in CKD-induced inflammatory response, apoptosis, autophagy and EMT. We also summarize the latest evidence on treating CKD by targeting the PI3K/Akt pathway, discuss the shortcomings and deficiencies of PI3K/Akt research in the field of CKD, and identify potential challenges in developing these clinical therapeutic CKD strategies, and provide appropriate solutions.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang, 050091, China.
| |
Collapse
|
8
|
de Castro Trigueira P, Coutinho-Wolino KS, Brito ML, de Oliveira Leal V, de França Cardozo LFM, Fouque D, Mafra D, Barcza Stockler-Pinto M. Effects of dietary compounds on nuclear factor erythroid 2-related factor 2 (Nrf2) modulation in chronic kidney disease: a systematic review of clinical trials. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39086235 DOI: 10.1080/10408398.2024.2384658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important transcription factor that activates antioxidant genes and increases detoxifying enzymes. Studies have shown that dietary compounds can activate the Nrf2 expression and improve the antioxidant response in patients with exacerbated oxidative stress, such as chronic kidney disease (CKD). We aimed to evaluate the efficacy of nutritional interventions on Nrf2 expression and phase II antioxidant enzymes in clinical trials in CKD. We searched PubMed, Lilacs, Embase, Scopus, and Cochrane Library databases of published clinical trials and the Cochrane tool was used for the quality assessment of the studies included. We reported this review according to the PRISMA and it was registered in PROSPERO (42023389619). Thirty-nine studies were included in this review; nine evaluated the Nrf2 expression and three showed an increase in its expression. Twenty-three studies found an increase in the antioxidant enzyme levels, including superoxide dismutase, catalase, and glutathione peroxidase. Moreover, a high risk of bias was found in most of the studies and high heterogeneity in the designs, type, and duration of supplementation administered. These results suggest that dietary supplementations have a promising effect on the antioxidant enzyme response, however, it is recommended that further studies should be carried out.
Collapse
Affiliation(s)
| | - Karen Salve Coutinho-Wolino
- Post-Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Michele Lima Brito
- Post-Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Viviane de Oliveira Leal
- Pedro Ernesto University Hospital (HUPE), University of the State of Rio de Janeiro (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ludmila Ferreira Medeiros de França Cardozo
- Post-Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Post-Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université Lyon, Lyon, France
| | - Denise Mafra
- Post-Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milena Barcza Stockler-Pinto
- Post-Graduate Program in Pathology, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Post-Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Post-Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Chen Z, Lin Y, Wang J, Yao K, Xie Y, Chen X, Zhou T. Relationship between Compound α-Ketoacid and Microinflammation in Patients with Chronic Kidney Disease. Curr Pharm Des 2024; 30:589-596. [PMID: 38477209 DOI: 10.2174/0113816128291248240131102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
Chronic kidney disease (CKD) refers to the presence of structural or functional abnormalities in the kidneys that affect health, lasting for more than 3 months. CKD is not only the direct cause of global incidence rate and mortality, but also an important risk factor for cardiovascular disease. Persistent microinflammatory state has been recognized as an important component of CKD, which can lead to renal fibrosis and loss of renal function, and plays a crucial role in the pathophysiology and progression of the disease. Simultaneously, compound α-Ketoacid can bind nitrogen-containing metabolites in the blood and accelerate their excretion from the body, thereby reducing the level of metabolic waste, alleviating gastrointestinal reactions in patients, and reducing the inflammatory response and oxidative stress state of the body. Compound α-Ketoacid contains amino acids required by CKD patients. In this review, we explore the relationship between compound α-Ketoacid and microinflammation in patients with CKD. The review indicated that compound α-Ketoacid can improve the microinflammatory state in CKD patients by improving the nutritional status of CKD patients, improving patient's acid-base balance disorder, regulating oxidative stress, improving gut microbiota, and regulating abnormal lipid metabolism.
