1
|
Khan MZ, Li L, Zhan Y, Binjiang H, Liu X, Kou X, Khan A, Qadeer A, Ullah Q, Alzahrani KJ, Wang T, Wang C, Zahoor M. Targeting Nrf2/KEAP1 signaling pathway using bioactive compounds to combat mastitis. Front Immunol 2025; 16:1425901. [PMID: 39991157 PMCID: PMC11842335 DOI: 10.3389/fimmu.2025.1425901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Mastitis is a common inflammation of mammary glands that has a significantly impact on dairy production and animal health, causing considerable economic burdens worldwide. Elevated reactive oxygen species (ROS) followed by oxidative stress, apoptosis, inflammatory changes and suppressed immunity are considered the key biomarkers observed during mastitis. The Nrf2/KEAP1 signaling pathway plays a critical role in regulating antioxidant responses and cellular defense mechanisms. When activated by bioactive compound treatment, Nrf2 translocates to the nucleus and induces the expression of its target genes to exert antioxidant responses. This reduces pathogen-induced oxidative stress and inflammation by inhibiting NF-kB signaling in the mammary glands, one of the prominent pro-inflammatory signaling pathway. Here, we summarize recent studies to highlight the therapeutic potential of Nrf2/KEAP1 pathway in the prevention and treatment of mastitis. Collectively this review article aims to explore the potential of bioactive compounds in mitigating mastitis by targeting the Nrf2/KEAP1 signaling pathway.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yandong Zhan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huang Binjiang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Park J, Nang JH, Cho S, Chung KJ, Kim KH. Chronic Mealtime Shift Disturbs Metabolic and Urinary Functions in Mice: Effects of Daily Antioxidant Supplementation. Int Neurourol J 2024; 28:115-126. [PMID: 38956771 PMCID: PMC11222825 DOI: 10.5213/inj.2448144.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Through their biological clocks, organisms on this rotating planet can coordinate physiological processes according to the time of the day. However, the prevalence of circadian rhythm disorders has increased in modern society with the growing number of shift workers, elevating the risk of various diseases. In this study, we employed a mouse model to investigate the effects of urinary rhythm disturbances resulting from dietary changes commonly experienced by night shift workers. METHODS We established 3 groups based on feeding time and the use of restricted feeding: ad libitum, daytime, and early nighttime feeding. We then examined the urinary rhythm in each group. In addition to the bladder rhythm, we investigated changes in mRNA patterns within the tissues constituting the bladder. Additionally, we assessed the urination rhythm in Per1 and Per2 double-knockout mice and evaluated whether the injection of antioxidants modified the impact of mealtime shift on urination rhythm in wild-type mice. RESULTS Our study revealed that a shift in mealtime significantly impacted the circadian patterns of water intake and urinary excretion. In Per2::Luc knock-in mouse bladders cultured ex vivo, this shift increased the amplitude of Per2 oscillation and delayed its acrophases by several hours. Daily supplementation with antioxidants did not influence the mealtime shift-induced changes in circadian patterns of water intake and urinary excretion, nor did it affect the modified Per2 oscillation patterns in the cultured bladder. However, in aged mice, antioxidants partially restored the urinary rhythm. CONCLUSION A shift in mealtime meaningfully impacted the urination rhythm in mice, regardless of the presence of circadian clock genes.
Collapse
Affiliation(s)
- Jihyun Park
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Korea
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Korea
| | - Jun-Ho Nang
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sehyung Cho
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Jin Chung
- Department of Urology, Gachon University Gil Medical Center, Gachon Univesity School of Medicine, Incheon, Korea
| | - Khae Hawn Kim
- Department of Urology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| |
Collapse
|
3
|
Liu J, Hou W, Zong Z, Chen Y, Liu X, Zhang R, Deng H. Supplementation of nicotinamide mononucleotide diminishes COX-2 associated inflammatory responses in macrophages by activating kynurenine/AhR signaling. Free Radic Biol Med 2024; 214:69-79. [PMID: 38336100 DOI: 10.1016/j.freeradbiomed.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme responsible for prostaglandin synthesis during inflammation and immune responses. Our previous results show that NAD+ level decreased in activated macrophages while nicotinamide mononucleotide (NMN) supplementation suppressed the inflammatory responses via restoring NAD+ level and downregulating COX-2. However, whether NMN downregulates COX-2 in mouse model of inflammation, and its underlying mechanism needs to be further explored. In the present study, we established LPS- and alum-induced inflammation model and demonstrated that NMN suppressed the inflammatory responses in vivo. Quantitative proteomics in mouse peritoneal macrophages identified that NMN activated AhR signaling pathway in activated macrophages. Furthermore, we revealed that NMN supplementation led to IDO1 activation and kynurenine accumulation, which caused AhR nuclear translocation and activation. On the other hand, AhR or IDO1 knockout abolished the effects of NMN on suppressing COX-2 expression and inflammatory responses in macrophages. In summary, our results demonstrated that NMN suppresses inflammatory responses by activating IDO-kynurenine-AhR pathway, and suggested that administration of NMN in early-stage immuno-activation may cause an adverse health effect.
