1
|
Tai YW, Khamwongsa P, Chen XT, Lin YS, Lee ZJ, Ummartyotin S, Wei Y. Bacterial cellulose and keratin reinforced PAM hydrogels for advanced dye removal: Insights from batch and QCM analyses. Int J Biol Macromol 2025; 308:142458. [PMID: 40157671 DOI: 10.1016/j.ijbiomac.2025.142458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Industrial wastewater, particularly from textile industries, contains toxic dyes that require practical and sustainable removal technologies. Hydrogels are potential materials for this purpose due to their high water absorption capacity, but conventional designs suffer from poor mechanical strength and limited dye adsorption efficiency. In this study, we developed a bio-based hydrogel composite by reinforcing polyacrylamide (PAM) with bacterial cellulose (BC) and keratin intermediate filaments (KIF) derived from human hair. This hybrid material enhances both mechanical integrity and adsorption performance. Batch adsorption tests showed a high dye removal efficiency of 60 mg/g for methylene blue over 12 h. In contrast, QCM analysis demonstrated rapid adsorption equilibrium (15 s) under continuous flow conditions, confirming its potential for real-time wastewater treatment. The optimized 2 % KIF hydrogel achieved a compressive strength of 0.4 MPa, forming a porous structure that supports multiple adsorption-desorption cycles for reuse. Adsorption followed pseudo-second-order and Freundlich isotherm models, indicating a heterogeneous mechanism driven by electrostatic interactions and π-π stacking. By integrating sustainable biopolymers, this composite hydrogel overcomes traditional hydrogels' mechanical and functional limitations, offering an eco-friendly solution for continuous wastewater treatment and industrial dye removal.
Collapse
Affiliation(s)
- Yu-Wen Tai
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Prompong Khamwongsa
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Patumtani 12120, Thailand
| | - Xuan-Ting Chen
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yu-Shan Lin
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Zheng-Jie Lee
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Patumtani 12120, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
2
|
Kamal S, Roheen T, Rehman K, Bibi I, Akash MSH. Development of a robust enzyme cascade system: co-immobilization of laccase and versatile peroxidase on polyacrylamide hydrogel for enhanced BPA degradation. Biodegradation 2025; 36:34. [PMID: 40259074 DOI: 10.1007/s10532-025-10129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Biodegradation using a synergically integrated system of laccase (E.C. 1.10.3.2) and versatile peroxidase (EC 1.11.1.16) co-immobilized on the polyacrylamide (PAM) hydrogel presents a promising solution for removing endocrine disrupting chemicals (EDCs) like bisphenol A (BPA) from wastewater. In this study, we developed a tailored biocatalyst consisting of a fungal laccase from Pleurotus ostreatus IBL-02 and versatile peroxidase, enzyme cascade co-immobilized covalently on a 7% (w/v) PAM hydrogel, offering high catalytic potential across various pH and temperature ranges. The PAM-VP/Lac structure was analyzed using scanning electron microscopy and Fourier-transform infrared spectrophotometry, revealing improved characteristics compared to free counterparts (FLac and FVP). The optimal pH for FLac, FVP, Lac/VP, and PAM-VP/Lac was 4, 5, 6, and 7, respectively. PAM-VP/Lac exhibited optimal activity at 50-60 °C, higher than FLac, FVP, and Lac-VP. PAM-VP/Lac showed superior operational stability, retaining 99.2% of its activity after eight cycles, with an immobilization efficiency of 78.62 ± 1.15% and activity recovery of 33.71 ± 0.2%. It also demonstrated enhanced thermal stability, with a two-fold increase in half-life at 50-70 °C. Thermodynamic analysis showed significant improvements in stability parameters for PAM-VP/Lac. This system achieved complete BPA degradation within two and a half hr, highlighting its potential for industrial-scale environmental remediation.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Taleeha Roheen