Collapse
Affiliation(s)
- Zaobin Chen
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yongda Lin
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiali Wang
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kaijin Yao
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yina Xie
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xiutian Chen
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
10
|
Sharma H, Sharma N, An SSA. Unique Bioactives from Zombie Fungus ( Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients 2023; 16:102. [PMID: 38201932 PMCID: PMC10780653 DOI: 10.3390/nu16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
11
|
Wang RL, Liu SH, Shen SH, Jian LY, Yuan Q, Guo HH, Huang JS, Chen PH, Huang RF. Protective Mechanism of Cordyceps sinensis Treatment on Acute Kidney Injury-Induced Acute Lung Injury through AMPK/mTOR Signaling Pathway. Chin J Integr Med 2023; 29:875-884. [PMID: 36843056 DOI: 10.1007/s11655-023-3593-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 02/28/2023]
Abstract
OBJECTIVE To investigate protective effect of Cordyceps sinensis (CS) through autophagy-associated adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in acute kidney injury (AKI)-induced acute lung injury (ALI). METHODS Forty-eight male Sprague-Dawley rats were divided into 4 groups according to a random number table, including the normal saline (NS)-treated sham group (sham group), NS-treated ischemia reperfusion injury (IRI) group (IRI group), and low- (5 g/kg·d) and high-dose (10 g/kg·d) CS-treated IRI groups (CS1 and CS2 groups), 12 rats in each group. Nephrectomy of the right kidney was performed on the IRI rat model that was subjected to 60 min of left renal pedicle occlusion followed by 12, 24, 48, and 72 h of reperfusion. The wet-to-dry (W/D) ratio of lung, levels of serum creatinine (Scr), blood urea nitrogen (BUN), inflammatory cytokines such as interleukin- β and tumor necrosis factor- α, and biomarkers of oxidative stress such as superoxide dismutase, malonaldehyde (MDA) and myeloperoxidase (MPO), were assayed. Histological examinations were conducted to determine damage of tissues in the kidney and lung. The protein expressions of light chain 3 II/light chain 3 I (LC3-II/LC3-I), uncoordinated-51-like kinase 1 (ULK1), P62, AMPK and mTOR were measured by Western blot and immunohistochemistry, respectively. RESULTS The renal IRI induced pulmonary injury following AKI, resulting in significant increases in W/D ratio of lung, and the levels of Scr, BUN, inflammatory cytokines, MDA and MPO (P<0.01); all of these were reduced in the CS groups (P<0.05 or P<0.01). Compared with the IRI groups, the expression levels of P62 and mTOR were significantly lower (P<0.05 or P<0.01), while those of LC3-II/LC3-I, ULK1, and AMPK were significantly higher in the CS2 group (P<0.05 or P<0.01). CONCLUSION CS had a potential in treating lung injury following renal IRI through activation of the autophagy-related AMPK/mTOR signaling pathway in AKI-induced ALI.
Collapse
Affiliation(s)
- Ruo-Lin Wang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shu-Hua Liu
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Si-Heng Shen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lu-Yong Jian
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qi Yuan
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hua-Hui Guo
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Jia-Sheng Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Peng-Hui Chen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Ren-Fa Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China.
| |
Collapse
|
12
|
Feng C, Chen R, Fang W, Gao X, Ying H, Zheng X, Chen L, Jiang J. Synergistic effect of CD47 blockade in combination with cordycepin treatment against cancer. Front Pharmacol 2023; 14:1144330. [PMID: 37138855 PMCID: PMC10149837 DOI: 10.3389/fphar.2023.1144330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
Cordycepin is widely considered a direct tumor-suppressive agent. However, few studies have investigated as the effect of cordycepin therapy on the tumor microenvironment (TME). In our present study, we demonstrated that cordycepin could weaken the function of M1-like macrophages in the TME and also contribute to macrophage polarization toward the M2 phenotype. Herein, we established a combined therapeutic strategy combining cordycepin and an anti-CD47 antibody. By using single-cell RNA sequencing (scRNA-seq), we showed that the combination treatment could significantly enhance the effect of cordycepin, which would reactivate macrophages and reverse macrophage polarization. In addition, the combination treatment could regulate the proportion of CD8+ T cells to prolong the progression-free survival (PFS) of patients with digestive tract malignancies. Finally, flow cytometry validated the changes in the proportions of tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs). Collectively, our findings suggested that the combination treatment of cordycepin and the anti-CD47 antibody could significantly enhance tumor suppression, increase the proportion of M1 macrophages, and decrease the proportion of M2 macrophages. In addition, the PFS in patients with digestive tract malignancies would be prolonged by regulating CD8 + T cells.
Collapse
Affiliation(s)
- Chen Feng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Weiwei Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Xinran Gao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiang Su, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- *Correspondence: Jingting Jiang, ; Lujun Chen,
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Chang Zhou, Jiang Su, China
- *Correspondence: Jingting Jiang, ; Lujun Chen,
| |
Collapse
|
13
|
Sahakyan G, Vejux A, Sahakyan N. The Role of Oxidative Stress-Mediated Inflammation in the Development of T2DM-Induced Diabetic Nephropathy: Possible Preventive Action of Tannins and Other Oligomeric Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249035. [PMID: 36558167 PMCID: PMC9786776 DOI: 10.3390/molecules27249035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy is manifested in more than 10% of people with diabetes. It is a common cause of kidney failure and end-stage kidney disease. Understanding of mechanisms underlying the initiation and development of diabetes-induced kidney injuries will allow for the development of more effective methods of prevention and treatment of the disease. Diabetic nephropathy is a wide-ranging complication of diabetes, and it is necessary to discuss the "weight" of pro-inflammatory pathways and molecules in the progress of renal injuries during the development of the disease. A large spectrum of pro-inflammatory molecules and pathways participate in different stages of the pathophysiological progression of diabetic nephropathy, including pro-inflammatory cytokines, chemokines, their receptors, adhesion molecules, and transcription factors. On the other hand, it is known that one of the consequences of hyperglycemia-induced ROS generation is the up-regulation of pro-inflammatory cascades, which, in turn, activate the transcription of genes encoding cytokines-chemokines, growth factors, and extracellular matrix proteins. It is a proven fact that a variety of plant secondary metabolites, such as tannins, flavonoids, and other polyphenols, demonstrate significant anti-diabetic, redox-modulating properties and effectively modulate the inflammatory response. Thus, this review is discussing the possible role of plant phenols in the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gohar Sahakyan
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
| | - Anne Vejux
- Team “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”, University Bourgogne Franche-Comté, UFR Sciences Vie Terre et Environnement, 21000 Dijon, France
- Correspondence: (A.V.); (N.S.); Tel.: +33 3-80-39-37-01 (A.V.); Tel.: +374-60-71-05-07 (N.S.)