Collapse
Affiliation(s)
- Jing Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenxuan Hou
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaoyun Zong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Choudhary RK, Olszanski L, McFadden TB, Lalonde C, Spitzer A, Shangraw EM, Rodrigues RO, Zhao FQ. Systemic and local responses of cytokines and tissue histology following intramammary lipopolysaccharide challenge in dairy cows. J Dairy Sci 2024; 107:1299-1310. [PMID: 37777007 DOI: 10.3168/jds.2023-23543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
During bovine mastitis, immune responses include the release of cytokines and the recruitment of leukocytes, resulting in profound structural and functional changes in the mammary gland. Our aims were to delineate systemic and local cytokine responses and to quantify histological changes in the mammary tissue of lactating cows after acute intramammary lipopolysaccharide (LPS) challenge. Ten multiparous dairy cows were paired to either treatment (TRT) or control (CON) groups. For TRT cows, one side of the udder was randomly assigned to receive treatment with LPS (50 µg in 10 mL of saline, TL) into both the front and rear quarters; the contralateral quarters received saline (10 mL). Udder-halves of CON cows were similarly assigned randomly to receive either saline (10 mL, CS) or no infusion (untreated). Temporal changes in the concentrations of 15 cytokines in the blood (0, 3, 6, 12, and 24 h relative to the LPS infusion) and in mammary tissue (0, 3, and 12 h) were determined, as were concomitant changes in mammary histology. The cytokines IL-6, IL-10, MCP-1, and MIP-1β showed a systemic response as their concentrations were significantly different in the plasma of TRT cows as compared with CON cows after LPS challenge. The cytokines IL-1α, IL-1β, IL-6, IL-8, IL-17A, IL-36RA, IP-10, MCP-1, MIP-1α, MIP-1β, TNF-α, and VEGF-A showed a local response in TL glands, and 8 cytokines, IL-1β, IL-6, IL-10, IL-17A, IL-36RA, IP-10, MIP-1β, and VEGF-A showed systemic changes in the nonchallenged mammary glands adjacent to LPS-infused glands. Endotoxin challenge evoked changes in the histology of mammary tissue that included a 5.2- and 7.2-fold increases in the number of neutrophils in alveolar lumens at 3 h and 12 h, respectively. In summary, LPS challenge induced specific local and systemic responses in cytokine induction and elicited neutrophil infiltration in bovine mammary tissue.
Collapse
Affiliation(s)
- Ratan K Choudhary
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405
| | - Laura Olszanski
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405
| | - Thomas B McFadden
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Christian Lalonde
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405
| | - Alexander Spitzer
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405
| | - Erin M Shangraw
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | | | - Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
5
|
Ma Z, Li Q, Xu H, Li Y, Wang S, Xiong Y, Lan D, Li J, Xiong X, Fu W. Zearalenone triggers programmed cell death and impairs milk fat synthesis via the AKT-mTOR-PPARγ-ACSL4 pathway in bovine mammary epithelial cells. J Anim Sci 2024; 102:skae276. [PMID: 39285681 PMCID: PMC11484802 DOI: 10.1093/jas/skae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/14/2024] [Indexed: 10/18/2024] Open
Abstract
Zearalenone (ZEN), a mycotoxin from Fusarium fungi, impairs fertility and milk production in female animals; however, the mechanisms remain poorly understood. Using the bovine mammary epithelial cells (MAC-T) as the model, this study investigated the impacts of ZEN on programmed cell death (PCD) and milk fat synthesis and explored the underlying mechanism. We found that 10 ng/mL prolactin (PRL) notably enhanced the differentiation of MAC-T cells, promoting the expression of genes related to the synthesis of milk fat, protein, and lactose. Next, the toxic effects of different doses of ZEN on the differentiated MAC-T with PRL treatment were determined. 10 and 20 μM ZEN significantly reduced cell viability, induced oxidative stress, and triggered PCD (e.g., apoptosis and necrosis). Notably, ZEN exposure downregulated the mRNA/protein levels of critical factors involved in milk fat synthesis by disrupting the AKT-mTOR-PPARγ-ACSL4 pathway. Interestingly, melatonin (MT), known for its antioxidant properties, protected against the above ZEN-induced effects by enhancing the binding of PPARγ to the promoter regions of ACSL4, which led to the upregulated expression of the ACSL4 gene. These results underscored the potential of MT to mitigate the adverse effects of ZEN on mammary cells, highlighting a way for potential therapeutic intervention.
Collapse
Affiliation(s)
- Zifeng Ma
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Qiao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Hongmei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Yueyue Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Hassanpour K, Esmaeili Gouvarchin Ghaleh H, Khafaei M, Hosseini A, Farnoosh G, Badri T, Akbariqomi M. Sleep as a likely immunomodulation agent: novel approach in the treatment of COVID-19. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2166131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Kazem Hassanpour
- Medical School, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Gholamreaza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taleb Badri
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Yan L, Wu H, Guan S, Ma W, Fu Y, Ji P, Lian Z, Zhang L, Xing Y, Wang B, Liu G. The Effects of Mammary Gland ATIII Overexpression on the General Health of Dairy Goats and Their Anti-Inflammatory Response to LPS Stimulation. Int J Mol Sci 2023; 24:15303. [PMID: 37894983 PMCID: PMC10607088 DOI: 10.3390/ijms242015303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Antithrombin III is an important anticoagulant factor with anti-inflammatory properties. However, few studies have explored its anti-inflammatory actions in ATIII overexpressed transgenic animals. In this study, the dairy goats with mammary overexpression of ATIII were used to investigate their general health, milk quality and particularly their response to inflammatory challenge. The results showed that transgenic goats have a normal phenotype regarding their physiological and biochemical parameters, including whole blood cells, serum protein levels, total cholesterol, urea nitrogen, uric acid, and total bilirubin, compared to the WT. In addition, the quality of milk also improved in transgenic animals compared to the WT, as indicated by the increased milk fat and dry matter content and the reduced somatic cell numbers. Under the stimulation of an LPS injection, the transgenic goats had elevated contents of IGA, IGM and superoxide dismutase SOD, and had reduced proinflammatory cytokine release, including IL-6, TNF-α and IFN-β. A 16S rDNA sequencing analysis also showed that the transgenic animals had a similar compositions of gut microbiota to the WT goats under the stimulation of LPS injections. Mammary gland ATIII overexpression in dairy goats is a safe process, and it did not jeopardize the general health of the transgenic animals; moreover, the compositions of their gut microbiota also improved with the milk quality. The LPS stimulation study suggests that the increased ATIII expression may directly or indirectly suppress the inflammatory response to increase the resistance of transgenic animals to pathogen invasion. This will be explored in future studies.