- Department of Biochemistry, University of Sargodha, Sargodha, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|
3
|
Soliman MM, Elwahy AHM, Sayed AM, Ibrahim M, Dawoud MA, Ali SHM, Nady MTS, Hassan NA, Saad W, Abdelhamid IA. Synthesis and antimicrobial evaluation of a new hybrid bis-cyanoacrylamide-based-piperazine containing sulphamethoxazole moiety against rheumatoid arthritis-associated pathogens. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03780-7. [PMID: 39831977 DOI: 10.1007/s00210-024-03780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, 13C-NMR, and FTIR spectroscopy. Piperazine-based compounds were screened for in silico studies to understand the antimicrobial activity against infections that may contribute to rheumatoid arthritis symptoms. The tested piperazine compound was also evaluated for its antimicrobial activity against Aspergillus niger, Candida albicans, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, Pseudomonas aeuroginosa ATCC 27853, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 700603. S. aureus showed the highest inhibition, with a zone diameter of 16.0 ± 1.0 mm at a concentration of 0.8 mg/ml. The minimal inhibitory concentration (MIC) for all bacterial species ranged from 5 to 40 mg/ml. In contrast, fungal species were the most resistant to the tested compound. Molecular docking studies were conducted to elucidate the interaction mechanisms, binding energies, and hydrogen bonding interactions within protein-ligand complexes. Molecular docking studies were performed against five bacterial proteins and two fungal proteins, including DNA gyrase subunit B (UniProt ID: Q839Z1), protein RecA of (UniProt ID: P0A7G6), cyclic AMP-AMP-AMP synthase (UniProt ID: P0DTF7), UDP-N-acetylglucosamine 1-carboxyvinyl transferase (UniProt ID: A0A1S5RKE3), and clumping factor A (UniProt ID: Q53653). The tested compound achieved the highest binding score of ∆G = - 10.9 kcal/mol at the cyclic AMP synthase active site (UniProt ID: P0DTF7), forming 26 interactions. The results demonstrated that the synthesized piperazine compound exhibits promising antibacterial and antifungal activities, highlighting its potential as a candidate for antimicrobial development.
Collapse
Affiliation(s)
- Mona M Soliman
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed H M Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Ahmed M Sayed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A Dawoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Menna Tallah S Nady
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nada A Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wessam Saad
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
4
|
Rumon MM, Akib AA, Sarkar SD, Khan MAR, Uddin MM, Nasrin D, Roy CK. Polysaccharide-Based Hydrogels for Advanced Biomedical Engineering Applications. ACS POLYMERS AU 2024; 4:463-486. [PMID: 39679058 PMCID: PMC11638789 DOI: 10.1021/acspolymersau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 12/17/2024]
Abstract
In recent years, numerous applications of hydrogels using polysaccharides have evolved, benefiting from their widespread availability, excellent biodegradability, biocompatibility, and nonpoisonous nature. These natural polymers are typically sourced from renewable materials or from manufacturing processes, contributing collaboratively to waste management and demonstrating the potential for enhanced and enduring sustainability. In the field of novel bioactive molecule carriers for biotherapeutics, natural polymers are attracting attention due to their inherent properties and adaptable chemical structures. These polymers offer versatile matrices with a range of architectures and mechanical properties, while retaining the bioactivity of incorporated biomolecules. However, conventional polysaccharide-based hydrogels suffer from inadequate mechanical toughness with large swelling properties, which prohibit their efficacy in real-world applications. This review offers insights into the latest advancements in the development of diverse polysaccharide-based hydrogels for biotherapeutic administrations, either standalone or in conjunction with other polymers or drug delivery systems, in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Md. Mahamudul