| | - Naira Sahakyan
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Department of Biochemistry, Microbiology & Biotechnology, Yerevan State University, 1 A. Manoogian Str., Yerevan 0025, Armenia
- Correspondence: (A.V.); (N.S.); Tel.: +33 3-80-39-37-01 (A.V.); Tel.: +374-60-71-05-07 (N.S.)
| |
Collapse
|
14
|
Wang X, Chen J, Yang F, Ali F, Mao Y, Hu A, Xu T, Yang Y, Wang F, Zhou G, Guo X, Cao H. Two kinds of traditional Chinese medicine prescriptions reduce thymic inflammation levels and improve humoral immunity of finishing pigs. Front Vet Sci 2022; 9:929112. [PMID: 36148471 PMCID: PMC9486467 DOI: 10.3389/fvets.2022.929112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
In animal husbandry, traditional Chinese medicine (TCM) as a reasonable alternative to antibiotics has attracted more and more concerns to reduce microbial resistance. This study was aimed to investigate the effects of dietary supplementation with TCM prescriptions on serum parameters and thymus inflammation responses in finishing pigs. Thirty finishing pigs were randomly divided into three groups, which included the Con group (basal diet), the TCM1 group (basal diet supplemented with Xiao Jian Zhong prescriptions), and the TCM2 group (basal diet supplemented with Jingsananli-sepsis). The results showed that the contents of C3 and C4 in the serum were significantly increased in both the TCM1 and TCM2 groups compared to the Con group on day 30. Similarly, the levels of IgA, IgG, and IgM were increased in the TCM2 group, and only the level of IgM in TCM1 was increased on day 30. Meanwhile, the levels of classical swine fever virus (CSFV) and respiratory syndrome virus (PRRSV) antibodies had a notable increase in the TCM1 and TCM2 groups. Both TCM1 and TCM2 inhibited the levels of TLR4/MyD88/NF-κB signaling pathway-related mRNA (TLR4, MyD88, NF-κB, IL6, IL8, and TNF-α) and protein (p-IκBα and p-P65) expression levels in the thymus. In conclusion, dietary supplementation with TCM could reduce thymic inflammation levels and improve humoral immunity of finishing pigs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, China
| | - Jiajia Chen
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, China
| | - Farah Ali
- Department of Theriogenology, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Pakistan, Bahawalpur, Pakistan
| | - Yaqin Mao
- China Institute of Veterinary Drug Control, MOA Center for Veterinary Drug Evaluation, Beijing, China
| | - Aiming Hu
- Jian City Livestock and Veterinary Bureau, Jiangxi, China
| | - Tianfang Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Yan Yang
- Jiangxi Agricultural Technology Extension Center, Nanchang, China
| | - Feibing Wang
- Agricultural Technology Extension Center, Jinxi County Agriculture and Rural Bureau, Fuzhou, China
| | - Guangbin Zhou
- Animal Epidemic Prevention and Quarantine Unit, Fengcheng Agricultural and Rural Bureau, Fengcheng, China
| | - Xiaowang Guo
- Yichun Agriculture and Rural Affairs Bureau, Yichun, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Huabin Cao
| |
Collapse
|
15
|
Tan W, Wang Y, Dai H, Deng J, Wu Z, Lin L, Yang J. Potential Therapeutic Strategies for Renal Fibrosis: Cordyceps and Related Products. Front Pharmacol 2022; 13:932172. [PMID: 35873549 PMCID: PMC9304961 DOI: 10.3389/fphar.2022.932172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
At present, there is no effective drug for the treatment of renal fibrosis; in particular, a safe and effective treatment for renal fibrosis should be established. Cordyceps has several medical effects, including immunoregulatory, antitumor, anti-inflammatory, and antioxidant effects, and may prevent kidney, liver, and heart diseases. Cordyceps has also been reported to be effective in the treatment of renal fibrosis. In this paper, we review the potential mechanisms of Cordyceps against renal fibrosis, focusing on the effects of Cordyceps on inflammation, oxidative stress, apoptosis, regulation of autophagy, reduction of extracellular matrix deposition, and fibroblast activation. We also discuss relevant published clinical trials and meta-analyses. Available clinical studies support the possibility that Cordyceps and related products provide benefits to patients with chronic kidney diseases as adjuvants to conventional drugs. However, the existing clinical studies are limited by low quality and significant heterogeneity. The use of Cordyceps and related products may be a potential strategy for the treatment of renal fibrosis. Randomized controlled trial studies with good methodological quality, favorable experimental design, and large sample size are needed to evaluate the efficacy and safety of Cordyceps.
