1
|
Li L, Xiao Y, Wen W, Liu Q, Wei L, Liu P, Li M. The role of macrophages in polycystic ovary syndrome: A review. Medicine (Baltimore) 2025; 104:e42228. [PMID: 40295243 PMCID: PMC12040014 DOI: 10.1097/md.0000000000042228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder among fertile women, which is influenced by genetics and environment. A recent study revealed that PCOS patients were in a chronic inflammatory state, and they had abnormally activated macrophages. This paper introduces the relationship between PCOS and macrophages. The forkhead box protein O1 (FOXO-1), migration inhibitory factor, sympathetic conservation disorder, and vitamin D are believed to influence macrophages in PCOS. There is evidence that PCOS-associated abnormalities are associated with macrophages, including insulin resistance, obesity, hyperandrogenism (HA), hyperhomocysteinemia (HHcy), cardiometabolic disorder and gut microbiota dysbiosis. This review summarizes the research status of macrophages in PCOS. Macrophages might be a potential PCOS treatment candidate.
Collapse
Affiliation(s)
- Li Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Yubo Xiao
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Wenwei Wen
- Department of Orthopedics, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Qi Liu
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Le Wei
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Pinyue Liu
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| | - Ming Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
2
|
Chen L, Hui L, Wang Y, Yao X, Li J. Elevated IGFBP7 expression in follicular granulosa cells promotes PCOS pathogenesis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167743. [PMID: 39988179 DOI: 10.1016/j.bbadis.2025.167743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/03/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
Polycystic ovary syndrome (PCOS) can result in female infertility, menstrual irregularities, metabolic disturbances, hormonal imbalances, and significantly impact the reproductive health of women of childbearing age. Hyperandrogenism and insulin resistance are typical primary endocrine features of PCOS, which are also regarded as its core pathogenesis. In this study, IGFBP7 expression in granulosa cells (GCs) from women with and without PCOS was analyzed using bulk RNA-seq. A PCOS-like mouse model was constructed using dehydroepiandrosterone in IGFBP7 knockout and wild-type mice to explore the role of IGFBP7 in PCOS. Primary GCs from mice were cultured and transfected with IGFBP7 overexpression plasmid and siRNA fragments. Proliferation, apoptosis, and steroid hormone levels were measured to investigate the effects of IGFBP7 on granulosa cells. IGFBP7 expression was found to be elevated in patients with PCOS. Following IGFBP7 knockdown in mouse GC, there was a significant increase in GC proliferation, a decrease in GC apoptosis, and a notable decrease in testosterone secretion by GC. Conversely, overexpression of IGFBP7 in mouse granulosa cells significantly inhibited GC proliferation, significantly increased GC apoptosis, and led to a marked increase in testosterone secretion by GCs. With mouse model, a reduction in PCOS symptoms in mice after IGFBP7 deletion was observed. Elevated IGFBP7 expression in PCOS granulosa cells may induce apoptosis, hinder insulin signaling, and enhance androgen synthesis. These insights offer novel avenues for understanding and treating PCOS.
Collapse
Affiliation(s)
- Li Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Linhu Hui
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yongyang Wang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Sarvestani M, Rajabzadeh A, Salimian M, Mazoochi T, Ghavipanjeh G. Ameliorative Effect of Combined Placenta-Derived Mesenchymal Stem Cells plus Platelet-rich Plasma on Polycystic Ovarian Model in Rats: A Biochemical and Histological Study. Reprod Sci 2025; 32:907-918. [PMID: 39856459 DOI: 10.1007/s43032-025-01791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a common cause of infertility in women, characterized by metabolic and hormonal irregularities. We investigated the effects of placenta-derived mesenchymal stem cells (PDMSCs) and platelet-rich plasma (PRP), as well as their combination on follicular development, hormonal profile, inflammatory parameters, and insulin resistance in a model of PCOS. In this study, 25 female Wistar rats were randomly allocated into five groups: Sham (given a dose of 1 mL of a 0.5% carboxymethylcellulose (CMC) solution), PCOS (administered 1 mg/kg of letrozole (LTZ) dissolved in CMC for 21 days), PDMSC (treated with a single intraovarian dose of PDMSCs), PRP (treated with a single intraovarian dose of PRP), and a combined PDMSC and PRP-treated group. After two weeks, serum and ovarian samples were collected for biochemical and histological analyses. Our results demonstrated that the simultaneous administration of PDMSCs and PRP had a synergistic effect compared to monotherapy, leading to an increase in estradiol (E2) and follicle-stimulating hormone (FSH) serum levels, a decrease in luteinizing hormone (LH) and testosterone levels, as well as inflammatory factors. Moreover, the combined therapy was associated with significantly lower levels of the homeostatic model of insulin resistance (HOMA-IR), fasting insulin (FINS), and blood glucose (FBG) compared to monotherapy. The combined treatment also caused a significant reduction in cystic follicles and an elevated number of corpus luteum, primordial, primary, secondary, and antral follicles. In conclusion, the combination of PRP and PDMSCs may have an ameliorative effect on modifying metabolic abnormalities and accelerating ovarian regeneration in PCOS.
Collapse
Affiliation(s)
- Mojtaba Sarvestani
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Rajabzadeh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Morteza Salimian
- Department of medical laboratory, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Mazoochi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Gholamreza Ghavipanjeh
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Kavaldzhieva K, Mladenov N, Markova M, Belemezova K. Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors. Biomedicines 2025; 13:586. [PMID: 40149563 PMCID: PMC11940137 DOI: 10.3390/biomedicines13030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are a source of a wide range of soluble factors, including different proteins, growth factors, cytokines, chemokines, and DNA and RNA molecules, in addition to numerous secondary metabolites and byproducts of their metabolism. MSC secretome can be formally divided into secretory and vesicular parts, both of which are very important for intercellular communication and are involved in processes such as angiogenesis, proliferation, and immunomodulation. Exosomes are thought to have the same content and function as the MSCs from which they are derived, but they also have a number of advantages over stem cells, including low immunogenicity, unaltered functional activity during freezing and thawing, and a lack of tumor formation. In addition, MSC pre-treatment with various inflammatory factors or hypoxia can alter their secretomes so that it can be modified into a more effective treatment. Paracrine factors secreted by MSCs improve the survival of other cell populations by several mechanisms, including immunomodulatory (mostly anti-inflammatory) activity and anti-apoptotic activity partly based on Hsp27 upregulation. Reproductive medicine is one of the fields in which this cell-free approach has been extensively researched. This review presents the possible applications and challenges of using MSC secretome in the treatment of infertility. MSCs and their secretions have been shown to have beneficial effects in various models of female and male infertility resulting from toxic damage, endocrine disorders, trauma, infectious agents, and autoimmune origin.
Collapse
Affiliation(s)
| | | | | | - Kalina Belemezova
- Department of Biology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.K.); (N.M.); (M.M.)
| |
Collapse
|
5
|
Zhang Q, Yang Z, Ou X, Zhang M, Qin X, Wu G. The role of immunity in insulin resistance in patients with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2025; 15:1464561. [PMID: 39911236 PMCID: PMC11797073 DOI: 10.3389/fendo.2024.1464561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent disorder of the endocrine system with significant clinical implications, often leading to health complications related to adipose tissue accumulation, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes mellitus. While the precise pathogenesis of PCOS remains unclear, it is now recognized that genetic, endocrine, and metabolic dysregulations all contribute significantly to its onset. The immunopathogenesis of PCOS has not been extensively explored, but there is growing speculation that immune system abnormalities may play a pivotal role. This chronic inflammatory state is exacerbated by factors such as obesity and hyperinsulinemia. Therefore, this review aims to elucidate the interplay between IR in PCOS patients, the controlled immune response orchestrated by immune cells and immunomodulatory molecules, and their interactions with adipocytes, hyperandrogenemia, chronic inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Qixuan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhe Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Ou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengying Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyu Qin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gengxiang Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Zhu Z, Lei M, Guo R, Xu Y, Zhao Y, Wei C, Yang Q, Sun Y. Nicotinamide riboside supplementation ameliorates ovarian dysfunction in a PCOS mouse model. J Ovarian Res 2025; 18:9. [PMID: 39833950 PMCID: PMC11749135 DOI: 10.1186/s13048-025-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility among women of reproductive age, yet the range of effective treatment options remains limited. Our previous study revealed that reduced levels of nicotinamide adenine dinucleotide (NAD+) in ovarian granulosa cells (GCs) of women with PCOS resulted in the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. However, it is still uncertain whether increasing NAD+ levels in the ovaries could improve ovarian function in PCOS. In this study, we demonstrated that supplementation with the NAD+ precursor nicotinamide riboside (NR) prevented the decrease in ovarian NAD+ levels, normalized estrous cycle irregularities, and enhanced ovulation potential in dehydroepiandrosterone (DHEA)-induced PCOS mice. Moreover, NR supplementation alleviated ovarian fibrosis and enhanced mitochondrial function in ovarian stromal cells of PCOS mice. Furthermore, NR supplementation improved oocyte quality in PCOS mice, as evidenced by reduced abnormal mitochondrial clustering, enhanced mitochondrial membrane potential, decreased ROS levels, reduced spindle abnormality rates, and increased early embryonic development potential in fertilized oocytes. These findings suggest that supplementing with NAD+ precursors could be a promising therapeutic strategy for addressing ovarian infertility associated with PCOS.
Collapse
Affiliation(s)
- Zhenye Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhi Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yining Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Zhao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenlu Wei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
De Rubeis M, Mascitti IA, Cocciolone D, Placidi M, Vergara T, Di Emidio G, Macchiarelli G, Tatone C, Nottola SA, Palmerini MG. Morphological and Redox/Glycative Alterations in the PCOS Oviducts: Modulating Effects of Carnitines in PCOS Mice. BIOLOGY 2024; 13:964. [PMID: 39765631 PMCID: PMC11673334 DOI: 10.3390/biology13120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is a heterogeneous condition characterized by hyperandrogenism (HA), polycystic ovaries, and dysfunctional ovulation, and it is associated with metabolic problems such as insulin resistance (IR) and obesity. After having investigated the morphological and antioxidant/antiglycative alterations on mouse ovaries and uteri, we here focus on PCOS oviducts, a tract of the reproductive system essential for the nourishment and transport of gametes and embryos. The modulating effects of L-carnitine (LC) and acetyl-L-carnitine (ALC) were also assessed. CD1 mice were administered or not with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) for 20 days, alone or with 0.40 mg of L-carnitine (LC) and 0.20 mg of acetyl-L-carnitine (ALC). Oviducts were then subjected to histology and immunohistochemistry to evaluate their morphology and collagen deposition, and steroidogenesis. Oxidative, mitochondrial, and methylglyoxal (MG)-dependent damage was also investigated. Transmission electron microscopy was used to detect ultrastructural alterations. The PCOS oviducts were affected by hyperfibrosis, hyperplasia, hypertrophy, and altered steroidogenesis, with oxidative alterations associated with MethylGlyoxal-Advanced Glycation End product (MG-AGE) accumulation. A reduced ciliary coverage and numerous dilated intercellular spaces were found in the epithelium. LC-ALC administration mitigated PCOS oviductal alterations. These results provide evidence for the detrimental action of oxidative and glycative stress in PCOS oviducts, confirming a protective role of carnitines on the PCOS phenotype.