Collapse
Affiliation(s)
- Laiqing Yan
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Hao Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Shengyu Guan
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Wenkui Ma
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Yao Fu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Pengyun Ji
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Zhengxing Lian
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Lu Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Yiming Xing
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Bingyuan Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Guoshi Liu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| |
Collapse
|
8
|
Zhao L, Jin L, Yang B. Protocatechuic acid inhibits LPS-induced mastitis in mice through activating the pregnane X receptor. J Cell Mol Med 2023; 27:2321-2327. [PMID: 37328960 PMCID: PMC10424283 DOI: 10.1111/jcmm.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
Mastitis refers to the inflammation in the mammary gland caused by various reasons. Protocatechuic acid (PCA) exerts anti-inflammatory effect. However, no studies have shown the protective role of PCA on mastitis. We investigated the protective effect of PCA on LPS-induced mastitis in mice and elucidated its possible mechanism. LPS-induced mastitis model was established by injection of LPS into the mammary gland. The pathology of mammary gland, MPO activity and inflammatory cytokine production were detected to evaluate the effects of PCA on mastitis. In vivo, PCA significantly attenuated LPS-induced mammary pathological changes, MPO activity, TNF-α and IL-1β production. In vitro, the production of inflammatory cytokines TNF-α and IL-1β was significantly reduced by PCA. Furthermore, LPS-induced NF-κB activation was also inhibited by PCA. In addition, PCA was found to activate pregnane X receptor (PXR) transactivation and PCA dose-dependently increased the expression of PXR downstream molecule CYP3A4. In addition, the inhibitory effect of PCA on inflammatory cytokine production was also reversed when PXR was knocked down. In conclusion, the protective effects of PCA on LPS-induced mastitis in mice through regulating PXR.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinChina
| | - Lei Jin
- Department of AnesthesiologyChina‐Japan Union Hospital of Jilin UniversityJilinChina
| | - Bin Yang
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinChina
| |
Collapse
|
9
|
Sutradhar S, Deb A, Singh SS. Protective efficacy of melatonin and insulin against LPS caused toxicity in diabetic mice. Immunopharmacol Immunotoxicol 2022; 44:902-914. [PMID: 35736957 DOI: 10.1080/08923973.2022.2093739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Context: Deregulated glucose homeostasis leads to a life-threatening metabolic disorder known as diabetes. The insulin deficiency and hyperglycaemic condition related to diabetes cause dysregulation of the immune system.Objective: This study evaluated the combined efficacy of melatonin and insulin in attenuation of lipopolysaccharide (LPS) caused inflammation, macrophage functional impairment, and oxidative stress in the spleen of diabetic mice.Materials and Methods: Multiple low doses of streptozotocin (50mg/kg B. wt.) were administered intraperitoneally to induce diabetes. Diabetes mice were divided into two sets. Set-1 contained control, diabetes, diabetes insulin (2IU/100g B.wt.) treated, diabetes melatonin (100µg/100g. B.wt.) treated, and diabetes melatonin and insulin treated groups of mice. In set II, the same number of groups as those of set I were given a single dose of LPS (50µg/mice) 24 hours before euthanization.Results and Discussion: LPS caused a significant increase in oxidative stress, circulatory proinflammatory cytokines, significant suppression of antioxidant defense system, and phagocytic index in diabetic mice. Melatonin and insulin significantly improved the adverse effects caused by LPS treatment in diabetic mice. The present study noted that combined treatment of melatonin and insulin was more effective in attenuating LPS-induced devastating effects in laboratory mice.Conclusions: The present study may suggest a combinatorial approach in the therapeutic use of melatonin and insulin to improve such devastating conditions.
Collapse
Affiliation(s)
- Sangita Sutradhar
- Molecular Endocrine Research Lab., Department of Zoology, Tripura University, Suryamaninagar, India
| | - Anindita Deb
- Molecular Endocrine Research Lab., Department of Zoology, Tripura University, Suryamaninagar, India
| | - Shiv Shankar Singh
- Molecular Endocrine Research Lab., Department of Zoology, Tripura University, Suryamaninagar, India
| |
Collapse
|
10
|
Li H, Sun P. Insight of Melatonin: The Potential of Melatonin to Treat Bacteria-Induced Mastitis. Antioxidants (Basel) 2022; 11:antiox11061107. [PMID: 35740004 PMCID: PMC9219804 DOI: 10.3390/antiox11061107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine mastitis is a common inflammatory disease, mainly induced by bacterial pathogens, such as Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae. Mastitis has negative effects on the production and quality of milk, resulting in huge economic losses. Melatonin, which is synthesized and secreted by the pineal gland and other organs, is ubiquitous throughout nature and has different effects on different tissues. Melatonin is crucial in modulating oxidative stress, immune responses, and cell autophagy and apoptosis, via receptor-mediated or receptor-independent signaling pathways. The potent antioxidative and anti-inflammatory activities of melatonin and its metabolites suggest that melatonin can be used to treat various infections. This article reviews the potential for melatonin to alleviate bovine mastitis through its pleiotropic effect on reducing oxidative stress, inhibiting pro-inflammatory cytokines, and regulating the activation of NF-κB, STATs, and their cascade reactions. Therefore, it is promising that melatonin supplementation may be an alternative to antibiotics for the treatment of bovine mastitis.