Collapse
Affiliation(s)
- Wei Tan
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyan Wang
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Dai
- Nephrology, YunYang County People’s Hospital, Chongqing, China
| | - Junhui Deng
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifen Wu
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lirong Lin
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
16
|
Jędrejko KJ, Lazur J, Muszyńska B. Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity. Foods 2021; 10:2634. [PMID: 34828915 PMCID: PMC8622900 DOI: 10.3390/foods10112634] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Cordyceps spp. mushrooms have a long tradition of use as a natural raw material in Asian ethnomedicine because of their adaptogenic, tonic effects and their ability to reduce fatigue and stimulate the immune system in humans. This review aims to present the chemical composition and medicinal properties of Cordyceps militaris fruiting bodies and mycelium, as well as mycelium from in vitro cultures. The analytical results of the composition of C. militaris grown in culture media show the bioactive components such as cordycepin, polysaccharides, γ-aminobutyric acid (GABA), ergothioneine and others described in the review. To summarize, based on the presence of several bioactive compounds that contribute to biological activity, C. militaris mushrooms definitely deserve to be considered as functional foods and also have great potential for medicinal use. Recent scientific reports indicate the potential of cordycepin in antiviral activity, particularly against COVID-19.
Collapse
Affiliation(s)
| | | | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Str., 30–688 Kraków, Poland; (K.J.J.); (J.L.)
| |
Collapse
|
17
|
Avila-Carrasco L, García-Mayorga EA, Díaz-Avila DL, Garza-Veloz I, Martinez-Fierro ML, González-Mateo GT. Potential Therapeutic Effects of Natural Plant Compounds in Kidney Disease. Molecules 2021; 26:molecules26206096. [PMID: 34684678 PMCID: PMC8541433 DOI: 10.3390/molecules26206096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: The blockade of the progression or onset of pathological events is essential for the homeostasis of an organism. Some common pathological mechanisms involving a wide range of diseases are the uncontrolled inflammatory reactions that promote fibrosis, oxidative reactions, and other alterations. Natural plant compounds (NPCs) are bioactive elements obtained from natural sources that can regulate physiological processes. Inflammation is recognized as an important factor in the development and evolution of chronic renal damage. Consequently, any compound able to modulate inflammation or inflammation-related processes can be thought of as a renal protective agent and/or a potential treatment tool for controlling renal damage. The objective of this research was to review the beneficial effects of bioactive natural compounds on kidney damage to reveal their efficacy as demonstrated in clinical studies. Methods: This systematic review is based on relevant studies focused on the impact of NPCs with therapeutic potential for kidney disease treatment in humans. Results: Clinical studies have evaluated NPCs as a different way to treat or prevent renal damage and appear to show some benefits in improving OS, inflammation, and antioxidant capacity, therefore making them promising therapeutic tools to reduce or prevent the onset and progression of KD pathogenesis. Conclusions: This review shows the promising clinical properties of NPC in KD therapy. However, more robust clinical trials are needed to establish their safety and therapeutic effects in the area of renal damage.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
- Correspondence: ; Tel.: +52-492-8926556
| | - Elda Araceli García-Mayorga
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Daisy L. Díaz-Avila
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Guadalupe T González-Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, 28046 Madrid, Spain;
- Molecular Biology Research, Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), 28049 Madrid, Spain
| |
Collapse
|
18
|
Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A Systematic Review of the Biological Effects of Cordycepin. Molecules 2021; 26:5886. [PMID: 34641429 PMCID: PMC8510467 DOI: 10.3390/molecules26195886] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
We conducted a systematic review of the literature on the effects of cordycepin on cell survival and proliferation, inflammation, signal transduction and animal models. A total of 1204 publications on cordycepin were found by the cut-off date of 1 February 2021. After application of the exclusion criteria, 791 papers remained. These were read and data on the chosen subjects were extracted. We found 192 papers on the effects of cordycepin on cell survival and proliferation and calculated a median inhibitory concentration (IC50) of 135 µM. Cordycepin consistently repressed cell migration (26 papers) and cellular inflammation (53 papers). Evaluation of 76 papers on signal transduction indicated consistently reduced PI3K/mTOR/AKT and ERK signalling and activation of AMPK. In contrast, the effects of cordycepin on the p38 and Jun kinases were variable, as were the effects on cell cycle arrest (53 papers), suggesting these are cell-specific responses. The examination of 150 animal studies indicated that purified cordycepin has many potential therapeutic effects, including the reduction of tumour growth (37 papers), repression of pain and inflammation (9 papers), protecting brain function (11 papers), improvement of respiratory and cardiac conditions (8 and 19 papers) and amelioration of metabolic disorders (8 papers). Nearly all these data are consistent with cordycepin mediating its therapeutic effects through activating AMPK, inhibiting PI3K/mTOR/AKT and repressing the inflammatory response. We conclude that cordycepin has excellent potential as a lead for drug development, especially for age-related diseases. In addition, we discuss the remaining issues around the mechanism of action, toxicity and biodistribution of cordycepin.