Collapse
Affiliation(s)
- Mariacarla De Rubeis
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.D.R.); (S.A.N.)
| | - Ilaria Antenisca Mascitti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Domenica Cocciolone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Teresa Vergara
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.D.R.); (S.A.N.)
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.A.M.); (D.C.); (M.P.); (T.V.); (G.D.E.); (G.M.); (C.T.)
| |
Collapse
|
8
|
Hassanpour Khodaei S, Sabetkam S, Kalarestaghi H, Dizaji Asl K, Mazloumi Z, Bahramloo M, Norouzi N, Naderali E, Rafat A. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: attractive therapeutic approaches for female reproductive dysfunction. Mol Biol Rep 2024; 52:10. [PMID: 39576370 DOI: 10.1007/s11033-024-10106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Infertility is a reproductive health problem in the male or female reproductive system. Traditional assisted reproductive technology (ART) has been unable to solve various cases of infertility for years. Clinical researchers have sought to treat infertility using new methods that are more effective and noninvasive than the old methods. Recently, Mesenchymal stem cells (MSCs) and MSCs-derived Exosomes (MSC-Exos) via paracrine activity play an important role in treating various causes of infertility and improving pregnancy outcomes. In this review, we focus on the roles of MSCs and MSC-Exos cell therapy in female infertility in the different types of female reproductive disorders.
Collapse
Affiliation(s)
- Sepideh Hassanpour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Famagusta, Turkey
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Kyrenia, Northern Cyprus
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Zeinab Mazloumi
- Department of Medical Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadmahdi Bahramloo
- Department of Medical Sciences, Student Research Committee, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nahid Norouzi
- Nursing Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Naderali
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Huang G, Quan L, Li Q, Zhou X, Han M, Peng F, Gong Y. Umbilical Cord-Derived Mesenchymal Stem Cells Improve Ornidazole-Induced Asthenozoospermia in Rats via Activation of the AKT/mTOR Pathway. Int J Endocrinol 2024; 2024:3494652. [PMID: 39564353 PMCID: PMC11576082 DOI: 10.1155/2024/3494652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 11/21/2024] Open
Abstract
Objective: Mesenchymal stem cells (MSCs) have been highly confirmed for their critical role in the treatment of different diseases. This study focuses on the mechanism of umbilical cord-derived MSCs (UC-MSCs) in the treatment of ornidazole (ORN)-induced asthenozoospermia (AS) in rats via the AKT/mTOR pathway. Methods: An animal model of AS was established in ORN-induced rats, followed by treatment of UC-MSCs and rapamycin (autophagy activator) or MK-2206 (AKT inhibitor). The sperm motility, concentration, and viability of rats were measured by an automatic sperm analyzer. Hematoxylin and eosin (HE) staining was conducted to observe the pathological injury of testicular tissue in rats. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was utilized to evaluate the apoptosis rate of testicular cells. Western blot analysis was performed to determine the expression of apoptosis-related proteins, autophagy-related proteins, and AKT, p-AKT, mTOR, and p-mTOR. The rate of light chain 3 (LC3)-positive cells in testicular tissue was detected by immunohistochemistry (IHC). Results: In ORN-induced AS rats, sperm motility, concentration, and viability as well as the number of mesenchymal cells and spermatogenic cells were significantly decreased, spermatogenic tubule space, apoptosis rate, and cleaved caspase-3, LC3II/I, Beclin-1, and LC3-positive cell rates were increased, and Bcl2 was downregulated. UC-MSCs could improve sperm quality and testicular injury in AS rats by inhibiting excessive autophagy. Besides, UC-MSCs could activate the AKT/mTOR pathway. Moreover, inhibition of the AKT/mTOR pathway partially reversed the therapeutic effect of UC-MSCs on ORN-induced AS rats. Conclusion: UC-MSCs inhibit autophagy and improve sperm quality in AS rats through the AKT/mTOR pathway, highlighting a new idea for the treatment of AS.
Collapse
Affiliation(s)
- GaoBo Huang
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Li Quan
- Reproductive Center, Yueyang Maternal and Child Health Hospital, Yueyang 414000, Hunan, China
| | - Qi Li
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Xiao Zhou
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Mei Han
- College of Life Sciences, Hunan Normal University, Changsha 410000, Hunan, China
| | - Fang Peng
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - YanFei Gong
- Reproductive Center, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| |
Collapse
|
10
|
Zhu P, Bi X, Su D, Li X, Chen Y, Song Z, Zhao L, Wang Y, Xu S, Wu X. Transcription repression of estrogen receptor alpha by ghrelin/Gq/11/YAP signaling in granulosa cells promotes polycystic ovary syndrome. Hum Cell 2024; 37:1663-1678. [PMID: 39225978 DOI: 10.1007/s13577-024-01127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a prevalent endocrinological disorder affected by ghrelin. This study aimed to investigate the molecular mechanisms underlying the effects of ghrelin on PCOS manifestations in mice and to assess the therapeutic potential of ghrelin. Female C57BL/6 mice were subcutaneously injected with 6 mg/100 g dehydroepiandrosterone (DHEA) for 20 days to induce PCOS. Alterations in reproductive cycles, ovarian morphology, serum sex hormone levels, and related signaling markers were examined. Furthermore, ghrelin-induced effects on granulosa cells and the role of ghrelin/Gq/11/ Yes-associated protein (YAP) signaling were studied by silencing Gαq/11 or YAP using si-RNAs. Finally, we evaluated the therapeutic potential of anti-ghrelin antibodies in DHEA-induced PCOS mice. DHEA administration led to significant PCOS-associated changes including weight gain, disrupted estrous cycles, ovarian morphological alterations, and hormonal imbalances in mice, with elevated Gαq/11 and acylated ghrelin expression, which was also noted in PCOS patients. However, treatment with anti-ghrelin antibodies effectively managed DHEA-induced damage in PCOS mice. In vitro, ghrelin exposure resulted in granulosa cell injury and modulated estrogen receptors alpha (ERα) and YAP protein levels, whereas silencing YAP and Gαq/11 reversed ghrelin-induced detrimental effects and up-regulated ERα expression. This study revealed that DHEA-induced PCOS traits in mice could be improved by anti-ghrelin antibodies, with the ghrelin/Gq/11/YAP signaling pathway identified as a crucial mediator in granulosa cells, affecting ERα transcription to regulate PCOS. These findings suggest a potential therapeutic strategy for the treatment of PCOS.
Collapse
Affiliation(s)
- Pengfei Zhu
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Xingyu Bi
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Dan Su
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Xiaoling Li
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Yanhua Chen
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Zhijiao Song
- Department of Health Education, Children's Hospital of Shanxi and Women Health Center, Taiyuan City, 030013, Shanxi Province, China
| | - Lijiang Zhao
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Yaoqing Wang
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Suming Xu
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China.
| |
Collapse
|
11
|
Vakili S, Jafarinia M. Advances in Mesenchymal Stem Cell Research Applications for Female Infertility-Mechanisms, Efficacy Parameters, Challenges and Future Roadmap. Galen Med J 2024; 13:e3632. [PMID: 39483858 PMCID: PMC11525105 DOI: 10.31661/gmj.v13i.3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/29/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Infertility affects approximately 15-20% of couples globally, with female factors contributing to nearly half of cases. Conditions such as polycystic ovary syndrome, endometriosis, tubal damage and premature ovarian failure are leading causes of female infertility. Current treatments like in vitro fertilization (IVF) have limitations and risks. Mesenchymal stem cells (MSCs) have shown therapeutic potential due to their ability to differentiate, secrete trophic factors, and exhibit immunomodulatory and anti-inflammatory properties. They have been demonstrated to repair and regenerate reproductive organs in various preclinical models of infertility related conditions. MSCs have reduced endometriotic lesions, regenerated lost follicles in premature ovarian failure (POF) models, and promoted tubal repair in damage models. Some clinical and preclinical studies have reported improved outcomes with MSC therapy in endometriosis and premature ovarian failure patients. This review discusses the properties and sources of MSCs, their mechanisms of action, preclinical evidence for applications in conditions like POF, polycystic ovary syndrome (PCOS), endometriosis, Asherman syndrome, and preeclampsia, and preliminary clinical data on MSC therapy for female infertility management.
Collapse
Affiliation(s)
- Sina Vakili
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
| |
Collapse
|
12
|
Pereira LAAC, Ferreira CS, Dias KSSA, Nogueira JM, Pinto FCH, Jorge EC, Campos-Junior PHA. Ovarian Puncture Triggers an Inflammatory Response that did not Affect Late Folliculogenesis, Ovulation Rate, and Fertility. Reprod Sci 2024; 31:3202-3214. [PMID: 39043998 DOI: 10.1007/s43032-024-01654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
Ovarian puncture has been widely used in assisted reproduction, but there are still gaps about its effects on ovarian morphophysiology, as well as the relationship between inflammation caused by this procedure and the follicular growth and fertility. The aim of this study was to investigate the effects of ovarian puncture on folliculogenesis and fertility. Mice (n = 24) were divided into two groups: (1) SHAM-both ovaries were exposed and repositioned and (2) Punctured-ovaries were exposed, punctured, and repositioned. After 96 h of surgery, ovaries were collected for morphofunctional analysis. New females were used for the superovulation (n = 10) and fertility assays (n = 10). Increased volumetric density of inflammatory cells-p = 0.0005, p = 0.0013; hemorrhagic foci-p < 0.0001; and inflammatory exudate-p < 0.0001 could be noticed on the punctured group, compared to SHAM. The percentage of primordial follicles was lower on the punctured ovaries (p = 0.00294). Ovarian puncture has also induced an increase in the proliferation of granulosa cells of primary (p = 0.0321) and antral follicles (p = 0.0395), and an increased apoptotic index of antral follicles (p = 0.0100). There was no influence on expression of some genes related to inflammation, collagen deposition and folliculogenesis progression. The reproductive aspects (oocyte retrieval and number of fetuses per female) were not altered (p > 0.05). Taken together, our findings strongly suggest that ovarian puncture results in a local inflammation that affects follicular growth and atresia. However, it does not affect female fertility, which strengthens the safety of this procedure.