Hasan Rumon
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Anwarul Azim Akib
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Stephen Don Sarkar
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United
States
| | | | - Md. Mosfeq Uddin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Victoria, Victoria 3800, Canada
| | - Dina Nasrin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Chanchal Kumar Roy
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
5
|
Mir A, Kumar A, Alam J, Riaz U. Synthesis and characterization of pH-responsive conducting polymer/Na-alginate/gelatin based composite hydrogels for sustained release of amoxicillin drug. Int J Biol Macromol 2023; 252:126015. [PMID: 37517746 DOI: 10.1016/j.ijbiomac.2023.126015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Composite hydrogels of Na-Alginate (Na-ALG) and Gelatin (GEL) with conducting polymers (CPs) were synthesised using poly(o-phenylenediamine) (POPD), polyaniline (PANI), poly(1-naphthylamine (PNA) and poly(vinylenedine fluoride) (PVDF). The synthesised hydrogels were characterized using FTIR, scanning electron microscopy (SEM) rheology, swelling ability and in-vitro drug release characteristics. The purpose of this investigation was to determine whether these hydrogels could be used to deliver antibiotics for extended drug release. The composite hydrogels were loaded with antibiotic drug: amoxicillin in three different concentrations and the release was studied at intestinal fluid (pH 7.4) and gastric fluid (pH 1.2). Release kinetics was found to show best fit in zero order models at both pH values and showed prolonged release characteristics. The POPD-Na-ALG/GEL showed highest release at intestinal pH of 7.4, while PVDF-Na-ALG/GEL showed highest release at gastric pH at 1.2.
Collapse
Affiliation(s)
- Aleena Mir
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Amit Kumar
- Theory & Simulation Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Javed Alam
- College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ufana Riaz
- Department of Chemistry and Biochemistry, North Carolina Central University, NC, 27707, USA; Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
6
|
Torres-Figueroa AV, de los Santos-Villalobos S, Rodríguez-Félix DE, Moreno-Salazar SF, Pérez-Martínez CJ, Chan-Chan LH, Ochoa-Meza A, del Castillo-Castro T. Physically and Chemically Cross-Linked Poly(vinyl alcohol)/Humic Acid Hydrogels for Agricultural Applications. ACS OMEGA 2023; 8:44784-44795. [PMID: 38046300 PMCID: PMC10688162 DOI: 10.1021/acsomega.3c05868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
The preparation method of hydrogels has a significant effect on their structural and physicochemical properties. In this report, physically and chemically cross-linked poly(vinyl alcohol) (PVA) networks containing humic acid (HA) were alternatively prepared by autoclaving (AC) and through glutaraldehyde (GA) addition, respectively, for agricultural purposes. PVA/HA hydrogels were comparatively characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, mechanical assays, scanning electron microscopy, swelling kinetics measurements, and water retention tests in soil. AC hydrogels showed a more homogeneous porous microstructure, higher swelling levels, and a better capacity to preserve the humidity of soil than those obtained by adding GA. Both PVA/HA hydrogels exhibited no phytotoxicity on cultivation trials of Sorghum sp., but the plant growth was promoted with the GA-cross-linked network as compared to the effect of the AC sample. The release behavior of urea was modified according to the preparation method of the PVA/HA hydrogels. After 3 days of sustained urea release, 91% of the fertilizer was delivered from the AC hydrogel, whereas a lower amount of 56% was released for the GA-cross-linked hydrogel. Beyond the advantages of applying PVA/HA hydrogels in the agricultural field, an appropriate method of preparing these materials endows them with specific properties according to the requirements of the target crop.