Collapse
Affiliation(s)
- Masar Radhi
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Sadaf Ashraf
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK;
| | - Steven Lawrence
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Asta Arendt Tranholm
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Peter Arthur David Wellham
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Abdul Hafeez
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Ammar Sabah Khamis
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Robert Thomas
- The Primrose Oncology Unit, Bedford Hospital NHS Trust, Bedford MK42 9DJ, UK;
- Department of Oncology, Addenbrooke’s Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Daniel McWilliams
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham NG5 1PB, UK
| | - Cornelia Huiberdina de Moor
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| |
Collapse
|
19
|
The Role of Autophagy in Anti-Cancer and Health Promoting Effects of Cordycepin. Molecules 2021; 26:molecules26164954. [PMID: 34443541 PMCID: PMC8400201 DOI: 10.3390/molecules26164954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Cordycepin is an adenosine derivative isolated from Cordyceps sinensis, which has been used as an herbal complementary and alternative medicine with various biological activities. The general anti-cancer mechanisms of cordycepin are regulated by the adenosine A3 receptor, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), and glycogen synthase kinase (GSK)-3β, leading to cell cycle arrest or apoptosis. Notably, cordycepin also induces autophagy to trigger cell death, inhibits tumor metastasis, and modulates the immune system. Since the dysregulation of autophagy is associated with cancers and neuron, immune, and kidney diseases, cordycepin is considered an alternative treatment because of the involvement of cordycepin in autophagic signaling. However, the profound mechanism of autophagy induction by cordycepin has never been reviewed in detail. Therefore, in this article, we reviewed the anti-cancer and health-promoting effects of cordycepin in the neurons, kidneys, and the immune system through diverse mechanisms, including autophagy induction. We also suggest that formulation changes for cordycepin could enhance its bioactivity and bioavailability and lower its toxicity for future applications. A comprehensive understanding of the autophagy mechanism would provide novel mechanistic insight into the anti-cancer and health-promoting effects of cordycepin.
Collapse
|
20
|
Liu Y, Xiao K, Wang Z, Wang S, Xu F. Comparison of metabolism substances in Cordyceps sinensis and Cordyceps militaris cultivated with tussah pupa based on LC-MS. J Food Biochem 2021; 45:e13735. [PMID: 33890309 DOI: 10.1111/jfbc.13735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
The objective of our study was to compare the chemical composition of Cordyceps sinensis (C. sinensis) and Cordyceps militaris (C. militaris) cultivated with tussah pupa by using metabonomics technology in order to clarify the similarity and difference of the two medicinal materials from the whole metabolite level. The results showed that there were 25 different metabolites among the 69 metabolites that were highly expressed in C. militaris cultivated with tussah pupa compared with C. sinensis in both positive and negative ion modes. Analysis results of partial differential metabolites pathways indicated that 16 differential metabolites were involved in multiple pathways, such as histidine metabolism, arginine biosynthesis, tyrosine metabolism, glyoxylate and dicarboxylate metabolism, phenylpropanoid biosynthesis, pyruvate metabolism, etc. Therefore, the composition of C. militaris cultivated with tussah pupa had significant advantage comparing with C. sinensis, which demonstrated that high-priced C. sinensis could be substituted with C. militaris cultivated with tussah pupa to some extent. PRACTICAL APPLICATIONS: This study comprehensively compared the chemical composition of Cordyceps sinensis (C. sinensis) and Cordyceps militaris (C. militaris) cultivated with tussah pupa by using metabonomics technology in order to clarify the similarity and difference of the two medicinal materials from the whole metabolite level. The experimental results provide a theoretical basis and scientific support for whether C. sinensis can be substituted with C. militaris cultivated with tussah pupa in clinical practice.
Collapse
Affiliation(s)
- Yefei Liu
- Experimental Teaching Center, Shenyang Normal University, Shenyang, People's Republic of China
| | - Kun Xiao
- Fushun Food Inspection and Testing Center, Fushun, People's Republic of China
| | - Ze Wang
- College of Life Science, Shenyang Normal University, Shenyang, People's Republic of China
| | - Shenghou Wang
- Experimental Teaching Center, Shenyang Normal University, Shenyang, People's Republic of China
| | - Fangxu Xu
- Experimental Teaching Center, Shenyang Normal University, Shenyang, People's Republic of China
| |
Collapse
|
21
|
Corrigendum to " Cordyceps militaris Improves Chronic Kidney Disease by Affecting TLR4/NF- κB Redox Signaling Pathway". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1981636. [PMID: 33354275 PMCID: PMC7735839 DOI: 10.1155/2020/1981636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/14/2020] [Indexed: 11/23/2022]
|
22
|
Lee CT, Huang KS, Shaw JF, Chen JR, Kuo WS, Shen G, Grumezescu AM, Holban AM, Wang YT, Wang JS, Hsiang YP, Lin YM, Hsu HH, Yang CH. Trends in the Immunomodulatory Effects of Cordyceps militaris: Total Extracts, Polysaccharides and Cordycepin. Front Pharmacol 2020; 11:575704. [PMID: 33328984 PMCID: PMC7735063 DOI: 10.3389/fphar.2020.575704] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a fungus with a long history of widespread use in folk medicine, and its biological and medicinal functions are well studied. A crucial pharmacological effect of C. militaris is immunomodulation. In this review, we catalog the immunomodulatory effects of different extracts of C. militaris, namely total extracts, polysaccharides and cordycepin. Total extracts obtained using water or 50% ethyl alcohol and polysaccharides from C. militaris were discovered to tend to promote type 1 immunity, whereas total extracts obtained using 70-80% ethyl alcohol and cordycepin from C. militaris were more likely to promote type 2 immunity. This article is the first to classify the immunomodulatory effects of different extracts of C. militaris. In addition, we discovered a relationship between different segments or extracts and differing types of immunity. This review can provide the readers a comprehensive understanding on the immunomodulatory effects of the precious folk medicine and guidance on its use for both health people and those with an immunodeficiency.