Collapse
Affiliation(s)
| | - Camila Stefane Ferreira
- Laboratory for Reproductive Biology Research, Department of Natural Sciences, Federal University of São João del Rei, São João Del-Rei, MG, Brazil
| | - Karine Sthéfany Serpa Amaral Dias
- Laboratory for Reproductive Biology Research, Department of Natural Sciences, Federal University of São João del Rei, São João Del-Rei, MG, Brazil
| | - Júlia Meireles Nogueira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Flávia Carmo Horta Pinto
- Laboratory for Reproductive Biology Research, Department of Natural Sciences, Federal University of São João del Rei, São João Del-Rei, MG, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Paulo Henrique Almeida Campos-Junior
- Laboratory for Reproductive Biology Research, Department of Natural Sciences, Federal University of São João del Rei, São João Del-Rei, MG, Brazil.
| |
Collapse
|
13
|
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life (Basel) 2024; 14:1161. [PMID: 39337944 PMCID: PMC11433628 DOI: 10.3390/life14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Infertility is a global phenomenon that impacts people of both the male and the female sex; it is related to multiple factors affecting an individual's overall systemic health. Recently, investigators have been using mesenchymal stem cell (MSC) therapy for female-fertility-related disorders such as polycystic ovarian syndrome (PCOS), premature ovarian failure (POF), endometriosis, preeclampsia, and Asherman syndrome (AS). Studies have shown promising results, indicating that MSCs can enhance ovarian function and restore fertility for affected individuals. Due to their regenerative effects and their participation in several paracrine pathways, MSCs can improve the fertility outcome. However, their beneficial effects are dependent on the methodologies and materials used from isolation to reimplantation. In this review, we provide an overview of the protocols and methods used in applications of MSCs. Moreover, we summarize the findings of published preclinical studies on infertility treatments and discuss the multiple properties of these studies, depending on the isolation source of the MSCs used.
Collapse
Affiliation(s)
- Sofia Chatzianagnosti
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Kousta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Gao G, Li L, Li C, Liu D, Wang Y, Li C. Mesenchymal stem cells: Guardians of women's health. Regen Ther 2024; 26:1087-1098. [PMID: 39582803 PMCID: PMC11585475 DOI: 10.1016/j.reth.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted more and more attention because of their multidirectional differentiation potential, immune regulatory abilities and self-renewal capacity. In recent years, their use has become prominent in the domains of regenerative medicine and tissue engineering. MSCs have shown promise in therapeutic studies for a variety of diseases and have become a new source of innovative solutions for the treatment of some obstetric and gynecological diseases. This review systematically presents the latest research on the use of MSCs in the treatment of obstetrics- and gynecology-related diseases. Specifically, this review encompasses the latest findings related to the role of MSCs in premature ovarian failure, polycystic ovary syndrome, ovarian cancer, fallopian tube-related diseases, uterine adhesions, endometriosis, cesarean scar defects, postmenopausal osteoporosis, and pelvic floor dysfunction. The shortcomings and challenges of the future use of MSCs in disease treatment are also discussed, with the intent to motivate improvements in MSC applications in clinical therapy. It is believed that with further research, MSCs will play a more important role in the treatment of obstetrics- and gynecology-related diseases.
Collapse
Affiliation(s)
- Guanwen Gao
- Peking University Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, 518036, China
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| | - Li Li
- Department of Internal Medicine, Jinan Central Hospital Affiliated to Shandong University, Ji Nan, 250000, China
| | - Changling Li
- Department of Obstetrics and Gynecology, Pingyi People's Hospital, Linyi City, Shandong Province, 276000, China
| | - Degao Liu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| | - Yunfei Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| |
Collapse
|
15
|
Kouchakzadeh F, Ebrahimi-Barough S, Aflatoonian B, Ai J, Mazaheri F, Montazeri F, Hajizadeh-Tafti F, Golzadeh J, Naser R, Sepehri M, Kalantar SM. Therapeutic potential of endometrial stem cells encapsulated in alginate/gelatin hydrogel to treat of polycystic ovary syndrome. Regen Ther 2024; 26:693-707. [PMID: 39286642 PMCID: PMC11403143 DOI: 10.1016/j.reth.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women, often leading to infertility due to anovulation. Recent advances suggest that endometrial stem cells (EnSCs) hold considerable promise for tissue regeneration, which could be pivotal in treating PCOS. To enhance the survival and stabilization of EnSCs within the ovary, the EnSCs were encapsulated in an injectable alginate/gelatin hydrogel (SC-H), which has excellent biocompatibility to support the survival of EnSCs. Polycystic ovary syndrome was induced in female Wistar rats using intraperitoneal injection of letrozole over 21 days. Then the rats were treated with SC, SC-H and clomiphene citrate for one-month post-PCOS induction. The effects of these treatments were evaluated based on changes in body and ovarian weights, inflammatory markers, endocrine profiles, and ovarian histology. The Induction of PCOS led to a significant increase in body and ovarian cyst weight, elevated serum levels of testosterone, luteinizing hormone (LH), and anti-Müllerian hormone (AMH), alongside reduced follicle-stimulating hormone (FSH) and progesterone levels. Histologically, there was a decrease in granulosa cells, immature follicles, and corpus luteum numbers. Treatment with SC and SC-H significantly mitigated these alterations, indicating improved PCOS conditions. Our findings demonstrate that SC and SC-H treatments can effectively ameliorate the symptoms of letrozole-induced PCOS in rats, primarily through their anti-inflammatory effects. This study lays the groundwork for potential clinical applications of EnSCs encapsulated in alginate/gelatin hydrogel as a novel therapeutic strategy for PCOS, highlighting the importance of biomaterials in stem cell-based therapies.
Collapse
Affiliation(s)
- Fatemeh Kouchakzadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahime Mazaheri
- Medical Nanotechnology and Tissue Engineering Research Centre, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Hajizadeh-Tafti
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Jalal Golzadeh
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Reza Naser
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sepehri
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
16
|
Fu Y, Zhang M, Sui B, Yuan F, Zhang W, Weng Y, Xiang L, Li C, Shao L, You Y, Mao X, Zeng H, Chen D, Zhang M, Shi S, Hu X. Mesenchymal stem cell-derived apoptotic vesicles ameliorate impaired ovarian folliculogenesis in polycystic ovary syndrome and ovarian aging by targeting WNT signaling. Theranostics 2024; 14:3385-3403. [PMID: 38855175 PMCID: PMC11155401 DOI: 10.7150/thno.94943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024] Open
Abstract
Rationale: It has been emergingly recognized that apoptosis generates plenty of heterogeneous apoptotic vesicles (apoVs), which play a pivotal role in the maintenance of organ and tissue homeostasis. However, it is unknown whether apoVs influence postnatal ovarian folliculogenesis. Methods: Apoptotic pathway deficient mice including Fas mutant (Fasmut ) and Fas ligand mutant (FasLmut ) mice were used with apoV replenishment to evaluate the biological function of apoVs during ovarian folliculogenesis. Ovarian function was characterized by morphological analysis, biochemical examination and cellular assays. Mechanistical studies were assessed by combinations of transcriptomic and proteomic analysis as well as molecular assays. CYP17A1-Cre; Axin1fl /fl mice was established to verify the role of WNT signaling during ovarian folliculogenesis. Polycystic ovarian syndrome (PCOS) mice and 15-month-old mice were used with apoV replenishment to further validate the therapeutic effects of apoVs based on WNT signaling regulation. Results: We show that systemic administration of mesenchymal stem cell (MSC)-derived apoptotic vesicles (MSC-apoVs) can ameliorate impaired ovarian folliculogenesis, PCOS phenotype, and reduced birth rate in Fasmut and FasLmut mice. Mechanistically, transcriptome analysis results revealed that MSC-apoVs downregulated a number of aberrant gene expression in Fasmut mice, which were enriched by kyoto encyclopedia of genes and genomes (KEGG) pathway analysis in WNT signaling and sex hormone biosynthesis. Furthermore, we found that apoptotic deficiency resulted in aberrant WNT/β-catenin activation in theca and mural granulosa cells, leading to responsive action of dickkopf1 (DKK1) in the cumulus cell and oocyte zone, which downregulated WNT/β-catenin expression in oocytes and, therefore, impaired ovarian folliculogenesis via NPPC/cGMP/PDE3A/cAMP cascade. When WNT/β-catenin was specially activated in theca cells of CYP17A1-Cre; Axin1fl /fl mice, the same ovarian impairment phenotypes observed in apoptosis-deficient mice were established, confirming that aberrant activation of WNT/β-catenin in theca cells caused the impairment of ovarian folliculogenesis. We firstly revealed that apoVs delivered WNT membrane receptor inhibitor protein RNF43 to ovarian theca cells to balance follicle homeostasis through vesicle-cell membrane integration. Systemically infused RNF43-apoVs down-regulated aberrantly activated WNT/β-catenin signaling in theca cells, contributing to ovarian functional maintenance. Since aging mice have down-regulated expression of WNT/β-catenin in oocytes, we used MSC-apoVs to treat 15-month-old mice and found that MSC-apoVs effectively ameliorated the ovarian function and fertility capacity of these aging mice through rescuing WNT/β-catenin expression in oocytes. Conclusion: Our studies reveal a previously unknown association between apoVs and ovarian folliculogenesis and suggest an apoV-based therapeutic approach to improve oocyte function and birth rates in PCOS and aging.
Collapse
Affiliation(s)
- Yu Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China
| | - Manjin Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510055, China
| | - Bingdong Sui
- Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - FeiFei Yuan
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenbo Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yashuang Weng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Lei Xiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China
| | - Can Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510055, China
| | - Yong You
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570013, China
- International Center for Aging and Cancer (ICAC), Hainan Medical University. Haikou, Hainan 570013, China
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province. Haikou, Hainan 570013, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China
| | - Haitao Zeng
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meijia Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| |
Collapse
|
17
|
Davis EHS, Jones C, Coward K. Rethinking the application of nanoparticles in women's reproductive health and assisted reproduction. Nanomedicine (Lond) 2024; 19:1231-1251. [PMID: 38686941 PMCID: PMC11285225 DOI: 10.2217/nnm-2023-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Nanoparticles and nanotechnology may present opportunities to revolutionize the prevention, treatment and diagnosis of a range of reproductive health conditions in women. These technologies are also used to improve outcomes of assisted reproductive technology. We highlight a range of these potential clinical uses of nanoparticles for polycystic ovary syndrome, endometriosis, uterine fibroids and sexually transmitted infections, considering in vitro and in vivo studies along with clinical trials. In addition, we discuss applications of nanoparticles in assisted reproductive technology, including sperm loading, gamete and embryo preservation and preventing preterm birth. Finally, we present some of the concerns associated with the medical use of nanoparticles, identifying routes for further exploration before nanoparticles can be applied to women's reproductive health in the clinic.