Collapse
Affiliation(s)
- Ana V. Torres-Figueroa
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Sergio de los Santos-Villalobos
- Laboratorio
de Biotecnología del Recurso Microbiano, Departamento de Ciencias
Agronómicas y Veterinarias, Instituto
Tecnológico de Sonora, 5 de Febrero 818 Sur, Colonia Centro, Obregón 85000, Mexico
| | - Dora E. Rodríguez-Félix
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Sergio F. Moreno-Salazar
- Departamento
de Agricultura y Ganadería, Universidad
de Sonora, Carr. Bahía de Kino, Km. 21. Apartado Postal 305, Hermosillo, Sonora 83000, Mexico
| | | | - Lerma H. Chan-Chan
- Departamento
de Física, CONAHCyT, Universidad
de Sonora, Hermosillo 83000, Mexico
| | - Andrés Ochoa-Meza
- Departamento
de Agricultura y Ganadería, Universidad
de Sonora, Carr. Bahía de Kino, Km. 21. Apartado Postal 305, Hermosillo, Sonora 83000, Mexico
| | - Teresa del Castillo-Castro
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
7
|
Ajaz N, Bukhsh M, Kamal Y, Rehman F, Irfan M, Khalid SH, Asghar S, Rizg WY, Bukhary SM, Hosny KM, Alissa M, Safhi AY, Sabei FY, Khan IU. Development and evaluation of pH sensitive semi-interpenetrating networks: assessing the impact of itaconic acid and aloe vera on network swelling and cetirizine release. Front Bioeng Biotechnol 2023; 11:1173883. [PMID: 37229490 PMCID: PMC10203566 DOI: 10.3389/fbioe.2023.1173883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are crosslinked three-dimensional networks, and their properties can be easily tuned to target the various segments of the gastrointestinal tract (GIT). Cetirizine HCl (CTZ HCl) is an antihistaminic drug, which when given orally can upset the stomach. Moreover, this molecule has shown maximum absorption in the intestine. To address these issues, we developed a pH-responsive semi-interpenetrating polymer network (semi-IPN) for the delivery of CTZ HCl to the lower part of the GIT. Initially, 10 different formulations of itaconic acid-grafted-poly (acrylamide)/aloe vera [IA-g-poly (AAm)/aloe vera] semi-IPN were developed by varying the concentration of IA and aloe vera using the free radical polymerization technique. Based on swelling and sol-gel analysis, formulation F5 containing 0.3%w/w aloe vera and 6%w/w IA was chosen as the optimum formulation. The solid-state characterization of the optimized formulation (F5) revealed a successful incorporation of CTZ HCl in semi-IPN without any drug-destabilizing interaction. The in vitro drug release from F5 showed limited release in acidic media followed by a controlled release in the intestinal environment for over 72 h. Furthermore, during the in vivo evaluation, formulation F5 did not affect the hematological parameters, kidney, and liver functions. Clinical observations did not reveal any signs of illness in rabbits treated with hydrogels. Histopathological images of vital organs of treated animals showed normal cellular architecture. Thus, the results suggest a non-toxic nature and overall potential of the developed formulation as a targeted drug carrier.
Collapse
Affiliation(s)
- Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Munnaza Bukhsh
- Foundation University and Medical College Islamabad Department of Medicine, Islamabad, Pakistan
| | - Yousaf Kamal
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Karachi, Islamabad Campus, Islamabad, Pakistan
| | - Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waleed Y. Rizg
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sahar M. Bukhary
- Department of Chemical Laboratories, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
8
|
Başyiğit B, Altun G, Yücetepe M, Karaaslan A, Karaaslan M. Locust bean gum provides excellent mechanical and release attributes to soy protein-based natural hydrogels. Int J Biol Macromol 2023; 231:123352. [PMID: 36681221 DOI: 10.1016/j.ijbiomac.2023.123352] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The current study concentrated on designing soy protein (SP)-based natural hydrogels in the presence of locust bean gum (LBG). For this, the gums were recovered from the kernel of the relevant plant and incorporated into SP gel models. Three more hydrogels were fabricated using commercial carbohydrates (gum Arabic (GA), maltodextrin (MD), and pectin (PC)) to decipher exactly the ability of LBG in these models. The chemical and morphological structures of the samples were elaborated by FTIR and SEM analyses. The coexistence of protein and carbohydrates led to an enhancement in functional (water holding capacity (WHC), swelling ratio, protein leachability, volumetric gel index (VGI)) and mechanical (textural and rheological behavior) features of natural gels compared to SP alone (control) but the quality of hydrogels was impressed by the carbohydrate type. Hydrogels designed with LBG came to the fore in terms of these attributes. Additionally, these gel models created awareness for phenolic delivery.