Collapse
Affiliation(s)
- Chun-Ting Lee
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jung-Ren Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Shuo Kuo
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Gangxu Shen
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Polytechnic University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, University of Bucharest, Bucharest, Romania
| | - Yi-Ting Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jun-Sheng Wang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
| | - Yi-Ping Hsiang
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| | - Yu-Mei Lin
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Hsiao-Han Hsu
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
23
|
Yang J, Zhou Y, Shi J. Cordycepin protects against acute pancreatitis by modulating NF-κB and NLRP3 inflammasome activation via AMPK. Life Sci 2020; 251:117645. [PMID: 32268154 DOI: 10.1016/j.lfs.2020.117645] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Acute pancreatitis (AP) is a noninfectious inflammatory disease with high morbidity and mortality, which is characterized by severe inflammation and tissue necrosis. Cordycepin (CRD), derived from Cordyceps militaris, possesses anti-inflammatory effects and immunomodulation properties. Here, we investigated the protective effects of CRD on pancreatic injury and clarified potential mechanisms in AP model. There were established caerulein-induced AP and CRD pretreatment models in vivo and in vitro, as showed by serum enzymes, histopathological alterations and pro-inflammatory cytokines. Pretreatment with CRD notably downregulated the serum amylase and lipase levels and apparently reduced pancreatic histopathological alterations in AP mice. Meanwhile, the MPO staining confirmed that CRD pretreatment modulated the infiltration of neutrophils in AP mice. Furthermore, CRD markedly decreased the levels of pro-inflammatory factors (IL-6, IL-1β, and TNF-α) though inhibiting the activation of nuclear factor-κB (NF-κB) and NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome in AP mice. In pancreatic acinar cancer cell 266-6, CRD pretreatment decreased cholecystokinin(CCK)-induced inflammatory response was consistent with those in vivo. Mechanistically, CRD was also revealed to activate activated protein kinase (AMPK) and attenuated inflammation both in vivo and in vitro. On the whole, this study indicated that CRD protects mice from pancreatic inflammatory process and damage by suppressed NF-κB and NLRP3 inflammasome activation via AMPK, which probably contributed to the potential therapy for AP.
Collapse
Affiliation(s)
- Jing Yang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China.
| | - Yiwen Zhou
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinsong Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
24
|
Han F, Dou M, Wang Y, Xu C, Li Y, Ding X, Xue W, Zheng J, Tian P, Ding C. Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress. Acta Biochim Biophys Sin (Shanghai) 2020; 52:125-132. [PMID: 31951250 DOI: 10.1093/abbs/gmz145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Cordycepin (3'-deoxyadenosine) is a naturally occurring adenosine analog and one of the bioactive constituents isolated from Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. However, the actions of cordycepin against renal ischemia/reperfusion injury (I/R) are still unknown. In the present study, rats were subject to I/R and cordycepin was intragastrically administered for seven consecutive days before surgery to investigate the effects and mechanisms of cordycepin against renal I/R injury. The test results of kidney and peripheral blood samples of experimental animals showed that cordycepin significantly decreased serum blood urea nitrogen and creatinine levels and markedly attenuated cell injury. Mechanistic studies showed that cordycepin significantly regulated inflammation, apoptosis, and oxidative stress. These data provide new insights for investigating the natural product with the nephroprotective effect against I/R, which should be developed as a new therapeutic agent for the treatment of I/R in the future.
Collapse
Affiliation(s)
- Feng Han
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuxiang Wang
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Cuixiang Xu
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Center of Shaanxi Provincial Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an 710061, China
| | - Yang Li
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - XiaoMing Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - WuJun Xue
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Puxun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
25
|
Deng W, Chen K, Liu S, Wang Y. Silencing circular ANRIL protects HK-2 cells from lipopolysaccharide-induced inflammatory injury through up-regulating microRNA-9. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3478-3484. [PMID: 31432701 DOI: 10.1080/21691401.2019.1652187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circular antisense non-coding RNA in the INK4 locus (cANRIL) participated in inflammation of endothelial cells. However, whether cANRIL is associated with inflammatory injury of HK-2 cells, thereby affecting chronic kidney disease has not been investigated. We tested the hypothesis that cANRIL participated in inflammatory response in vitro. HK-2 cells were stimulated by lipopolysaccharides (LPS). RT-qPCR was executed for cANRIL expression assessment. After transfection, cell viability, apoptosis, inflammatory cytokines and ROS generation were appraised to evaluate the impact of silencing cANRIL on LPS-induced inflammatory injury. The regulatory relationship between cANRIL and microRNA-9 (miR-9) was verified. In addition, whether miR-9 affected LPS-induced inflammatory injury was measured after miR-9 inhibitor transfection. Western blot was utilized to detect NF-κB and JNK/p38 pathway-related proteins. The results showed that LPS promoted cANRIL expression and cell injuries in HK-2 cells. Furthermore, silencing cANRIL alleviated inflammatory injuries by promoting viability, suppressing apoptosis, inflammatory cytokines and ROS generation in HK-2 cells. In addition, miR-9 expression was accelerated by silencing cANRIL. Meanwhile, miR-9 down-regulation invalidated the effect of silencing cANRIL on inflammation and NF-κB and JNK/p38 pathways. The study clarified that silencing cANRIL hindered NF-κB and JNK/p38 pathways by positively regulating miR-9, thereby protecting HK-2 cells from LPS-induced injury.