Collapse
Affiliation(s)
- Emily HS Davis
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
18
|
Chen X, Hong L, Diao L, Yin T, Liu S. Hyperandrogenic environment regulates the function of ovarian granulosa cells by modulating macrophage polarization in PCOS. Am J Reprod Immunol 2024; 91:e13854. [PMID: 38716832 DOI: 10.1111/aji.13854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.
Collapse
Affiliation(s)
- Xi Chen
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Tailang Yin
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| |
Collapse
|
19
|
Abdi A, Ranjbaran M, Amidi F, Akhondzadeh F, Seifi B. The effect of adipose-derived mesenchymal stem cell transplantation on ovarian mitochondrial dysfunction in letrozole-induced polycystic ovary syndrome in rats: the role of PI3K-AKT signaling pathway. J Ovarian Res 2024; 17:91. [PMID: 38678269 PMCID: PMC11056058 DOI: 10.1186/s13048-024-01422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVE The present study aimed to elucidate how mesenchymal stem cells (MSCs) application could efficiently attenuate pathological changes of letrozole-induced poly cystic ovary syndrome (PCOS) by modulating mitochondrial dynamic via PI3K-AKT pathway. METHODS Thirty-two female rats were randomly divided into four experimental groups: Sham, PCOS, PCOS + MSCs, and PCOS + MSCs + LY294002. The Sham group received 0.5% w/v carboxymethyl cellulose (CMC); the PCOS group received letrozole (1 mg/kg, daily) in 0.5% CMC for 21 days. Animals in the PCOS + MSCs group received 1 × 106 MSCs/rat (i.p,) on the 22th day of the study. In the PCOS + MSCs + LY294002 group, rats received LY294002 (PI3K-AKT inhibitor) 40 min before MSC transplantation. Mitochondrial dynamic gene expression, mitochondrial membrane potential (MMP), citrate synthase (CS) activity, oxidative stress, inflammation, ovarian histological parameters, serum hormone levels, homeostatic model assessment for insulin resistance (HOMA-IR), insulin and glucose concentrations, p-PI3K and p-AKT protein levels were evaluated at the end of the experiment. RESULTS PCOS rats showed a significant disruption of mitochondrial dynamics and histological changes, lower MMP, CS, ovary super oxide dismutase (SOD) and estrogen level. They also had a notable rise in insulin and glucose concentrations, HOMA-IR, testosterone level, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels, ovarian malondialdehyde (MDA) content as well as a notable decrease in p-PI3K and p-AKT protein levels compared to the Sham group. In the PCOS + MSCs group, the transplantation of MSCs could improve the above parameters. Administration of LY294002 (PI3K-AKT pathway inhibitor) deteriorated mitochondrial dynamic markers, oxidative stress status, inflammation markers, hormonal levels, glucose, and insulin levels and follicular development compared to the PCOS + MSCs group. CONCLUSIONS This study demonstrated that the protective effects of MSC transplantation in regulating mitochondrial dynamics, promoting mitochondrial biogenesis, competing with redox status and inflammation response were mainly mediated through the PI3K-AKT pathway in the PCOS model.
Collapse
Affiliation(s)
- Arash Abdi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Akhondzadeh
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Cao P, Li H, Wang P, Zhang X, Guo Y, Zhao K, Guo J, Li X, Nashun B. DNA Hypomethylation-Mediated Transcription Dysregulation Participates in Pathogenesis of Polycystic Ovary Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00072-5. [PMID: 38403164 DOI: 10.1016/j.ajpath.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a highly heterogeneous and genetically complex endocrine disorder. Although the etiology remains mostly elusive, growing evidence suggested abnormal changes of DNA methylation correlate well with systemic and tissue-specific dysfunctions in PCOS. A dehydroepiandrosterone-induced PCOS-like mouse model was generated, which has a similar metabolic and reproductive phenotype as human patients with PCOS, and was used to experimentally validate the potential role of aberrant DNA methylation in PCOS in this study. Integrated DNA methylation and transcriptome analysis revealed the potential role of genomic DNA hypomethylation in transcription regulation of PCOS and identified several key candidate genes, including BMP4, Adcy7, Tnfaip3, and Fas, which were regulated by aberrant DNA hypomethylation. Moreover, i.p. injection of S-adenosylmethionine increased the overall DNA methylation level of PCOS-like mice and restored expression of the candidate genes to similar levels as the control, alleviating reproductive and metabolic abnormalities in PCOS-like mice. These findings provided direct evidence showing the importance of normal DNA methylation in epigenetic regulation of PCOS and potential targets for diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Pengbo Cao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Inner Mongolia Qilu Pharmaceutical Company, Hohhot, China
| | - Haoran Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peijun Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xinna Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuxuan Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Keyu Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiaojiao Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
21
|
Cucinella G, Gullo G, Catania E, Perino A, Billone V, Marinelli S, Napoletano G, Zaami S. Stem Cells and Infertility: A Review of Clinical Applications and Legal Frameworks. J Pers Med 2024; 14:135. [PMID: 38392569 PMCID: PMC10890184 DOI: 10.3390/jpm14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Infertility is a condition defined by the failure to establish a clinical pregnancy after 12 months of regular, unprotected sexual intercourse or due to an impairment of a person's capacity to reproduce either as an individual or with their partner. The authors have set out to succinctly investigate, explore, and assess infertility treatments, harnessing the potential of stem cells to effectively and safely treat infertility; in addition, this paper will present the legal and regulatory complexities at the heart of stem cell research, with an overview of the legislative state of affairs in six major European countries. For couples who cannot benefit from assisted reproductive technologies (ART) to treat their infertility, stem-cells-based approaches have been shown to be a highly promising approach. Nonetheless, lingering ethical and immunological uncertainties require more conclusive findings and data before such treatment avenues can become mainstream and be applied on a large scale. The isolation of human embryonic stem cells (ESCs) is ethically controversial, since their collection involves the destruction of human embryonic tissue. Overall, stem cell research has resulted in important new breakthroughs in the treatment of infertility. The effort to untangle the complex web of ethical and legal issues associated with such therapeutic approaches will have to rely on evidence-based, broadly shared standards, guidelines, and best practices to make sure that the procreative rights of patients can be effectively reconciled with the core values at the heart of medical ethics.
Collapse
Affiliation(s)
- Gaspare Cucinella
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Giuseppe Gullo
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Erika Catania
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Antonio Perino
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Valentina Billone
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | | | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
22
|
Matsuyama S, Whiteside S, Li SY. Implantation and Decidualization in PCOS: Unraveling the Complexities of Pregnancy. Int J Mol Sci 2024; 25:1203. [PMID: 38256276 PMCID: PMC10816633 DOI: 10.3390/ijms25021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age, affecting 5-15% globally with a large proportion undiagnosed. This review explores the multifaceted nature of PCOS and its impact on pregnancy, including challenges in fertility due to hormonal imbalances and insulin resistance. Despite restoring ovulation pharmacologically, women with PCOS face lower pregnancy rates and higher risks of implantation failure and miscarriage. Our review focuses on the complexities of hormonal and metabolic imbalances that impair endometrial receptivity and decidualization in PCOS. Disrupted estrogen signaling, reduced integrity of endometrial epithelial tight junctions, and insulin resistance impair the window of endometrial receptivity. Furthermore, progesterone resistance adversely affects decidualization. Our review also examines the roles of various immune cells and inflammatory processes in the endometrium, contributing to the condition's reproductive challenges. Lastly, we discuss the use of rodent models in understanding PCOS, particularly those induced by hormonal interventions, offering insights into the syndrome's impact on pregnancy and potential treatments. This comprehensive review underscores the need for advanced understanding and treatment strategies to address the reproductive complications associated with PCOS, emphasizing its intricate interplay of hormonal, metabolic, and immune factors.
Collapse
Affiliation(s)
| | | | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.M.); (S.W.)
| |
Collapse
|
23
|
S NLC, S N. Analysis of risk factors in diabetics resulted from polycystic ovary syndrome in women by EDA analysis and machine learning techniques. Comput Methods Biomech Biomed Engin 2024; 27:77-97. [PMID: 37664890 DOI: 10.1080/10255842.2023.2252957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
This study discusses the relationship between Polycystic Ovary Syndrome (PCOS) and diabetes in women, which has become increasingly prevalent due to changing lifestyles and environmental factors. The characteristic that distinguishes women with PCOS is hyperandrogenism which results from abnormal ovarian or adrenal function, which leads to the overproduction of androgens. Excessive androgens in women increase the risk of Type 2 diabetes (T2D) and insulin resistance (IR). Nowadays, diabetes affects people of all ages and is linked to factors such as lifestyle, genetics, stress, and aging. Diabetes, the uncontrolled high blood sugar level can potentially harm kidneys, nerves, eyes, and other organs and there is no cure, making it a concerning disease in developing nations. This research tried to submit the evidence through feature-wise correlation analyses between PCOS and diabetes. Hence, this model utilized the Exploratory Data Analysis (EDA) and the Elbow clustering algorithms for the experimental purpose in which the EDA deeply analyzed the features of PCOS and diabetes and recorded a positive correlation of 95%. The Elbow clustering technique is employed for verifying the correlations identified through EDA. Although limited research exists on this specific disease, this work provides potential evidence for the research community by evaluating the clustering results using Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index.
