1
|
Chung HS, Middleton L, Garg M, Hristova VA, Vega RB, Baker D, Challis BG, Vitsios D, Hess S, Wallenius K, Holmäng A, Andersson-Hall U. Longitudinal clinical and proteomic diabetes signatures in women with a history of gestational diabetes. JCI Insight 2024; 10:e183213. [PMID: 39589852 PMCID: PMC11790031 DOI: 10.1172/jci.insight.183213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
We characterized the longitudinal serum protein signatures of women 6 and 10 years after having gestational diabetes mellitus (GDM) to identify factors associated with the development of type 2 diabetes mellitus (T2D) and prediabetes in this at-risk post-GDM population, aiming to discover potential biomarkers for early diagnosis and prevention of T2D. Our study identified 75 T2D-associated serum proteins and 23 prediabetes-associated proteins, some of which were validated in an independent T2D cohort. Machine learning (ML) performed on the longitudinal proteomics highlighted protein signatures associated with progression to post-GDM diabetes. We also proposed prognostic biomarker candidates that were differentially regulated in healthy participants at 6 years postpartum who later progressed to having T2D. Our longitudinal study revealed T2D risk factors for post-GDM populations who are relatively young and healthy, providing insights for clinical decisions and early lifestyle interventions.
Collapse
Affiliation(s)
- Heaseung Sophia Chung
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Lawrence Middleton
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Manik Garg
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ventzislava A. Hristova
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Rick B. Vega
- Early Clinical Development, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Benjamin G. Challis
- Translational Science and Experimental Medicine, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Dimitrios Vitsios
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sonja Hess
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Kristina Wallenius
- Bioscience Metabolism, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Agneta Holmäng
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Andersson-Hall
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Pan L, Yin N, Duan M, Mei Q, Zeng Y. The role of gut microbiome and its metabolites in pancreatitis. mSystems 2024; 9:e0066524. [PMID: 39212377 PMCID: PMC11494936 DOI: 10.1128/msystems.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as Bifidobacterium, Akkermansia, and Lactobacillus, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.
Collapse
Affiliation(s)
- Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyu Duan
- Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Pareek A, Singhal R, Pareek A, Ghazi T, Kapoor DU, Ratan Y, Singh AK, Jain V, Chuturgoon AA. Retinoic acid in Parkinson's disease: Molecular insights, therapeutic advances, and future prospects. Life Sci 2024; 355:123010. [PMID: 39181315 DOI: 10.1016/j.lfs.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Parkinson's disease (PD) is a common and progressively worsening neurodegenerative disorder characterized by abnormal protein homeostasis and the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta. The prevalence of PD has doubled in the past 25 years, now affecting over 8.5 million individuals worldwide, underscoring the need for effective management strategies. While current pharmacological therapies provide symptom relief, they face challenges in treating advanced PD stages. Recent research highlights the therapeutic benefits of retinoic acid (RA) in PD, demonstrating its potential to mitigate neuroinflammation and oxidative stress, regulate brain aging, promote neuronal plasticity, and influence circadian rhythm gene expression and retinoid X receptor heterodimerization. Additionally, RA helps maintain intestinal homeostasis and modulates the enteric nervous system, presenting significant therapeutic potential for managing PD. This review explores RA as a promising alternative to conventional therapies by summarizing the molecular mechanisms underlying its role in PD pathophysiology and presenting up-to-date insights into both preclinical and clinical studies of RA in PD treatment. It also delves into cutting-edge formulations incorporating RA, highlighting ongoing efforts to refine therapeutic strategies by integrating RA into novel treatments. This comprehensive overview aims to advance progress in the field, contribute to the development of effective, targeted treatments for PD, and enhance patient well-being. Further research is essential to fully explore RA's therapeutic potential and validate its efficacy in PD treatment.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India.