Collapse
|
11
|
Yang K, Cao F, Xue Y, Tao L, Zhu Y. Three Classes of Antioxidant Defense Systems and the Development of Postmenopausal Osteoporosis. Front Physiol 2022; 13:840293. [PMID: 35309045 PMCID: PMC8927967 DOI: 10.3389/fphys.2022.840293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a common bone imbalance disease that threatens the health of postmenopausal women. Estrogen deficiency accelerates the aging of women. Oxidative stress damage is regarded as the main pathogenesis of postmenopausal osteoporosis. The accumulation of reactive oxygen species in the bone microenvironment plays a role in osteoblast and osteoclast apoptosis. Improving the oxidative state is essential for the prevention and treatment of postmenopausal osteoporosis. There are three classes of antioxidant defense systems in the body to eliminate free radicals and peroxides including antioxidant substances, antioxidant enzymes, and repair enzymes. In our review, we demonstrated the mechanism of antioxidants and their effect on bone metabolism in detail. We concluded that glutathione/oxidized glutathione (GSH/GSSG) conversion involved the PI3K/Akt-Nrf2/HO-1 signaling pathway and that the antioxidant enzyme-mediated mitochondrial apoptosis pathway of osteoblasts was necessary for the development of postmenopausal osteoporosis. Since the current therapeutic effects of targeting bone cells are not significant, improving the systemic peroxidation state and then regulating bone homeostasis will be a new method for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Tao,
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- Yue Zhu,
| |
Collapse
|
12
|
Park J, Kim J, Yun Y, Han D, Kim K, Hong J, Cho S. Daily injection of melatonin inhibits insulin resistance induced by chronic mealtime shift. Physiol Rep 2022; 10:e15227. [PMID: 35343087 PMCID: PMC8958345 DOI: 10.14814/phy2.15227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023] Open
Abstract
Shift work disorders have become an emerging concern worldwide. Shift disorders encompass a wide range of illnesses that have yet to be identified. The study focused on the relationship between shift work disorders and insulin resistance. Previously, it was reported that advancing the usual mealtime of mice triggered insulin resistance. Here, the hypothesis that chronic mealtime shifts induce oxidative damage leading to chronic diseases such as type 2 diabetes was tested. It was found that mealtime shift causes imbalances between anti-oxidative capacity and reactive oxygen species (ROS) levels, indicating increased oxidative damage during the light/rest phase. This study further demonstrated that daily supplementation of antioxidants at the appropriate time of day inhibited insulin resistance caused by chronic mealtime shifts, suggesting significant and chronic health implications for shift workers. In conclusion, it was confirmed that increased ROS levels caused by mealtime shift induce insulin resistance, which is inhibited by the antioxidant melatonin.
Collapse
Affiliation(s)
- Jihyun Park
- Department of NeuroscienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - Jichul Kim
- Department of Life & Nanopharmaceutical ScienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - Yejin Yun
- Department of Biomedical ScienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - Dong‐Hee Han
- Department of NeuroscienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
- Present address:
Ildong Pharmaceutical Co. LtdSeocho‐guSeoulRepublic of Korea
| | - Kyungjin Kim
- Department of Brain ScienceDGISTDaeguSouth Korea
| | - Jongki Hong
- College of PharmacyKyung Hee UniversitySeoulSouth Korea
| | - Sehyung Cho
- Department of NeuroscienceGraduate SchoolKyung Hee UniversitySeoulSouth Korea
- Department of PhysiologyKyung Hee University School of MedicineSeoulSouth Korea
| |
Collapse
|
13
|
Huggard D, Kelly L, Worrall A, Gallagher E, Fallah L, Yoo LL, McGrane F, Lagan N, Roche E, Balfe J, Doherty DG, Molloy EJ. Melatonin as an immunomodulator in children with Down syndrome. Pediatr Res 2022; 91:1812-1820. [PMID: 34400791 PMCID: PMC9270227 DOI: 10.1038/s41390-021-01611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Down syndrome (DS) is a disorder characterised by marked immune dysfunction, increased mortality from sepsis, chronic inflammation, increased oxidative stress, sleep disturbance and possibly abnormal endogenous melatonin levels. Melatonin has a myriad of immune functions, and we hypothesised that this therapeutic agent could modulate the innate immune system in this cohort. METHODS We investigated neutrophil and monocyte function (CD11b, TLR4 expression by flow cytometry), genes involved in TLR signalling (MyD88, IRAK4, TRIF), the inflammasome (NLRP3, IL-1β), and circadian rhythm (BMAL, CLOCK, CRY) by qPCR, and inflammatory cytokines (IL-2, IL-6, IL-8, IL-18, IL-1β, TNF-α, IFN-γ, IL-10, IL-1ra, VEGF, Epo, GM-CSF) by enzyme-linked immunosorbent assay (ELISA) following immunomodulation with LPS endotoxin and melatonin. 47 children with DS and 23 age- and sex-matched controls were recruited. RESULTS We demonstrated that melatonin has several significant effects by reducing CD11b and TLR4 expression, attenuating TLR signalling, genes involved in the inflammasome and has the potential to reduce LPS-induced inflammatory responses. CONCLUSIONS Immunomodulatory effects of melatonin were found in both paediatric cohorts with more marked effects in the children with DS. Melatonin mediates immune response through a wide array of mechanisms and this immunomodulator may buffer the inflammatory response by regulating pro and anti-inflammatory signalling. IMPACT We highlight that melatonin mediates its immune response through a wide array of mechanisms, its effects appear to be dose dependant and children with Down syndrome may be more receptive to treatment with it. Immunomodulatory effects of melatonin were demonstrated with marked effects in the children with Down syndrome with a reduction of MyD88, IL-1ß and NLRP3 expression in whole-blood samples. Melatonin is a proposed anti-inflammatory agent with a well-established safety profile, that has the potential for mitigation of pro- and anti-inflammatory cytokines in paediatric Down syndrome cohorts, though further clinical trials are warranted.