Collapse
Affiliation(s)
- Nancy Lima Christy S
- Full-Time Research Scholar, K.S.R College of Engineering, Erode, Tamilnadu, India
| | - Nithyakalyani S
- Professor/Information Technology, K.S.R College of Engineering, Erode, Tamilnadu, India
| |
Collapse
|
24
|
Aru N, Yang C, Chen Y, Liu J. Causal association of immune cells and polycystic ovarian syndrome: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1326344. [PMID: 38189053 PMCID: PMC10770856 DOI: 10.3389/fendo.2023.1326344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Background Polycystic ovarian syndrome (PCOS) is a common reproductive disorder that affects a considerable number of women worldwide. It is accompanied by irregular menstruation, hyperandrogenism, metabolic abnormalities, reproductive disorders and other clinical symptoms, which seriously endangers women's physical and mental health. The etiology and pathogenesis of PCOS are not completely clear, but it is hypothesized that immune system may play a key role in it. However, previous studies investigating the connection between immune cells and PCOS have produced conflicting results. Methods Mendelian randomization (MR) is a powerful study design that uses genetic variants as instrumental variables to enable examination of the causal effect of an exposure on an outcome in observational data. In this study, we utilized a comprehensive two-sample MR analysis to examine the causal link between 731 immune cells and PCOS. We employed complementary MR methods, such as the inverse-variance weighted (IVW) method, and conducted sensitivity analyses to evaluate the reliability of the outcomes. Results Four immunophenotypes were identified to be significantly associated with PCOS risk: Memory B cell AC (IVW: OR [95%]: 1.123[1.040 to 1.213], p = 0.003), CD39+ CD4+ %CD4+ (IVW: OR [95%]: 0.869[0.784 to 0.963], p = 0.008), CD20 on CD20- CD38-(IVW: OR [95%]:1.297[1.088 to 1.546], p = 0.004), and HLA DR on CD14- CD16+ monocyte (IVW: OR [95%]:1.225[1.074 to 1.397], p = 0.003). The results of the sensitivity analyses were consistent with the main findings. Conclusions Our MR analysis provides strong evidence supporting a causal association between immune cells and the susceptibility of PCOS. This discovery can assist in clinical decision-making regarding disease prognosis and treatment options, and also provides a new direction for drug development.
Collapse
Affiliation(s)
- Na Aru
- Department of Reproductive Endocrinology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Congyu Yang
- Department of Reproductive Endocrinology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaming Liu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Shen L, Liu J, Luo A, Wang S. The stromal microenvironment and ovarian aging: mechanisms and therapeutic opportunities. J Ovarian Res 2023; 16:237. [PMID: 38093329 PMCID: PMC10717903 DOI: 10.1186/s13048-023-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
For decades, most studies of ovarian aging have focused on its functional units, known as follicles, which include oocytes and granulosa cells. However, in the ovarian stroma, there are a variety of somatic components that bridge the gap between general aging and ovarian senescence. Physiologically, general cell types, microvascular structures, extracellular matrix, and intercellular molecules affect folliculogenesis and corpus luteum physiology alongside the ovarian cycle. As a result of damage caused by age-related metabolite accumulation and external insults, the microenvironment of stromal cells is progressively remodeled, thus inevitably perturbing ovarian physiology. With the established platforms for follicle cryopreservation and in vitro maturation and the development of organoid research, it is desirable to develop strategies to improve the microenvironment of the follicle by targeting the perifollicular environment. In this review, we summarize the role of stromal components in ovarian aging, describing their age-related alterations and associated effects. Moreover, we list some potential techniques that may mitigate ovarian aging based on their effect on the stromal microenvironment.
Collapse
Affiliation(s)
- Lu Shen
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junfeng Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiyue Luo
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Feng Y, Tang Z, Zhang W. The role of macrophages in polycystic ovarian syndrome and its typical pathological features: A narrative review. Biomed Pharmacother 2023; 167:115470. [PMID: 37716116 DOI: 10.1016/j.biopha.2023.115470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine and metabolic disorder in women of childbearing age, with ovulatory dysfunction, hyperandrogenism, and polycystic ovarian morphology (PCOM) as the clinical features. Androgen excess, insulin resistance, obesity, adipose tissue dysfunction, ovulatory dysfunction, and gut microbiota dysbiosis are the main pathological features and pathogenesis of PCOS and are related to systemic chronic low-grade inflammation and chronic ovarian tissue inflammation in PCOS. With the advances in immune-endocrine interaction studies, research on the role of immune cells in the occurrence and development of PCOS is gradually increasing. As the core of innate immunity, macrophages play an indispensable role in systemic inflammatory response. Meanwhile, they are involved in maintaining the stability and function of the ovary as the most abundant immune cells in ovarian tissue. Studies in humans and mice have found that the polarization of macrophages into M1 type plays multiple roles in the pathogenesis of PCOS. This review describes the distribution characteristics of macrophage subpopulations in patients and animal models with PCOS, discusses the role of macrophage-related metabolic inflammation in PCOS, and summarizes the relationship between macrophages and PCOS-related pathological features and its possible mechanisms, to further understand the pathogenesis of PCOS and reveal the role of macrophages in it. In addition, research on immune-endocrine interactions can also provide direction for finding new therapeutic targets for PCOS.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zhijing Tang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Wu H, Zhao B, Yao Q, Kang J. Dehydroepiandrosterone-induced polycystic ovary syndrome mouse model requires continous treatments to maintain reproductive phenotypes. J Ovarian Res 2023; 16:207. [PMID: 37880784 PMCID: PMC10599050 DOI: 10.1186/s13048-023-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrinopathy associated with infertility and metabolic disorder in women of reproductive age. Animal models have been developed and used as tools to unravel the pathogenesis of PCOS, among which most postnatal models employ continuing experimental manipulations. However, the persistence and stability of these animals after modeling is unknown. Dehydroepiandrosterone (DHEA)-induced PCOS mouse model is commonly used in PCOS studies. Thus the aim of the present study was to investigate the reproductive features of DHEA-induced PCOS mice fed a normal chow or an high-fat diet (HFD) with treatment withdrawal or consecutive treatments after PCOS mouse models were established. METHODS Prepubertal C57BL/6 J mice (age 25 days) were injected (s.c.) daily with DHEA on a normal chow or a 60% HFD for 20 consecutive days to induce PCOS mouse models. Mice injected with the vehicle sesame oil were used as controls. After 20 days, mice were divided into 2 groups, namely "Continue dosing group" and "Stop dosing group". The animals were consecutively treated with DHEA or DHEA + HFD, or housed without any treatment for 2 or 4 weeks. Estrous cycles were evaluated during this period. At the end of the experiment, serum testosterone (T) levels were measured and the morphology of ovaries was evaluated. RESULTS The mice in Continue dosing groups maintained reproductive phenotypes of PCOS mouse models. In contrast, 2 or 4 weeks after PCOS models were established, the mice with treatment withdrawal in Stop dosing groups exhibited normal serum testosterone levels, regular estrous cycle, and relatively normal ovarian morphology. In addition, even with consecutive treatments, there was no marked difference in body weight between DHEA mice on the normal chow or an HFD in Continue dosing groups and the control animals 3 weeks after modeling. CONCLUSIONS After PCOS mice were induced with DHEA or DHEA + HFD, the mice still need consecutive treatments to maintain reproductive phenotypes to be regarded as PCOS mice that meet the diagnostic criteria of PCOS defined by the 2003 Rotterdam criteria.
Collapse
Affiliation(s)
- Haowen Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, No.38 Xueyuan Rd, Haidian District, Beijing, 100191, China
| | - Bining Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, No.38 Xueyuan Rd, Haidian District, Beijing, 100191, China
| | - Qiyang Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, No.38 Xueyuan Rd, Haidian District, Beijing, 100191, China
| | - Jihong Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, No.38 Xueyuan Rd, Haidian District, Beijing, 100191, China.
| |
Collapse
|
28
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
29
|
Hadidi M, Karimabadi K, Ghanbari E, Rezakhani L, Khazaei M. Stem cells and exosomes: as biological agents in the diagnosis and treatment of polycystic ovary syndrome (PCOS). Front Endocrinol (Lausanne) 2023; 14:1269266. [PMID: 37964963 PMCID: PMC10642184 DOI: 10.3389/fendo.2023.1269266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
A typical condition of the female reproductive system is polycystic ovary syndrome (PCOS). Hyperinsulinemia, insulin resistance, obesity, and hyperandrogenism are just a few of the metabolic abnormalities linked to this disease. Type 2 diabetes, hypertension, and cardiovascular disease are further issues related to PCOS. One consequence of this syndrome for which numerous treatment procedures have been developed is infertility. Metformin and clomiphene, two common allopathic medications used to treat PCOS, both have drawbacks and are ineffective. It is vital to seek novel therapeutic modalities to address these constraints. Exosomes (EXOs) are a particular class of extracellular vesicles that cells release, and they are known to play a significant role in mediating intercellular communication. A wide range of cargo, including lipids, proteins, mRNA, miRNAs, and numerous other noncoding RNAs, are contained in the nanoscale lipid bilayer exosomes. The cytokine effects of stem cells and EXOs derived from them enable the defense against metabolic diseases like PCOS. Moreover, EXO microRNAs can potentially be employed as biomarkers in the detection and management of PCOS. In this study, the potential of stem cells and exosomes are specifically investigated in the diagnosis and treatment of PCOS as one of the diseases of the female reproductive system.
Collapse
Affiliation(s)
- Mahta Hadidi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
30
|
Zhang Y, Zhao T, Hu L, Xue J. Integrative Analysis of Core Genes and Biological Process Involved in Polycystic Ovary Syndrome. Reprod Sci 2023; 30:3055-3070. [PMID: 37171773 DOI: 10.1007/s43032-023-01259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disordered disease, affecting the function of the ovaries in women of reproductive age. However, there are limited curative therapies for PCOS due to lack of reliable candidates. Hence, this study aimed to identify hub pathogenic genes and potential therapeutic targets for PCOS using bioinformatics tools. We obtained the expression profiles of 29 PCOS samples and 24 normal samples from three Gene Expression Omnibus (GEO) datasets. Then, the differentially expressed genes (DEGs) were screened, which were subjected to functional enrichment analyses. Moreover, we found 30 ferroptosis-related genes out of the 89 DEGs. Among the top 10 significant ferroptosis-related DEGs, 8 genes showed good predictive performance. We constructed interaction network of top three ferroptosis-related DEGs (SLC38A1, ACO1, DDIT3). Finally, real-time PCR was performed to test the relative expression of these genes. In conclusions, we have identified ferroptosis-related DEGs as core genes and potential therapeutic targets of PCOS based on comprehensive bioinformatics analysis. The findings are conducive to understanding of the pathogenesis of PCOS and paving the way towards curative therapies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Tianyi Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Lishuang Hu
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Juan Xue
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China.
| |
Collapse
|
31
|
Rizano A, Margiana R, Supardi S, Narulita P. Exploring the future potential of mesenchymal stem/stromal cells and their derivatives to support assisted reproductive technology for female infertility applications. Hum Cell 2023; 36:1604-1619. [PMID: 37407748 DOI: 10.1007/s13577-023-00941-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Women's infertility impacts the quality of life of both patients and couples and has multifaceted dimensions that increase the number of challenges associated with female infertility and how to face them. Female reproductive disorders, such as premature ovarian failure (POF), endometriosis, Asherman syndrome (AS), polycystic ovary syndrome (PCOS), and preeclampsia, can stimulate infertility. In the last decade, translational medicine has advanced, and scientists are focusing on infertility therapy with innovative attitudes. Recent investigations have suggested that stem cell treatments could be safe and effective. Stem cell therapy has established a novel method for treating women's infertility as part of a regeneration approach. The chief properties and potential of mesenchymal stem/stromal cells (MSCs) in the future of women's infertility should be considered by researchers. Due to their high abundance, great ability to self-renew, and high differentiation capacity, as well as less ethical concerns, MSC-based therapy has been found to be an effective alternative strategy to the previous methods for treating female infertility, such as intrauterine insemination, in vitro fertilization, medicines, and surgical procedures. These types of stem cells exert their beneficial role by releasing active mediators, promoting cell homing, and contributing to immune modulation. Here we first provide an overview of MSCs and their crucial roles in both biological and immunological processes. The next large chapter covers current preclinical and clinical studies on the application of MSCs to treat various female reproductive disorders. Finally, we deliberate on the extant challenges that hinder the application of MSCs in female infertility and suggest plausible measures to alleviate these impediments.