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Arun Kumar Singh
- Department of Pharmacy, Vivekananda Global University, Jaipur 303012, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
4
|
Yu B, Chen J, Wang Y, Zhou J, Wang H, Li H, Cai T, Huang R, Zhou Y, Ma J. Vitamin A influences the incretin hormone profiles by activating the retinoic acid receptor β. J Diabetes Complications 2024; 38:108806. [PMID: 38996583 DOI: 10.1016/j.jdiacomp.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND This study aimed to investigate the impact of Vitamin A (VA) on intestinal glucose metabolic phenotypes. METHODS Male C57BL/6 mice were randomized assigned to a VA-normal diet (VAN) or a VA-deficient diet (VAD) for 12 weeks. After12 weeks, the VAD mice were given 30 IU/g/d retinol for 10 days and VAN diet (VADN) for 10 weeks. By using glucose tolerance tests, immunofluorescence staining, quantitative polymerase chain reaction, siRNA transduction, and enzyme-linked immunosorbent assay, the glucose metabolic phenotypes as well as secretory function and intracellular hormone changes of STC-1 were assessed. RESULTS VAD mice showed a decrease of glucose-stimulated insulin secretion and a loss of intestinal glucagon-like peptide-1 (GLP-1) expression. Through reintroducing dietary VA to VAD mice, the intestinal VA levels, GLP-1 expression and normal glucose can be restored. The incubation with retinol increased VA signaling factors expression within STC-1 cells, especially retinoic acid receptor β (RARβ). The activation of RARβ restored intracellular incretin hormone synthesis and secretory function. CONCLUSIONS VA deficiency leads to an imbalance of intestinal glucose metabolic phenotypes through a mechanism involving RARβ signaling pathway, suggesting a new method to achieve the treatment for VAD induced glucose metabolism impairment.
Collapse
Affiliation(s)
- Baowen Yu
- Department of Endocrinology, Nanjing Medical University affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Chen
- Department of Personnel Management, Nanjing Medical University affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuming Wang
- Department of Endocrinology, Nanjing Medical University affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Gerontology, Drum tower hospital, Medical School of Nanjing University, Nanjing, China
| | - Junming Zhou
- Department of Cadre Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huiying Wang
- Department of Endocrinology, Nanjing Medical University affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiqin Li
- Department of Endocrinology, Nanjing Medical University affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tingting Cai
- Department of Endocrinology, Nanjing Medical University affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Huang
- Department of Endocrinology, Nanjing Medical University affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yunting Zhou
- Department of Endocrinology, Nanjing Medical University affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jianhua Ma
- Department of Endocrinology, Nanjing Medical University affiliated Nanjing Hospital: Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Kato-Suzuki M, Okamatsu-Ogura Y, Inanami O, Kimura K. Time-dependent changes in retinoids content in liver and adipose tissue after feeding of a vitamin A-deficient diet to mice. Exp Anim 2024; 73:302-309. [PMID: 38382988 PMCID: PMC11254491 DOI: 10.1538/expanim.23-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Vitamin A is an important nutrient for multiple physiological functions. To elucidate the role of vitamin A in vivo, vitamin A-deficient diets have been often used in mice to establish a vitamin A-deficiency model. However, the information on the appropriate feeding periods and time course of changes in vitamin A content in organs after the start of vitamin A-deficient diet feeding is lacking. This study aimed to assess the retinoids levels in liver and white adipose tissue in mice fed a vitamin A-deficient diet for ≤8 weeks. High-performance liquid chromatography was used to measure the retinoids levels in liver and white adipose tissue every 2 weeks for ≤8 weeks. Vitamin A-deficient diet feeding significantly decreased retinol in the liver over 6 weeks, but retinyl palmitate, a main storage form of vitamin A, was not changed over 8 weeks. The plasma retinol level remained constant throughout the experiment. In white adipose tissue, retinyl palmitate gradually decreased over 8 weeks. These results indicate that vitamin A-deficient diet feeding longer than 6 weeks reduced retinol in liver and retinyl palmitate in white adipose tissue over 8 weeks, although it is not enough for the induction of a whole-body vitamin A deficiency.
Collapse
Affiliation(s)
- Mira Kato-Suzuki
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
6
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
7
|
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci 2023; 24:ijms24086978. [PMID: 37108143 PMCID: PMC10139109 DOI: 10.3390/ijms24086978] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is the most common metabolic disorder, with an extremely serious effect on health systems worldwide. It has become a severe, chronic, non-communicable disease after cardio-cerebrovascular diseases. Currently, 90% of diabetic patients suffer from type 2 diabetes. Hyperglycemia is the main hallmark of diabetes. The function of pancreatic cells gradually declines before the onset of clinical hyperglycemia. Understanding the molecular processes involved in the development of diabetes can provide clinical care with much-needed updates. This review provides the current global state of diabetes, the mechanisms involved in glucose homeostasis and diabetic insulin resistance, and the long-chain non-coding RNA (lncRNA) associated with diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
8
|
Serum Retinal and Retinoic Acid Predict the Development of Type 2 Diabetes Mellitus in Korean Subjects with Impaired Fasting Glucose from the KCPS-II Cohort. Metabolites 2021; 11:metabo11080510. [PMID: 34436451 PMCID: PMC8398291 DOI: 10.3390/metabo11080510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
We aimed to investigate whether retinal and retinoic acid (RA), which are newly discovered biomarkers from our previous research, reliably predict type 2 diabetes mellitus (T2DM) development in subjects with impaired fasting glucose (IFG). Among the Korean Cancer Prevention Study (KCPS)-II cohort, subjects were selected and matched by age and sex (IFG-IFG group, n = 100 vs. IFG-DM group, n = 100) for study 1. For real-world validation of two biomarkers (study 2), other participants in the KCPS-II cohort who had IFG at baseline (n = 500) were selected. Targeted LC/MS was used to analyze the baseline serum samples; retinal and RA levels were quantified. In study 1, we revealed that both biomarkers were significantly decreased in the IFG-DM group (retinal, p = 0.017; RA, p < 0.001). The obese subjects in the IFG-DM group showed markedly lower retinal (p = 0.030) and RA (p = 0.003) levels than those in the IFG-IFG group. In study 2, the results for the two metabolites tended to be similar to those of study 1, but no significant difference was observed. Notably, the predictive ability for T2DM was enhanced when the metabolites were added to conventional risk factors for T2DM in both studies (study 1, AUC 0.682 → 0.775; study 2, AUC 0.734 → 0.786). The results suggest that retinal- and RA-related metabolic pathways are altered before the onset of T2DM.