Collapse
Affiliation(s)
- Wenyan Deng
- Department of Nephrology, Jining No.1 People's Hospital , Jining , Shandong , China
| | - Kai Chen
- Department of Nephrology, Jining No.1 People's Hospital , Jining , Shandong , China
| | - Shuxia Liu
- Department of Nephrology, Jining No.1 People's Hospital , Jining , Shandong , China
| | - Yingying Wang
- Department of Nephrology, Jining No.1 People's Hospital , Jining , Shandong , China
| |
Collapse
|
26
|
Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int J Mol Sci 2019; 21:ijms21010263. [PMID: 31906008 PMCID: PMC6981831 DOI: 10.3390/ijms21010263] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.
Collapse
|
27
|
Bibi S, Wang YB, Tang DX, Kamal MA, Yu H. Prospects for Discovering the Secondary Metabolites of Cordyceps Sensu Lato by the Integrated Strategy. Med Chem 2019; 17:97-120. [PMID: 31880251 DOI: 10.2174/1573406416666191227120425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some species of Cordyceps sensu lato are famous Chinese herbs with significant biological activities, often used as edible food and traditional medicine in China. Cordyceps represents the largest entomopathogenic group of fungi, including 40 genera and 1339 species in three families and incertae sedis of Hypocreales. OBJECTIVE Most of the Cordyceps-derivatives have been approved clinically for the treatment of various diseases such as diabetes, cancers, inflammation, cardiovascular, renal and neurological disorders and are used worldwide as supplements and herbal drugs, but there is still need for highly efficient Cordyceps-derived drugs for fatal diseases with approval of the U.S. Food and Drug Administration. METHODS Computer-aided drug design concepts could improve the discovery of putative Cordyceps- derived medicine within less time and low budget. The integration of computer-aided drug design methods with experimental validation has contributed to the successful discovery of novel drugs. RESULTS This review focused on modern taxonomy, active metabolites, and modern drug design techniques that could accelerate conventional drug design and discovery of Cordyceps s. l. Successful application of computer-aided drug design methods in Cordyceps research has been discussed. CONCLUSION It has been concluded that computer-aided drug design techniques could influence the multiple target-focused drug design, because each metabolite of Cordyceps has shown significant activities for the various diseases with very few or no side effects.
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - De-Xiang Tang
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Hong Yu
- Yunnan Herbal Laboratory, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| |
Collapse
|
28
|
Xu J, Yuan Q, Wu K, Li X, Zhao Y, Li X. Effects of Bailing capsule on diabetic nephropathy based on UPLC-MS urine metabolomics. RSC Adv 2019; 9:35969-35975. [PMID: 35540588 PMCID: PMC9074918 DOI: 10.1039/c9ra05046a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/23/2019] [Indexed: 11/21/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular diabetes complications and has become a threat to human health. Bailing capsules (BLCs), containing fermentation products of Cordyceps sinensis, have been commonly used for treatment of renal dysfunction, such as DN. However, mechanisms underlying the protective effects of BLC remain largely obscure and await more investigation. In this study, UPLC-MS-based comprehensive metabolomics along with pattern recognition was applied to explore the urine metabolic alteration of DN as well as therapeutic mechanisms of BLC. Nineteen differentially expressed endogenous metabolites were identified related to DN, which were involved in the perturbations of tyrosine metabolism, tryptophan metabolism, glycine metabolism, purine metabolism, glutamine metabolism, phenylalanine metabolism, histidine metabolism and TCA cycle metabolism pathways. After drug intervention, most of the biomarkers exhibited a certain extent towards normal levels (P < 0.05), which indicated that BLC was an effective drug for treating DN and might play its therapeutic role by retrieving abnormal metabolism pathways. The data obtained in this research may pave the way for further exploration of DN and provide key clues to understand the protective effect of BLC. UPLC-MS-based metabolomics along with pattern recognition was applied to explore the metabolic alteration of diabetic nephropathy and therapeutic mechanisms of Bailing capsule.![]()
Collapse
Affiliation(s)
- Junnan Xu
- Department of Urology, The Organ Transplant Institute of PLA, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091 China
| | - Qing Yuan
- Department of Urology, The Organ Transplant Institute of PLA, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091 China
| | - Kang Wu
- Department of Urology, The Organ Transplant Institute of PLA, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091 China
| | - Xiubin Li
- The Organ Transplant Institute of PLA, The 8th Medical Center of Chinese PLA General Hospital, Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation Beijing 100091 China
| | - Yuanyu Zhao
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University Shanghai 200003 China
| | - Xiang Li
- Department of Urology, The Organ Transplant Institute of PLA, The 8th Medical Center of Chinese PLA General Hospital Beijing 100091 China
| |
Collapse
|
29
|