Collapse
Affiliation(s)
- Andrew Rizano
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Indonesia General Academic Hospital, Depok, Indonesia.
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia.
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pety Narulita
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
32
|
Roodbari AS, Solhjoo S, Palmerini MG, Mansouri M, Ezzatabadipour M. The effect of human menstrual blood-derived stem cells on ovarian folliculogenesis, angiogenesis and collagen volume in female rats affected by the polycystic ovary syndrome. J Ovarian Res 2023; 16:170. [PMID: 37608312 PMCID: PMC10463952 DOI: 10.1186/s13048-023-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Infertility is one of the common problems among couples, affecting millions of people worldwide. Polycystic ovary syndrome (PCOS) is one of the main causes of infertility in women and is associated with abnormal folliculogenesis, angiogenesis and fibrosis. Common treatments may lead to numerous adverse effects on the patient's quality of life. The present study aimed to investigate the effects of human menstrual blood-derived stem cells on the ovarian histology of a PCOS model of Wistar rats. RESULTS Based on the Papanicolaou test and H&E staining results, the number of primary, secondary and antral follicles in the PCOS and PCOS-Sham groups significantly increased compared to the control group, while they significantly decreased in the PCOS + Stem cells group compared to the PCOS and PCOS-Sham groups. Further, the number of atretic follicles in both PCOS and PCOS-Sham groups significantly increased in comparison with the control group and decreased in the PCOS + Stem cells group, compared to the two mentioned groups. Moreover, the Graafian follicles number was decreased in the PCOS and PCOS-Sham groups to significantly increase in the PCOS + Stem cells group. Based on Masson's trichrome staining, the number of blood vessels in PCOS and PCOS-Sham groups significantly increased compared to the control group, while a decrease was observed in the PCOS + Stem cells group, compared to PCOS and PCOS-Sham groups. CONCLUSION The administration of MenSCs improved folliculogenesis in rats with polycystic ovaries. Also, MenSCs could ameliorate PCOS symptoms by improving fibrosis as well as angiogenesis and weight gain.
Collapse
Affiliation(s)
- Ali Sarhadi Roodbari
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Solhjoo
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mahna Mansouri
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
33
|
Erceg Ivkošić I, Fureš R, Ćosić V, Mikelin N, Bulić L, Dobranić D, Brlek P, Primorac D. Unlocking the Potential of Mesenchymal Stem Cells in Gynecology: Where Are We Now? J Pers Med 2023; 13:1253. [PMID: 37623503 PMCID: PMC10455325 DOI: 10.3390/jpm13081253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Stem cells, with their remarkable capacity for differentiation into diverse cell types, are vital for the development as well as maintenance of health and homeostasis. Two unique abilities set them apart from other cells: self-renewal and the capacity for differentiation. They play important roles in embryogenesis, development, regeneration, and various other processes. Over the last decade, there has been increased interest in their potential use in the treatment of numerous diseases and disorders across multiple fields of medicine in acute, chronic, innate, and acquired diseases. Stem cells are key to maintaining the body's homeostasis and regulating growth and tissue functions. There are several types of stem cells-embryonic, adult, and human-induced pluripotent cells. Currently, mesenchymal stem cells are of great interest due to their regenerative, immunomodulatory, analgesic, and antimicrobial (anti-inflammatory) effects. Recent studies have shown the potent regenerative effect of stem cell therapy in gynecologic diseases such as infertility, Asherman syndrome, lichen sclerosus, polycystic ovary syndrome, premature ovarian insufficiency, genitourinary syndrome of menopause, and rectovaginal fistulas. Moreover, the successful isolation of oogonial stem cells could lead to a revolution in the field of gynecology and the potential treatment of the conditions discussed. This review aims to provide a better understanding of the latest therapeutic options involving stem cells and raise awareness of this promising yet not widely known topic in gynecology and medicine in general.
Collapse
Affiliation(s)
- Ivana Erceg Ivkošić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Rajko Fureš
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Gynecology and Obstetrics, Zabok General Hospital and Croatian Veterans Hospital, 49210 Zabok, Croatia
| | - Vesna Ćosić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Poliklinika Ćosić, d.o.o., 35000 Slavonski Brod, Croatia
| | - Nika Mikelin
- Health Center of the Zagreb County, 10000 Zagreb, Croatia
| | - Luka Bulić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
| | | | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School, University of Split, 21000 Split, Croatia
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96 450 Coburg, Germany
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
34
|
Shen C, Jiang Y, Lin J, He Y, Liu Y, Fang D. Purinergic receptor P2X7 activates NOX2/JNK signaling to participate in granulosa cell inflammation and apoptosis in polycystic ovary syndrome. J Bioenerg Biomembr 2023; 55:313-322. [PMID: 37480429 DOI: 10.1007/s10863-023-09979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Increasing evidence shows that polycystic ovary syndrome (PCOS) is often accompanied by an inflammatory response, hence, appropriately managing granulosa cell inflammation is critical to regaining ovarian function in PCOS. In this study, the differential levels of purinergic receptor P2X7 between the control and PCOS samples in the dataset GSE34526 were assessed, then PCOS mouse models were established. Following evaluating the fluctuations in hormone levels, inflammatory cytokines, and P2X7, mice received treatment with the P2X7 antagonist A740003. Its effects on hormones, inflammation, apoptosis, and NOX2 signaling in mice were examined. Afterward, primary mouse granulosa cells were isolated, and the mediating role of NOX2 signaling in the P2X7 regulatory pathway was confirmed by transfection of NOX2 overexpression plasmids. The results demonstrated that P2X7 was significantly elevated in the PCOS samples in the dataset. Compared with the control group, PCOS mice had significant differences in the follicle-stimulating hormone, luteinizing hormone, testosterone, anti-Müllerian hormone, inflammatory factors, and P2X7. Treatment with A740003 partially restored these parameter levels, including NOX2 signaling. Based on in vitro experiments on primary mouse granulosa cells, the above findings were re-verified, and the overexpression of NOX2 could reverse the regulatory function of P2X7. The present study highlights that P2X7 level increases in PCOS, and inhibition of P2X7 can reduce disease symptoms. It is involved in inflammation and apoptosis in granulosa cells through NOX2/JNK signaling.
Collapse
Affiliation(s)
- Chuan Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China
- Department of Laboratory Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Sichuan University, Ministry of Education, No. 20, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Sichuan University, Ministry of Education, No. 20, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China
| | - Yibei He
- Department of Laboratory Medicine, Chengdu Chenghua District Maternal and Child Health Hospital, No. 6, Xinhong Road, Cheng Hua Da Dao, Chengdu, Sichuan, 610056, P.R. China
| | - Yue Liu
- Department of Laboratory Medicine, Chengdu Chenghua District Maternal and Child Health Hospital, No. 6, Xinhong Road, Cheng Hua Da Dao, Chengdu, Sichuan, 610056, P.R. China
| | - Dingzhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
35
|
Park HS, Cetin E, Siblini H, Seok J, Alkelani H, Alkhrait S, Liakath Ali F, Mousaei Ghasroldasht M, Beckman A, Al-Hendy A. Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles to Treat PCOS. Int J Mol Sci 2023; 24:11151. [PMID: 37446328 DOI: 10.3390/ijms241311151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as the most common endocrine disorder in women. Previously, we suggested that human mesenchymal stem cells (MSCs) can reverse the PCOS condition by secreting factors. Here, we evaluated the therapeutic capability of MSC-derived extracellular vesicles (EVs), also known as exosomes, in both in vitro and in vivo PCOS models. Exosomes were used to treat androgen-producing H293R cells and injected in a mouse model through intraovarian and intravenous injection into a letrozole (LTZ)-induced PCOS mouse model. We assessed the effects of the exosomes on androgen-producing cells or the PCOS mouse model by analyzing steroidogenic gene expression (quantitative real-time polymerase chain reaction (qRT-PCR)), body weight change, serum hormone levels, and fertility by pup delivery. Our data show the therapeutic effect of MSC-derived EVs for reversing PCOS conditions, including fertility issues. Interestingly, intravenous injection was more effective for serum glucose regulation, and an intraovarian injection was more effective for ovary restoration. Our study suggests that MSC-derived exosomes can be promising biopharmaceutics for treating PCOS conditions as a novel therapeutic option. Despite the fact that we need more validation in human patients, we may evaluate this novel treatment option for PCOS with the following clinical trials.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Esra Cetin
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Jin Seok
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Hiba Alkelani
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | | | - Analea Beckman
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Xing J, Luo X, Jia K, Liu S, Chen S, Qiao G, Zhang C, Yi J. Integrating network pharmacology and experimental verification to explore the pharmacological mechanisms of asparagus against polycystic ovary syndrome. J Ovarian Res 2023; 16:128. [PMID: 37393270 DOI: 10.1186/s13048-023-01210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/17/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder in women of reproductive age that still lacks effective treatment. Inflammation is one of the important features of PCOS. Asparagus (ASP) has anti-inflammatory, antioxidant, and anti-aging pharmacological effects, and its anti-tumor effects have been demonstrated in a variety of tumors. However, the role and mechanism of ASP in PCOS remain unclear. METHODS The active components of ASP and the key therapeutic targets for PCOS were obtained by network pharmacology. Molecular docking was used to simulate the binding of PRKCA to the active components of ASP. The effects of ASP on inflammatory and oxidative stress pathways in PCOS, and the regulation of PRKCA were examined by KGN, a human derived granulosa cell line. PCOS mouse model validated the results of in vivo experiments. RESULTS Network pharmacology identified 9 major active ingredients of ASP with 73 therapeutic targets for PCOS. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment yielded 101 PCOS-related signaling pathways. The hub gene PRKCA was obtained after taking the gene intersection of the top 4 pathways. Molecular docking showed the binding of PRKCA to the 7 active components in ASP. In vitro and in vivo experiments showed that ASP alleviated the course of PCOS through antioxidant, anti-inflammatory effects. ASP can partially restore the low expression of PRKCA in the PCOS models. CONCLUSION The therapeutic effect of ASP on PCOS is mainly achieved by targeting PRKCA through the 7 active components of ASP. Mechanistically, ASP alleviated the course of PCOS through antioxidant, anti-inflammatory effects, and PRKCA was its potential target.