Collapse
Affiliation(s)
- Dean Huggard
- Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland. .,Trinity Translational Medicine Institute (TTMI), St James Hospital, Trinity College Dublin, Dublin, Ireland. .,Paediatrics, Children's health Ireland (CHI) at Tallaght, Dublin, Ireland. .,National Children's Research Centre, Dublin, Crumlin, Ireland.
| | - Lynne Kelly
- grid.8217.c0000 0004 1936 9705Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland ,grid.416409.e0000 0004 0617 8280Trinity Translational Medicine Institute (TTMI), St James Hospital, Trinity College Dublin, Dublin, Ireland
| | - Amy Worrall
- grid.8217.c0000 0004 1936 9705Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - Eleanor Gallagher
- grid.8217.c0000 0004 1936 9705Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - Lida Fallah
- grid.416409.e0000 0004 0617 8280Trinity Translational Medicine Institute (TTMI), St James Hospital, Trinity College Dublin, Dublin, Ireland
| | - Lucas Lu Yoo
- grid.8217.c0000 0004 1936 9705Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - Fiona McGrane
- Paediatrics, Children’s health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Niamh Lagan
- grid.8217.c0000 0004 1936 9705Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland ,Paediatrics, Children’s health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Edna Roche
- grid.8217.c0000 0004 1936 9705Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland ,Paediatrics, Children’s health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Joanne Balfe
- grid.8217.c0000 0004 1936 9705Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland ,Paediatrics, Children’s health Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Derek G. Doherty
- grid.8217.c0000 0004 1936 9705Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland ,grid.416409.e0000 0004 0617 8280Trinity Translational Medicine Institute (TTMI), St James Hospital, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J. Molloy
- grid.8217.c0000 0004 1936 9705Paediatrics, Trinity College, The University of Dublin & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland ,grid.416409.e0000 0004 0617 8280Trinity Translational Medicine Institute (TTMI), St James Hospital, Trinity College Dublin, Dublin, Ireland ,Paediatrics, Children’s health Ireland (CHI) at Tallaght, Dublin, Ireland ,grid.452722.4National Children’s Research Centre, Dublin, Crumlin, Ireland ,grid.411886.20000 0004 0488 4333Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland ,Neonatology, CHI at Crumlin, Dublin, Ireland
| |
Collapse
|
14
|
Yu GM, Zhou LF, Zeng BX, Huang JJ, She XJ. The antioxidant effect of triptolide contributes to the therapy in a collagen-induced arthritis rat model. Redox Rep 2021; 26:197-202. [PMID: 34788192 PMCID: PMC8604496 DOI: 10.1080/13510002.2021.2004047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND As a chronic autoimmune disease, rheumatoid arthritis (RA) is related to oxidative stress, which may lead to the occurrence and persistence of inflammation in RA. The purpose of this study is to evaluate the potential antioxidant effect of triptolide in collagen-induced arthritis (CIA) rat model. METHODS We examined the severity of arthritis, levels of local and systemic oxidative stress, periarticular bone erosion and weight of organs in CIA rats treated with triptolide. RESULTS We found that triptolide decreased the paw thickness and clinical arthritis score, significantly. The mRNA expression and activity of myeloperoxidase and inducible nitric oxide synthase were remarkably decreased in the paws of the CIA rats after triptolide treatment. Triptolide significantly inhibited the levels of nitrite and nitrate in serum, as well as the urinary level of dityrosine. Triptolide treatment also markedly increased bone volume of tibia, but suppressed epiphyseal plate thickness of both femur and tibia. In addition, there was no significant difference in the weight of organs after the therapy, except decreased spleen weight. CONCLUSIONS These results suggested that the local and systemic oxidative stress was enhanced in the CIA rats and the therapeutic dose of triptolide had a definite antioxidant effect.
Collapse
Affiliation(s)
- Guang-Min Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Li-Feng Zhou
- Department of Gastroenterology, Second Clinical Hospital of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, People’s Republic of China
| | - Bi-Xia Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Jing-Jun Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Xiao-jun She
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Chen L, Zhang S, Wu S, Ren Z, Liu G, Wu J. Synergistic Protective Effect of Konjac Mannan Oligosaccharides and Bacillus subtilis on Intestinal Epithelial Barrier Dysfunction in Caco-2 Cell Model and Mice Model of Lipopolysaccharide Stimulation. Front Immunol 2021; 12:696148. [PMID: 34603279 PMCID: PMC8484872 DOI: 10.3389/fimmu.2021.696148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
As the first line of defense against intestinal bacteria and toxins, intestinal epithelial cells are always exposed to bacteria or lipopolysaccharide (LPS), whereas pathogenic bacteria or LPS can cause intestinal epithelial cell damage. Previous studies have shown that konjac mannan oligosaccharides (KMOS) have a positive effect on maintaining intestinal integrity, and Bacillus subtilis (BS) can promote the barrier effect of the intestine. However, it is still unknown whether KMOS and BS have a synergistic protective effect on the intestines. In this study, we used the LPS-induced Caco-2 cell injury model and mouse intestinal injury model to study the synergistic effects of KMOS and BS. Compared with KMOS or BS alone, co-treatment with KMOS and BS significantly enhanced the activity and antioxidant capacity of Caco-2 cell, protected mouse liver and ileum from LPS-induced oxidative damage, and repaired tight junction and mucus barrier damage by up-regulating the expression of Claudin-1, ZO-1 and MUC-2. Our results demonstrate that the combination of KMOS and BS has a synergistic repair effect on inflammatory and oxidative damage of Caco-2 cells and aIIeviates LPS-induced acute intestinal injury in mice.