Collapse
|
9
|
Gomes CDC, Passos TS, Morais AHA. Vitamin A Status Improvement in Obesity: Findings and Perspectives Using Encapsulation Techniques. Nutrients 2021; 13:nu13061921. [PMID: 34204998 PMCID: PMC8228342 DOI: 10.3390/nu13061921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
The association between obesity and vitamin A has been studied. Some studies point to the anti-obesity activity related to this vitamin, carotenoids with provitamin A activity, and carotenoid conversion products. This performance has been evaluated in respect of adipogenesis, metabolic activity, oxidation processes, secretory function, and oxidative stress modulation, showing a new property attributed to vitamin A in preventing and treating obesity. However, vitamin A and its precursors are highly sensitive and easily degraded when subjected to heat, the presence of light, and oxygen, in addition to losses related to the processes of digestion and absorption. In this context, encapsulation presents itself as an alternative capable of increasing vitamin A’s stability in the face of unfavorable conditions in the environment, which can reduce its functionality. Considering that vitamin A’s status shows a strong correlation with obesity and is an innovative theme, this article addresses the associations between vitamin A’s consumption and its precursors, encapsulated or not, and its physiological effects on obesity. The present narrative review points out those recent studies that demonstrate that vitamin A and its encapsulated precursors have the most preserved functionality, which guarantees better effects on obesity therapy.
Collapse
Affiliation(s)
- Camila de Carvalho Gomes
- Postgraduate Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil;
| | - Thais Souza Passos
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil;
| | - Ana Heloneida Araújo Morais
- Postgraduate Program in Biochemistry and Molecular Biology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil;
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil;
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078 970, Brazil
- Correspondence: ; Tel.: +55-(84)991061887
| |
Collapse
|
10
|
Marie A, Darricau M, Touyarot K, Parr-Brownlie LC, Bosch-Bouju C. Role and Mechanism of Vitamin A Metabolism in the Pathophysiology of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:949-970. [PMID: 34120916 PMCID: PMC8461657 DOI: 10.3233/jpd-212671] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Evidence shows that altered retinoic acid signaling may contribute to the pathogenesis and pathophysiology of Parkinson's disease (PD). Retinoic acid is the bioactive derivative of the lipophilic vitamin A. Vitamin A is involved in several important homeostatic processes, such as cell differentiation, antioxidant activity, inflammation and neuronal plasticity. The role of vitamin A and its derivatives in the pathogenesis and pathophysiology of neurodegenerative diseases, and their potential as therapeutics, has drawn attention for more than 10 years. However, the literature sits in disparate fields. Vitamin A could act at the crossroad of multiple environmental and genetic factors of PD. The purpose of this review is to outline what is known about the role of vitamin A metabolism in the pathogenesis and pathophysiology of PD. We examine key biological systems and mechanisms that are under the control of vitamin A and its derivatives, which are (or could be) exploited for therapeutic potential in PD: the survival of dopaminergic neurons, oxidative stress, neuroinflammation, circadian rhythms, homeostasis of the enteric nervous system, and hormonal systems. We focus on the pivotal role of ALDH1A1, an enzyme expressed by dopaminergic neurons for the detoxification of these neurons, which is under the control of retinoic acid. By providing an integrated summary, this review will guide future studies on the potential role of vitamin A in the management of symptoms, health and wellbeing for PD patients.
Collapse
Affiliation(s)
- Anaıs Marie
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Morgane Darricau
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Katia Touyarot
- University Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Louise C. Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand (Center of Research Excellence), Dunedin, New Zealand
| | | |
Collapse
|