Collapse
Affiliation(s)
- Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Luo
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Keran Jia
- Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shaokun Chen
- Department of Morphological Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
37
|
Zhang H, Zhu Q, Ji Y, Wang M, Zhang Q, Liu W, Li R, Zhang J, Xu P, Song X, Lv C. hucMSCs treatment prevents pulmonary fibrosis by reducing circANKRD42-YAP1-mediated mechanical stiffness. Aging (Albany NY) 2023; 15:5514-5534. [PMID: 37335082 PMCID: PMC10333056 DOI: 10.18632/aging.204805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia of unknown cause. The most typical characteristic of IPF is gradual weakening of pulmonary elasticity and increase in hardness/rigidity with aging. This study aims to identify a novel treatment approach for IPF and explore mechanism of mechanical stiffness underlying human umbilical cord mesenchymal stem cells (hucMSCs) therapy. Target ability of hucMSCs was examined by labeling with cell membrane dye Dil. Anti-pulmonary fibrosis effect of hucMSCs therapy by reducing mechanical stiffness was evaluated by lung function analysis and MicroCT imaging system and atomic force microscope in vivo and in vitro. Results showed that stiff environment of fibrogenesis caused cells to establish a mechanical connection between cytoplasm and nucleus, initiating expression of related mechanical genes such as Myo1c and F-actin. HucMSCs treatment blocked force transmission and reduced mechanical force. For further exploration of mechanism, ATGGAG was mutated to CTTGCG (the binding site of miR-136-5p) in the full-length sequence of circANKRD42. Wildtype and mutant plasmids of circANKRD42 were packaged into adenovirus vectors and sprayed into lungs of mice. Mechanistic dissection revealed that hucMSCs treatment repressed circANKRD42 reverse splicing biogenesis by inhibiting hnRNP L, which in turn promoted miR-136-5p binds to 3'-Untranslated Region (3'-UTR) of YAP1 mRNA directly, thus inhibiting translation of YAP1 and reducing YAP1 protein entering nucleus. The condition repressed expression of related mechanical genes to block force transmission and reduce mechanical forces. The mechanosensing mechanism mediated directly by circANKRD42-YAP1 axis in hucMSCs treatment, which has potential general applicability in IPF treatment.
Collapse
Affiliation(s)
- Haitong Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qi Zhu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yunxia Ji
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Meirong Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Ruiqiong Li
- Department of Clinical Nursing, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Pan Xu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| |
Collapse
|
38
|
Karam M, Najjar H, El Sabban M, Hamade A, Najjar F. Regenerative Medicine for Polycystic Ovary Syndrome: Stem Cell-Based Therapies and Brown Adipose Tissue Activation. Stem Cell Rev Rep 2023; 19:853-865. [PMID: 36633783 DOI: 10.1007/s12015-023-10505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a pathological condition prevalent among women of reproductive age: it is associated with varied etiological factors (lifestyle, genetic, environmental…) and characterized by an increased polycystic morphology of the ovaries leading to disturbances in the menstrual cycle and its correlated infertility. Interconnections between PCOS, obesity, and insulin resistance have been recently investigated thoroughly in the scientific community; these findings directed PCOS therapies into unraveling possibilities to target insulin resistance and central adiposity as efficient treatment. On the other hand, brown adipose tissue is known to possess a thermogenic activity that increases lipolysis and directly attenuates fat deposition. Therefore, brown adipose tissue activation lands itself as a potential target for reducing obesity and its induced insulin resistance, subsequently rescuing PCOS phenotypes. In addition, regenerative medicine has proven efficacy in resolving PCOS-associated infertility and its metabolic symptoms. In particular, many stem/progenitor cells have been verified to possess the differentiation capacity into functional brown adipocytes. Thus, throughout this review, we will discuss the different brown adipose tissue activation strategies and stem-cell-based therapies applied to PCOS models and the possible combination of both therapeutic approaches to synergistically act on the activation of brown adipose tissue and attenuate PCOS-correlated infertility and retract the consequences of the metabolic syndrome on the physiological state of patients.
Collapse
Affiliation(s)
- Mario Karam
- Laboratoire d'Innovation Thérapeutique, "Stem Cell, Organogenesis and Regenerative Medicine" Master Program, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Hélène Najjar
- Department of Pediatrics, Faculty of Medicine, Lebanese University, Hadat, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Aline Hamade
- Laboratoire d'Innovation Thérapeutique, Departments of Biology, Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| | - Fadia Najjar
- Laboratoire d'Innovation Thérapeutique, Departments of Biology, Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| |
Collapse
|
39
|
Liu X, Li J, Wang W, Ren X, Hu JF. Therapeutic restoration of female reproductive and endocrine dysfunction using stem cells. Life Sci 2023; 322:121658. [PMID: 37023951 DOI: 10.1016/j.lfs.2023.121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Millions of women worldwide suffer from infertility associated with gynecologic disorders such as premature ovarian insufficiency, polycystic ovary syndrome, Asherman syndrome, endometriosis, preeclampsia, and fallopian tube obstruction. These disorders can lead to infertility and thereby affect the quality of life of the infertile couple because of their psychological impact and significant costs. In recent years, stem cell therapy has emerged as a therapeutic approach to repair or replace damaged tissues or organs. This review describes the recent development as well as the underlying mechanisms of stem cell therapy for a variety of female reproductive diseases, offering us new therapeutic options for the treatment of female reproductive and endocrine dysfunction.
Collapse
Affiliation(s)
- Xiaobo Liu
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Jiajia Li
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China; Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Wenjun Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Ren
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
40
|
Hu J, Lin F, Yin Y, Shang Y, Xiao Z, Xu W. Adipocyte-derived exosomal miR-30c-5p promotes ovarian angiogenesis in polycystic ovary syndrome via the SOCS3/STAT3/VEGFA pathway. J Steroid Biochem Mol Biol 2023; 230:106278. [PMID: 36870372 DOI: 10.1016/j.jsbmb.2023.106278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a systemic endocrine disease affecting women's reproductive health. Ovarian angiogenesis in PCOS patients is abnormal, manifested by increased ovarian stromal vascularization and upregulated proangiogenic factors such as vascular endothelial growth factor (VEGF). However, the specific mechanisms underlying these changes in PCOS remain unknown. In this study, we induced the adipogenic differentiation in preadipocyte 3T3-L1 cells and found that adipocyte-derived exosomes promoted proliferation, migration, tube formation, and VEGFA expression in human ovarian microvascular endothelial cells (HOMECs) by delivering miR-30c-5p. Mechanistically, dual luciferase reporter assay demonstrated that miR-30c-5p directly targeted the 3'- untranslated region (UTR) of suppressor of cytokine signaling 3 (SOCS3) mRNA. In addition, adipocyte-derived exosomal miR-30c-5p activated signal transducer and activator of transcription 3 (STAT3)/VEGFA pathway in HOMECs via targeting SOCS3. In vivo experiments indicated that tail vein injection of adipocyte-derived exosomes exacerbated endocrine and metabolic disorders and ovarian angiogenesis in mice with PCOS via miR-30c-5p. Taken together, the study revealed that adipocyte-derived exosomal miR-30c-5p promotes ovarian angiogenesis via the SOCS3/STAT3/VEGFA pathway, thereby participating in the development of PCOS.
Collapse
Affiliation(s)
- Jian Hu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuchen Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Yunjie Shang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| | - Wangming Xu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| |
Collapse
|
41
|
Dou Y, Xin J, Zhou P, Tang J, Xie H, Fan W, Zhang Z, Wu D. Bidirectional association between polycystic ovary syndrome and periodontal diseases. Front Endocrinol (Lausanne) 2023; 14:1008675. [PMID: 36755917 PMCID: PMC9899846 DOI: 10.3389/fendo.2023.1008675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) and periodontal disease (PDD) share common risk factors. The bidirectional interaction between PCOS and PDD has been reported, but until now, the underlying molecular mechanisms remain unclear. Endocrine disorders including hyperandrogenism (HA) and insulin resistance (IR) in PCOS disturb the oral microbial composition and increase the abundance of periodontal pathogens. Additionally, PCOS has a detrimental effect on the periodontal supportive tissues, including gingiva, periodontal ligament, and alveolar bone. Systemic low-grade inflammation status, especially obesity, persistent immune imbalance, and oxidative stress induced by PCOS exacerbate the progression of PDD. Simultaneously, PDD might increase the risk of PCOS through disturbing the gut microbiota composition and inducing low-grade inflammation and oxidative stress. In addition, genetic or epigenetic predisposition and lower socioeconomic status are the common risk factors for both diseases. In this review, we will present the latest evidence of the bidirectional association between PCOS and PDD from epidemiological, mechanistic, and interventional studies. A deep understanding on their bidirectional association will be beneficial to provide novel strategies for the treatment of PCOS and PDD.