Collapse
Affiliation(s)
- Bülent Başyiğit
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey
| | - Gülbahar Altun
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey
| | - Melike Yücetepe
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey
| | - Asliye Karaaslan
- Harran University, Vocational School, Food Processing Programme, 63200 Şanlıurfa, Turkey
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, 63000 Şanlıurfa, Turkey.
| |
Collapse
|
9
|
Babaluei M, Mottaghitalab F, Seifalian A, Farokhi M. Injectable multifunctional hydrogel based on carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C and curcumin promoted full-thickness burn regeneration. Int J Biol Macromol 2023; 236:124005. [PMID: 36907296 DOI: 10.1016/j.ijbiomac.2023.124005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Burn injuries are a major global problem, with a high risk of infection and mortality. This study aimed to develop an injectable hydrogel for wound dressings, composed of sodium carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C (CMC/PAAm/PDA VitC) for its antioxidant and antibacterial properties. Simultaneously, silk fibroin/alginate nanoparticles (SF/SANPs) loaded with curcumin (SF/SANPs CUR) were incorporated into the hydrogel to enhance wound regeneration and reduce bacterial infection. The hydrogels were fully characterized and tested in vitro and in preclinical rat models for biocompatibility, drug release, and wound healing efficacy. Results showed stable rheological properties, appropriate swelling and degradation ratios, gelation time, porosity, and free radical scavenging capacity. Biocompatibility was confirmed through MTT, lactate dehydrogenase, and apoptosis evaluations. Hydrogels containing curcumin demonstrated antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). In the preclinical study, hydrogels containing both drugs showed superior support for full-thickness burn regeneration, with improved wound closure, re-epithelialization, and collagen expression. The hydrogels also showed neovascularization and anti-inflammatory effects, as confirmed by CD31 and TNF-α markers. In conclusion, these dual drug-delivery hydrogels showed significant potential as wound dressings for full-thickness wounds.
Collapse
Affiliation(s)
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
10
|
Reddy YN, De A, Paul S, Pujari AK, Bhaumik J. In Situ Nanoarchitectonics of a MOF Hydrogel: A Self-Adhesive and pH-Responsive Smart Platform for Phototherapeutic Delivery. Biomacromolecules 2023; 24:1717-1730. [PMID: 36897993 DOI: 10.1021/acs.biomac.2c01489] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Metal-organic frameworks (MOFs) have dramatically changed the fundamentals of drug delivery, catalysis, and gas storage as a result of their porous geometry, controlled architecture, and ease of postsynthetic modification. However, the biomedical applications of MOFs still remain a less explored area due to the constraints associated with handling, utilizing, and site-specific delivery. The major drawbacks associated with the synthesis of nano-MOFs are related to the lack of control over particle size and inhomogeneous dispersion during doping. Therefore, a smart strategy for the in situ growth of a nano-metal-organic framework (nMOF) has been devised to incorporate it into a biocompatible polyacrylamide/starch hydrogel (PSH) composite for therapeutic applications. In this study, the post-treatment of zinc metal ion cross-linked PSH with the ligand solution generated the nZIF-8@PAM/starch composites (nZIF-8, nano-zeolitic imidazolate framework-8). The ZIF-8 nanocrystals thus formed have been found to be evenly dispersed throughout the composites. This newly designed nanoarchitectonics of an MOF hydrogel was found to be self-adhesive, which also exhibited improved mechanical strength, a viscoelastic nature, and a pH-responsive behavior. Taking advantage of these properties, it has been utilized as a sustained-release drug delivery platform for a potential photosensitizer drug (Rose Bengal). The drug was initially diffused into the in situ hydrogel, and then the entire scaffold was analyzed for its potential in photodynamic therapy against bacterial strains such as E. coli and B. megaterium. The Rose Bengal loaded nano-MOF hydrogel composite exhibited remarkable IC50 values within the range of 7.37 ± 0.04 and 0.51 ± 0.05 μg/mL for E. coli and B. megaterium. Further, reactive oxygen species (ROS) directed antimicrobial potential was validated using a fluorescence-based assay. This smart in situ nanoarchitectonics hydrogel platform can also serve as a potential biomaterial for topical treatment including wound healing, lesions, and melanoma.