Collapse
Affiliation(s)
- Lupeng Chen
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Zhang
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shi Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhuqing Ren
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoquan Liu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Wu Y, He T, Fu Y, Chen J. Corynoline protects lipopolysaccharide-induced mastitis through regulating AKT/GSK3β/Nrf2 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:2493-2499. [PMID: 34477289 DOI: 10.1002/tox.23362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Inflammation has been known to be involved in the pathogenesis of mastitis. And anti-inflammatory agent is proposed to be a possible efficient therapeutic strategy for mastitis. Corynoline, a bioactive compound extracted from Corydalis bungeana Turcz., has been reported to have anti-inflammatory effect. However, whether corynoline has protective effect against mastitis remains unclear. The aim of this study was to evaluate the protective effect of corynoline on LPS-induced mastitis in mice. Inflammatory cytokine production was measured by ELISA. The proteins of signaling pathways were detected by western blot analysis. The results showed that treatment of corynoline at the doses of 15, 30, and 60 mg/kg significantly attenuated LPS-induced pathological damage of mammary tissues. Corynoline also ameliorated LPS-induced MPO activity, MDA content, and inflammatory cytokine TNF-α and IL-1β production in mammary tissues. LPS-induced NF-κB activation was inhibited by corynoline. Furthermore, our results showed corynoline significantly increased the expression of Nrf2 and the phosphorylation levels of AKT and GSK3β. In conclusion, our results indicated that corynoline protected against LPS-induced mastitis through regulating AKT/GSK3β/Nrf2 signaling pathway, which subsequently led to the inhibition of NF-κB and inflammatory response.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Breast Surgery, Clinical Research Center for Breast, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao He
- Department of Breast Surgery, Clinical Research Center for Breast, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Jie Chen
- Department of Breast Surgery, Clinical Research Center for Breast, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Alfarouk KO, AlHoufie STS, Ahmed SBM, Shabana M, Ahmed A, Alqahtani SS, Alqahtani AS, Alqahtani AM, Ramadan AM, Ahmed ME, Ali HS, Bashir A, Devesa J, Cardone RA, Ibrahim ME, Schwartz L, Reshkin SJ. Pathogenesis and Management of COVID-19. J Xenobiot 2021; 11:77-93. [PMID: 34063739 PMCID: PMC8163157 DOI: 10.3390/jox11020006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19, occurring due to SARS-COV-2 infection, is the most recent pandemic disease that has led to three million deaths at the time of writing. A great deal of effort has been directed towards altering the virus trajectory and/or managing the interactions of the virus with its subsequent targets in the human body; these interactions can lead to a chain reaction-like state manifested by a cytokine storm and progress to multiple organ failure. During cytokine storms the ratio of pro-inflammatory to anti-inflammatory mediators is generally increased, which contributes to the instigation of hyper-inflammation and confers advantages to the virus. Because cytokine expression patterns fluctuate from one person to another and even within the same person from one time to another, we suggest a road map of COVID-19 management using an individual approach instead of focusing on the blockbuster process (one treatment for most people, if not all). Here, we highlight the biology of the virus, study the interaction between the virus and humans, and present potential pharmacological and non-pharmacological modulators that might contribute to the global war against SARS-COV-2. We suggest an algorithmic roadmap to manage COVID-19.
Collapse
Affiliation(s)
- Khalid O. Alfarouk
- Hala Alfarouk Cancer Center, Department of Evolutionary Pharmacology and Tumor Metabolism, Khartoum 11123, Sudan;
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
| | - Sari T. S. AlHoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina 42353, Saudi Arabia;
| | - Samrein B. M. Ahmed
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mona Shabana
- Pharmacology Department, Faculty of Medicine, Fayoum University, Fayoum 63514, Egypt;
| | - Ahmed Ahmed
- Department of Oesphogastric and General Surgery, University Hospitals of Leicester, Leicester LE5 4PW, UK;
| | - Saad S. Alqahtani
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ali S. Alqahtani
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Najran University, Najran 66446, Saudi Arabia;
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - AbdelRahman M. Ramadan
- Department of Preventive Dental Sciences, Ibn Sina National College, Jeddah 22421, Saudi Arabia;
| | - Mohamed E. Ahmed
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Department of Surgery, Faculty of Medicine Al-Neelain University, Khartoum 11111, Sudan
| | - Heyam S. Ali
- Faculty of Pharmacy, University of Khartoum, P. O. Box 321, Khartoum 11111, Sudan;
| | - Adil Bashir
- Hala Alfarouk Cancer Center, Department of Evolutionary Pharmacology and Tumor Metabolism, Khartoum 11123, Sudan;
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Jesus Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (R.A.C.); (S.J.R.)
| | - Muntaser E. Ibrahim
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | | | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (R.A.C.); (S.J.R.)
| |
Collapse
|
18
|
NaveenKumar SK, Hemshekhar M, Jagadish S, Manikanta K, Vishalakshi GJ, Kemparaju K, Girish KS. Melatonin restores neutrophil functions and prevents apoptosis amid dysfunctional glutathione redox system. J Pineal Res 2020; 69:e12676. [PMID: 32597503 DOI: 10.1111/jpi.12676] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 12/26/2022]
Abstract
Melatonin is a chronobiotic hormone, which can regulate human diseases like cancer, atherosclerosis, respiratory disorders, and microbial infections by regulating redox system. Melatonin exhibits innate immunomodulation by communicating with immune system and influencing neutrophils to fight infections and inflammation. However, sustaining redox homeostasis and reactive oxygen species (ROS) generation in neutrophils are critical during chemotaxis, oxidative burst, phagocytosis, and neutrophil extracellular trap (NET) formation. Therefore, endogenous antioxidant glutathione (GSH) redox cycle is highly vital in regulating neutrophil functions. Reduced intracellular GSH levels and glutathione reductase (GR) activity in the neutrophils during clinical conditions like autoimmune disorders, neurological disorders, diabetes, and microbial infections lead to dysfunctional neutrophils. Therefore, we hypothesized that redox modulators like melatonin can protect neutrophil health and functions under GSH and GR activity-deficient conditions. We demonstrate the dual role of melatonin, wherein it protects neutrophils from oxidative stress-induced apoptosis by reducing ROS generation; in contrast, it restores neutrophil functions like phagocytosis, degranulation, and NETosis in GSH and GR activity-deficient neutrophils by regulating ROS levels both in vitro and in vivo. Melatonin mitigates LPS-induced neutrophil dysfunctions by rejuvenating GSH redox system, specifically GR activity by acting as a parallel redox system. Our results indicate that melatonin could be a potential auxiliary therapy to treat immune dysfunction and microbial infections, including virus, under chronic disease conditions by restoring neutrophil functions. Further, melatonin could be a promising immune system booster to fight unprecedented pandemics like the current COVID-19. However, further studies are indispensable to address the clinical usage of melatonin.