Collapse
Affiliation(s)
- Yang Dou
- Department of Stomatology, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Jinglei Xin
- Department of Stomatology, Guangdong Women and Children hospital, Guangzhou, Guangdong, China
| | - Peng Zhou
- Department of Stomatology, Guangdong Women and Children hospital, Guangzhou, Guangdong, China
| | - Jianming Tang
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Hongliang Xie
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Wanting Fan
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Zheng Zhang
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Donglei Wu
- Department of Stomatology, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
42
|
Sun P, Zhang Y, Sun L, Sun N, Wang J, Ma H. Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway. BMC Womens Health 2023; 23:15. [PMID: 36627631 PMCID: PMC9832680 DOI: 10.1186/s12905-022-02154-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The development of polycystic ovary syndrome (PCOS) is closely correlated with apoptosis and oxidative stress in ovarian granulosa cells. Kisspeptin plays an important role in reproductive organ function. This study aimed to explore the role of kisspeptin in PCOS and oxidative stress-triggered apoptosis of ovarian granular cells. METHODS A PCOS rat model was established by injecting dehydroepiandrosterone (DHEA) and feeding the rats a high-fat diet. The RNA and protein levels of kisspeptin were analysed by quantitative PCR, western blotting, and histological staining. Tissue damage was evaluated using haematoxylin and eosin (H&E) staining. The viability and proliferation of human granulosa cell KGN were measured using the cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and apoptosis were analysed by flow cytometry. Oxidative stress was analysed by measuring reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) levels. RESULTS Kisspeptin was downregulated in the ovarian granulosa cells of PCOS rats compared to those of control rats. Kisspeptin overexpression enhanced KGN cell proliferation and inhibited apoptosis. ROS generation was suppressed by kisspeptin, along with decreased levels of MDA and increased levels of the antioxidants GSH, SOD, and CAT. Kisspeptin activates PI3K/AKT and ERK signalling, and inactivation of ERK1/2 suppresses the protective role of kisspeptin in ovarian granulosa cells. CONCLUSION Kisspeptin improves proliferation and alleviates apoptosis and oxidative stress in ovarian granulosa cells by activating PI3K/AKT and ERK signalling.
Collapse
Affiliation(s)
- Pingping Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Yuemin Zhang
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Lilan Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Na Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Jinguang Wang
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Huagang Ma
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| |
Collapse
|
43
|
Mohamed Rasheed ZB, Nordin F, Wan Kamarul Zaman WS, Tan YF, Abd Aziz NH. Autologous Human Mesenchymal Stem Cell-Based Therapy in Infertility: New Strategies and Future Perspectives. BIOLOGY 2023; 12:108. [PMID: 36671799 PMCID: PMC9855776 DOI: 10.3390/biology12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Infertility could be associated with a few factors including problems with physical and mental health, hormonal imbalances, lifestyles, and genetic factors. Given that there is a concern about the rise of infertility globally, increased focus has been given to its treatment for the last several decades. Traditional assisted reproductive technology (ART) has been the prime option for many years in solving various cases of infertility; however, it contains significant risks and does not solve the fundamental problem of infertility such as genetic disorders. Attention toward the utilization of MSCs has been widely regarded as a promising option in the development of stem-cell-based infertility treatments. This narrative review briefly presents the challenges in the current ART treatment of infertility and the various potential applications of autologous MSCs in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Zahirrah Begam Mohamed Rasheed
- UKM Medical Molecular Biology Institute (UMBI), Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, WPKL, Kuala Lumpur 56000, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Research Laboratory of UKM Specialist Children’s Hospital, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
44
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
45
|
Izadi M, Rezvani ME, Aliabadi A, Karimi M, Aflatoonian B. Mesenchymal stem cells-derived exosomes as a promising new approach for the treatment of infertility caused by polycystic ovary syndrome. Front Pharmacol 2022; 13:1021581. [PMID: 36299896 PMCID: PMC9589245 DOI: 10.3389/fphar.2022.1021581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial metabolic and most common endocrine disorder that its prevalence, depending on different methods of evaluating PCOS traits, varies from 4% to 21%. Chronic low-grade inflammation and irregular apoptosis of granulosa cells play a crucial role in the pathogenesis of PCOS infertility. Mesenchymal stem cells (MSCs)-derived exosomes and extracellular vesicles (EVs) are lipid bilayer complexes that act as a means of intercellular transferring of proteins, lipids, DNA and different types of RNAs. It seems that this nanoparticles have therapeutic effects on the PCOS ovary such as regulating immunity response, anti-inflammatory (local and systemic) and suppress of granulosa cells (GCs) apoptosis. Although there are few studies demonstrating the effects of exosomes on PCOS and their exact mechanisms is still unknown, in the present study we reviewed the available studies of the functions of MSC-derived exosome, EVs and secretome on apoptosis of granulosa cells and inflammation in the ovary. Therefore, the novel cell-free therapeutic approaches for PCOS were suggested in this study.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
46
|
Saeed Y, Liu X. Mesenchymal stem cells to treat female infertility; future perspective and challenges: A review. Int J Reprod Biomed 2022; 20:709-722. [PMID: 36340664 PMCID: PMC9619121 DOI: 10.18502/ijrm.v20i9.12061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/10/2021] [Accepted: 01/15/2022] [Indexed: 11/19/2022] Open
Abstract
Infertility negatively impacts the overall health and social life of affected individuals and couples. Female infertility is their inability to perceive pregnancy. To date, polycystic ovary syndrome, primary ovarian insufficiency, fallopian tube obstruction, endometriosis, and intrauterine synechiae have been identified as the primary causes of infertility in women. However, despite the mutual efforts of clinicians and research scientists, the development of an effective treatment modality has met little success in combating female infertility. Intriguingly, significant research has demonstrated mesenchymal stem cells as an optimal source for treating infertility disorders. Therefore, here we attempted to capsulize to date available studies to summarize the therapeutic potential of mesenchymal stem cells in combating infertility in women by focusing on the underlying mechanism through which stem cells can reduce the effects of ovarian disorders. Furthermore, we also discussed the preclinical and clinical application of stem cell therapy, their limitation, and the future perspective to minimize these limitations.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan City, Guangdong Province, China
| | - Xiaocui Liu
- Guangdong VitaLife Biotechnology Co., LTD, Foshan, Guangdong, China
| |
Collapse
|
47
|
Shamsi M, Ghazavi A, Saeedifar AM, Mosayebi G, Pour SK, Ganji A. The immune system's role in PCOS. Mol Biol Rep 2022; 49:10689-10702. [PMID: 35752698 DOI: 10.1007/s11033-022-07695-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/23/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common disorder of the endocrine system. Its main manifestations include oligo-ovulation, hyperandrogenism, and polycystic ovary morphology (PCOM), affecting women of childbearing age. Although the exact pathogenesis of this disease is still unknown, many factors, including genetic, endocrine, and metabolism disorders, play critical roles in its development. The immunopathogenesis of PCOS has not yet been studied in-depth, but it is hypothesized that immune system abnormalities may play a key role in it. Recent research has shown inflammation's effect on ovulation and ovarian follicular dynamics. Thus, it is suggested that there is a close association between PCOS and low-grade chronic systemic inflammation. As a result, chronic low-grade inflammation is identified as a significant factor in the pathogenesis and development of PCOS, which in turn leads to infertility. As a result, this article reviews PCOS immunopathology, evaluates long-standing hypotheses about the immune system's role in PCOS, and assesses the association between inflammatory factors and PCOS.
Collapse
Affiliation(s)
- Maryam Shamsi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghazavi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Amir Mohammad Saeedifar
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Sana Khajeh Pour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID, USA
| | - Ali Ganji
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
48
|
Zheng Y, He J, Yang D, Dai F, Yuan M, Liu S, Jia Y, Cheng Y. Irisin reduces the abnormal reproductive and metabolic phenotypes of PCOS by regulating the activity of brown adipose tissue in mice. Biol Reprod 2022; 107:1046-1058. [PMID: 35713297 PMCID: PMC9562123 DOI: 10.1093/biolre/ioac125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/05/2022] [Accepted: 06/08/2022] [Indexed: 11/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women, with clinical manifestations of anovulation and hyperandrogenaemia. The treatment of PCOS mainly focuses on improving clinical symptoms, such as insulin sensitivity or menstrual disorder, through drug treatment. However, due to the pathogenesis diversity of PCOS, there is still a lack of effective treatment in clinics. Metabolic disorder is the key factor in the occurrence of PCOS. Brown adipose tissue (BAT) is a special adipose tissue in the human body that can participate in metabolic balance by improving heat production. BAT has been demonstrated to be an important substance involved in the metabolic disorder of PCOS. Although increasing evidence indicates that BAT transplantation can improve the symptoms of PCOS, it is difficult to achieve BAT transplantation at present due to technical limitations. Stimulation of BAT activation by exogenous substances may be an effective alternative therapy for PCOS. In this study, we investigated the effects of Irisin on dehydroepiandrosterone (DHEA)-induced PCOS in mice and evaluated the effect of Irisin on serum hormone levels and changes in body temperature, body weight and ovarian morphology. In our study, we found that Irisin can enhance the thermogenesis and insulin sensitivity of PCOS mice by activating the function of BAT. In addition, Irisin treatment can correct the menstrual cycle of PCOS mice, improve the serum steroid hormone disorder status, and reduce the formation of ovarian cystic follicles. In conclusion, our results showed that Irisin treatment significantly improved the metabolic disorder of PCOS and may provide a new and alternative therapy for the treatment of this pathology.
Collapse
Affiliation(s)
- Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juan He
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
49
|
Identification of Bioactive Compounds and Potential Mechanisms of Kuntai Capsule in the Treatment of Polycystic Ovary Syndrome by Integrating Network Pharmacology and Bioinformatics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3145938. [PMID: 35528524 PMCID: PMC9073551 DOI: 10.1155/2022/3145938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Objective This study elucidates the potential therapeutic targets and molecular mechanisms of KTC in the treatment of PCOS. Materials and Methods Using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the active ingredients and potential targets of KTC were obtained. The Gene Expression Omnibus (GEO) database was used to find differentially expressed genes (DEGs) related to PCOS. Search the CTD, DisGeNet, genecards, NCBI, OMIM, and PharmGKB databases for therapeutic targets related to PCOS. The intersection of potential targets, DEGs, and therapeutic targets was submitted to perform bioinformatics analysis by R language. Finally, the analyses' core targets and their corresponding active ingredients were molecularly docked. Results 88 potential therapeutic targets of KTC for PCOS were discovered by intersecting the potential targets, DEGs, and therapeutic targets. According to bioinformatics analysis, the mechanisms of KTC treatment for PCOS could be linked to IL-17 signaling route, p53 signaling pathway, HIF-1 signaling pathway, etc. The minimal binding energies of the 5 core targets and their corresponding ingredients were all less than -6.5. Further research found that quercetin may replace KTC in the treatment of PCOS. Discussion and Conclusions. We explored the active ingredients and molecular mechanisms of KTC in the treatment of PCOS and found that quercetin may be the core ingredient of KTC in the treatment of PCOS.
Collapse
|
50
|
Zhao Y, Pan S, Wu X. Human umbilical cord mesenchymal stem cell-derived exosomes inhibit ovarian granulosa cells inflammatory response through inhibition of NF-κB signaling in polycystic ovary syndrome. J Reprod Immunol 2022; 152:103638. [DOI: 10.1016/j.jri.2022.103638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 02/14/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
|