Luo L, Ran R, Yao J, Zhang F, Xing M, Jin M, Wang L, Zhang T. Se-Enriched Cordyceps militaris Inhibits Cell Proliferation, Induces Cell Apoptosis, And Causes G2/M Phase Arrest In Human Non-Small Cell Lung Cancer Cells. Onco Targets Ther 2019; 12:8751-8763. [PMID: 31749621 PMCID: PMC6817841 DOI: 10.2147/ott.s217017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 12/28/2022] Open
Abstract
Background The anticancer effects of cordyceps on various tumors have been reported. However, little is known about the role of selenium (Se)-enriched Cordyceps militaris in non-small cell lung cancer (NSCLC). In this study, the effects of Se-enriched Cordyceps militaris on cell proliferation, cell apoptosis and cell cycle in NSCLC cell line NCI-H292 and A549 were investigated. Methods CCK-8 assay was used to determine the appropriate concentrations of Se-enriched Cordyceps militaris in NSCLC (namely NCI-H292 and A549) cells. Colony formation assay, flow cytometric and Hoechst 33342 staining assays, and flow cytometric analysis were separately employed to assess the effect of increased Se-enriched Cordyceps militaris on NSCLC cell viability, cell apoptosis and cell-cycle distribution. Finally, the qPCR and Western blot assays were, respectively, applied to evaluate the effects of Se-enriched Cordyceps militaris on the expression of pro-apoptotic member BAX and the anti-apoptotic member BCL-2, as well as of G2/M cell cycle regulatory proteins CDK1 and cyclin B1. Results The concentration of Se-enriched Cordyceps militaris was 0, 4, 8, 12 mg/mL for NCI-H292 cells, and 0, 12.5, 25, 50 mg/mL for A549 cells. NSCLC cells treated with increased Se-enriched Cordyceps militaris showed the inhibited cell viability. Se-enriched Cordyceps militaris induced NSCLC cell apoptosis in concentration-dependent manner. Consistently, Se-enriched Cordyceps militaris diminished the ratio of anti-apoptotic member BCL-2 and pro-apoptotic member BAX at mRNA and protein levels in NSCLC cells. The percentage in G2/M phase was increased in NSCLC cells treated with increased Se-enriched Cordyceps militaris. Downregulation of G2/M cell cycle regulatory proteins CDK1 and cyclin B1 at mRNA and protein levels in NSCLC cells further confirmed the effects of Se-enriched Cordyceps militaris on cell cycle. Conclusion This study demonstrated the inhibitory role of Se-enriched Cordyceps militaris in cell proliferation and its facilitating role in cell apoptosis and cell cycle in NSCLC cells, suggesting an alternative therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Lihua Luo
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China.,Department of Oncology II, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, People's Republic of China
| | - Ruizhi Ran
- Department of Oncology II, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, People's Republic of China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, People's Republic of China
| | - Fang Zhang
- Department of Oncology II, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, People's Republic of China
| | - Maohui Xing
- Department of Oncology II, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, People's Republic of China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Lanqing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| |
Collapse
|
30
|
The protective effect of Cordycepin on diabetic nephropathy through autophagy induction in vivo and in vitro. Int Urol Nephrol 2019; 51:1883-1892. [PMID: 31359358 DOI: 10.1007/s11255-019-02241-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most serious chronic complications of diabetes mellitus (DM). Autophagy is an important physiological function for podocytes to maintain stability of intracellular environment. In this study, we planned to clarify the effect of Cordycepin, a traditional Chinese medicine, on DN and the related mechanisms. METHODS All rats were randomly divided into normal control group, diabetic controls, low-dose group (10 mg/kg), medium-dose group (100 mg/kg), and high-dose group (500 mg/kg). The level of cholesterol, blood sugar, triglyceride, creatinine, and urine protein was examined through an automatic biochemistry analyser. Enzyme-linked immunosorbent assay (Elisa) was used to detect the level of IL-1β, IL-6, and IL-18. HE staining was used to examine histopathologic changes. TUNEL staining was used to detected cell apoptosis. The expression of fibrosis markers α-SMA, t-TG, and TIMP-1, apoptosis-related proteins cleaved-caspase3, Bax and Bcl-2, autophagy markers Beclin1, light chain 3 (LC3)I/II, and p62 were evaluated by western blot. RESULTS The level of cholesterol, blood sugar, triglyceride, creatinine, and urine protein in the diabetic controls was much higher than that in the normal control group. Obvious histopathology injuries were also found in DN model group. After Cordycepin treatment, all the above indexes were improved compared with the DN group and tissue damages were also alleviated. Further studies showed that Cordycepin suppressed cell apoptosis and renal fibrosis and rescued cell autophagy in DN rat model. Moreover, the results of our in vitro experiments showed that the addition of 3-methyladenine (3-MA, specific autophagy inhibitor) successfully abolished the protective effect of Cordycepin on renal fibrosis through inducing apoptosis and renal fibrosis. The above protective effects of Cordycepin were exhibited in a dose-dependent manner. CONCLUSION Cordycepin participated in the modulation of cell apoptosis, fibrosis, and autophagy induction in DN. Our study for the first time revealed that Cordycepin had a certain therapeutic effect on DN in rats through autophagy induction.
Collapse
|