Collapse
Affiliation(s)
| | | | - Swamy Jagadish
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
| | | | | | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, India
| |
Collapse
|
19
|
Liu K, Ding T, Fang L, Cui L, Li J, Meng X, Zhu G, Qian C, Wang H, Li J. Organic Selenium Ameliorates Staphylococcus aureus-Induced Mastitis in Rats by Inhibiting the Activation of NF-κB and MAPK Signaling Pathways. Front Vet Sci 2020; 7:443. [PMID: 32851026 PMCID: PMC7406644 DOI: 10.3389/fvets.2020.00443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Mastitis is an economically important disease in dairy cows, which is often caused by Staphylococcus aureus (S. aureus). Selenium is an indispensable element for physiological function and contributes to reduce injury of the mammary glands in mastitis. However, adequate sources of selenium have always been an important consideration for livestock. Therefore, the study aimed to explore the protective effect and mechanism of Selenohomolanthionine (SeHLan) on mastitis induced by S. aureus. The S. aureus-induced rat model was established and three doses (0.2, 2, 20 μg/kg body weight/day) of dietary OS were supplemented. The bacterial load, histopathology, and myeloperoxidase (MPO) of the mammary glands were performed and determined. Cytokines, including interleukin (IL)-1β, TNF-α, and IL-6, were detected using qRT-PCR. The key proteins of NF-κB and MAPK signaling pathways were analyzed by Western blot. The results revealed that OS supplementation could reduce the recruitment of neutrophils and macrophages in mammary tissues, but did not decrease S. aureus load in the tissues. The overexpression levels of IL-1β, TNF-α, and IL-6 induced by S. aureus were inhibited after OS treatment. Furthermore, the increased phosphorylation of NF-κB and MAPKs proteins were also suppressed. The results suggest that dietary supplementation with adequate OS during pregnancy contributes to protect the mammary glands from injury caused by S. aureus and alleviate the inflammatory response.
Collapse
Affiliation(s)
- Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Li Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
20
|
Yang Y, Yang L, Jiang S, Yang T, Lan J, Lei Y, Tan H, Pan K. HMGB1 mediates lipopolysaccharide-induced inflammation via interacting with GPX4 in colon cancer cells. Cancer Cell Int 2020; 20:205. [PMID: 32514250 PMCID: PMC7260829 DOI: 10.1186/s12935-020-01289-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Background Inflammation is one of a main reason for colon cancer progression and poor prognosis. The high-mobility group box-1 (HMGB1) and glutathione peroxidase 4 (GPX4) are responsible for inflammation, but the relationship between HMGB1 and GPX4 remains unknown about inflammation in colon cancer. Methods RT-qPCR was carried out to investigate the expression of IL1β, IL6 and TNFα in colon cancer cells stimulated with LPS or siHMGB1. To observe the relationship between HMGB1, GPX4 and inflammation or ROS, Western blot assays were adopted. Pull-down, CoIP and immunohistochemistry assays were performed to further investigate the molecular mechanisms of HMGB1 and GPX4 in colon cancer. Results We report that HMGB1 mediates lipopolysaccharide (LPS)-induced inflammation in colon cancer cells. Mechanistically, acetylated HMGB1 interacts with GPX4, negatively regulating GPX4 activity. Furthermore, by utilizing siHMGB1 and its inhibitor, our discoveries demonstrate that HMGB1 knockdown can inhibit inflammation and reactive oxygen species (ROS) accumulation via NF-kB. Conclusion Collectively, our findings first demonstrate that acetylated HMGB1 can interact with GPX4, leading to inflammation, and providing therapeutic strategies targeting HMGB1 and GPX4 for colon cancer.
Collapse
Affiliation(s)
- Yuhan Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| | - Ling Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Sheng Jiang
- Ministry of science and technology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, People's Republic of China
| | - Ting Yang
- Department of pathology, Yiyang Central Hospital, Yiyang, 413000 Hunan People's Republic of China
| | - Jingbin Lan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| | - Yun Lei
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Hao Tan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| | - Kejian Pan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| |
Collapse
|
21
|
Dong SA, Gong LR, Yu JB, Kan YX. The Role of Melatonin in Electroacupuncture Alleviating Lung Injury Induced by Limb Ischemia-Reperfusion in Rabbits. Med Sci Monit 2020; 26:e922525. [PMID: 32427819 PMCID: PMC7251961 DOI: 10.12659/msm.922525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Our previous studies have shown that electroacupuncture (EA) can alleviate lung injury induced by limb ischemia-reperfusion, but the specific mechanism is still unclear. Material/Methods The animals were randomly divided into sham operation group (Sham), model group (IR), electroacupuncture group (EA), sham electroacupuncture group (SEA), and EA+luzindole group (EA+luzindole). The limb ischemia-reperfusion model was established according to previously described, the rabbits in the EA and EA+luzindole groups were given EA at ST36 and BL13 for 7 days before the model preparation and during the model implementation, however, sham EA was mainly used to stimulate the rabbits in the SEA group with shallow needling at the points 0.5 cm near ST36 and BL13. Then, 30 mg/kg of luzindole was intraperitoneally injected 30 minutes before the model preparation in the EA+luzindole group. Results The wet weight/dry weight (W/D) ratio, lung injury score, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and malondialdehyde (MDA) contents in the EA group at 4 hours after reperfusion were significantly lower than those in the IR, SEA, and EA+luzindole groups. The levels of serum melatonin at T0 in the EA and EA+luzindole groups were significantly higher than those in the Sham group. The levels of serum melatonin at T1 and T2 in the IR group were significantly lower than those in the Sham group. There was no significant difference in the expression levels of melatonin receptor 1 (MR-1) and MR-2 in lung tissues among the 5 groups. Conclusions EA could alleviate the lung injury induced by limb ischemia-reperfusion by promoting the secretion of melatonin, while having no effect on the expression of melatonin receptor in lung tissues.
Collapse
Affiliation(s)
- Shu-An Dong
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Li-Rong Gong
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Jian-Bo Yu
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Yong-Xing Kan
- Department of Anesthesiology, Dagang Hospital of Tianjin Binhai New Area, Tianjin, China (mainland)
| |
Collapse
|
22
|
Spitzer AJ, Tian Q, Choudhary RK, Zhao FQ. Bacterial Endotoxin Induces Oxidative Stress and Reduces Milk Protein Expression and Hypoxia in the Mouse Mammary Gland. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3894309. [PMID: 32273941 PMCID: PMC7128054 DOI: 10.1155/2020/3894309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the mechanisms underlying the reduced milk production during mastitis. We hypothesized that bacterial endotoxin induces hypoxia, oxidative stress, and cell apoptosis while inhibiting milk gene expression in the mammary gland. To test this hypothesis, the left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, E. coli 055: B5, 100 μL of 0.2 mg/mL) or sterile PBS through the teat meatus 3 days postpartum. At 10.5 and 22.5 h postinjection, pimonidazole HCl, a hypoxyprobe, was injected intraperitoneally. At 12 or 24 h after the LPS injection, the 4th glands were individually collected (n = 8) and analyzed. LPS treatment induced mammary inflammation at both 12 and 24 h but promoted cell apoptosis only at 12 h. Consistently, H2O2 content was increased at 12 h (P < 0.01), but dropped dramatically at 24 h (P < 0.01) in the LPS-treated gland. Nevertheless, the total antioxidative capacity in tissue tended to be decreased by LPS at both 12 and 24 h (P = 0.07 and 0.06, respectively). In agreement with these findings, LPS increased or tended to increase the mRNA expression of antioxidative genes Nqo1 at 12 h (P = 0.05) and SLC7A11 at 24 h (P = 0.08). In addition, LPS inhibited mammary expression of Csn2 and Lalba across time and protein expression of Csn1s1 at 24 h (P < 0.05). Furthermore, hypoxyprobe staining intensity was greater in the alveoli of the PBS-treated gland than the LPS-treated gland at both 12 and 24 h, demonstrating a rise in oxygen tension by LPS treatment. In summary, our observations indicated that while intramammary LPS challenge incurs inflammation, it induces oxidative stress, increases cell apoptosis and oxygen tension, and differentially inhibits the milk protein expression in the mammary gland.
Collapse
Affiliation(s)
- Alexander Jonathan Spitzer
- Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, Burlington, VT 05452, USA
| | - Qing Tian
- Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, Burlington, VT 05452, USA
| | - Ratan K. Choudhary
- Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, Burlington, VT 05452, USA
| | - Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, Burlington, VT 05452, USA
| |
Collapse
|
23
|
Wu J, Yang CL, Sha YK, Wu Y, Liu ZY, Yuan ZH, Sun ZL. Koumine Alleviates Lipopolysaccharide-Induced Intestinal Barrier Dysfunction in IPEC-J2 Cells by Regulating Nrf2/NF- κB Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:127-142. [PMID: 31931594 DOI: 10.1142/s0192415x2050007x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gelsemium elegans Benth. (G. elegans), a traditional Chinese medicine, has great potential as an effective growth promoter in animals, however, the mechanism of its actin remains unclear. Here, we evaluated the protective effects of koumine extract from G. elegans against lipopolysaccharide (LPS)-induced intestinal barrier dysfunction in IPEC-J2 cells through alleviation of inflammation and oxidative stress. MTT and LDH assays revealed that koumine significantly reduced LPS cytotoxicity. Transepithelial electrical resistance (TEER) and cell monolayer permeability assays showed that koumine treatment attenuated the LPS-induced intestinal barrier dysfunction with no particularly different effects in tight junction proteins such as ZO-1, claudin-1, and occludin. LPS-triggered inflammatory response was also suppressed by koumine, as evidenced by the downregulated inflammatory factors, including TNF-α, IL-6, IL-1β, NO, iNOS, and COX-2, which was closely connected with the inhibition of NF-κB pathway for the decrease of phosphorylation of IκBα and NF-κB and nuclear translocation of p-p65. Amount of reactive oxygen species (ROS) and MDA induced by LPS was also reduced by koumine through activation of Nrf2 pathway, and increased in the levels of Nrf2 and HO-1 degradation of keap-1 to promote anti-oxidants, including superoxide dismutase (SOD) and catalase (CAT). To summarize, koumine-reduced the oxidative stress and inflammatory reaction triggered by LPS through regulation of the Nrf2/NF-κB signaling pathway and preventing intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Collaborative Innovation for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Cheng-Lin Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Collaborative Innovation for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Yuan-Kun Sha
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Collaborative Innovation for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Collaborative Innovation for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Engineering Research Center of Veterinary Drug, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Collaborative Innovation for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Engineering Research Center of Veterinary Drug, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Zhi-Hang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Collaborative Innovation for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Engineering Research Center of Veterinary Drug, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Collaborative Innovation for Utilization of Botanical Function Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China.,Hunan Engineering Research Center of Veterinary Drug, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
| |
Collapse
|
24
|
Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol 2019; 34:11-19. [PMID: 31283051 DOI: 10.1111/fcp.12498] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the sensor of oxidative stress, and the main aim of this signaling pathway is to maintain physiological condition by induction of redox balance. Also, this pathway exerts anti-inflammatory effects via antioxidant response element. Oxidative stress is a key factor in a variety of pathological conditions and high level of oxidative stress is associated with damages in lipids, proteins, genetic material, and cell membrane. Multiple drugs have been developed in order to diminish oxidative stress. However, synthetic drugs suffer from various drawbacks such as high cost and side effects. On the other hand, naturally occurring compounds are of interest due to their minimal side effects and valuable biological activities. Melatonin is a hormone of pineal gland which is found in different plants. This compound has a variety of favorable biological and therapeutic activities such as antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and cardioprotection. At the present review, we demonstrate that Nrf2 signaling pathway explains some of the therapeutic and biological effects of melatonin.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Department of basic science, Shoushtar Branch, Islamic Azad university, Shoushtar, 5563584, Iran
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of veterinary medicine, University of Tabriz, Tabriz, 1455742, Iran
| |
Collapse
|