Collapse
Affiliation(s)
- Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Angana De
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Anil Kumar Pujari
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
11
|
Caldera-Villalobos M, Claudio-Rizo JA, Rodríguez-Estrada VA, Cabrera Munguía DA, Becerra-Rodríguez JJ. Effect of the content of starch on the biocompatibility, bacterial inhibition, and drug release performance of semi-IPN collagen-polyurethane hydrogels. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2166842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- M. Caldera-Villalobos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, México
| | - J. A. Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, México
| | - V. A. Rodríguez-Estrada
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, México
| | - D. A. Cabrera Munguía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, México
| | | |
Collapse
|
12
|
Zarrin NK, Mottaghitalab F, Reis RL, Kundu SC, Farokhi M. Thermosensitive chitosan/poly(N-isopropyl acrylamide) nanoparticles embedded in aniline pentamer/silk fibroin/polyacrylamide as an electroactive injectable hydrogel for healing critical-sized calvarial bone defect in aging rat model. Int J Biol Macromol 2022; 213:352-368. [PMID: 35640849 DOI: 10.1016/j.ijbiomac.2022.05.176] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022]
Abstract
Thermosensitive nanoparticles with phase transition abilities have been considered as suitable materials in biomedical fields, especially drug delivery systems. Moreover, electroactive injectable hydrogels supporting bone regeneration of the elderly will highly be desired in bone tissue engineering applications. Herein, thermosensitive nanoparticles were fabricated using chitosan/poly(N-isopropyl acrylamide) for simvastatin acid delivery. The nanoparticles were incorporated into electroactive injectable hydrogels based on aniline pentamer/silk fibroin/polyacrylamide containing vitamin C. The nanoparticles had thermosensitive properties as simvastatin acid had higher release rates at 37 than 23 °C without significant burst release. The hydrogels also revealed an appropriate gelation time, stable mechanical and rheological characteristics, high water absorbency, and proper biodegradability. In vitro studies indicated that the hydrogel was biocompatible and nontoxic, especially those containing drugs. Implantation of the hydrogels containing both simvastatin acid and vitamin C into the critical calvarial bone defect of the aged rat also demonstrated significant enhancement of bone healing after 4 and 8 weeks post-implantation. We found that the electroactive injectable hydrogels containing thermosensitive nanoparticles exhibited great potential for treating bone defects in the elderly rats.
Collapse
Affiliation(s)
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetic, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, 4805-017 Barco, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetic, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, 4805-017 Barco, Guimaraes, Portugal
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Lemma E, Kiflie Z, Kassahun SK. Adsorption of Cr (VI) ion from aqueous solution on acrylamide – grafted starch (Coccinia abyssinicca) – PVA/PVP/chitosan/graphene oxide blended hydrogel: isotherms, kinetics, and thermodynamics studies. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Endalu Lemma
- School of Chemical and Bio-Engineering, Environmental Engineering Chair, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zebene Kiflie
- School of Chemical and Bio-Engineering, Environmental Engineering Chair, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Shimelis Kebede Kassahun
- School of Chemical and Bio-Engineering, Environmental Engineering Chair, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
14
|
Zhang Y, Dong L, Liu L, Wu Z, Pan D, Liu L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6300-6316. [PMID: 35578738 DOI: 10.1021/acs.jafc.2c01080] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels obtained from natural polymers have received widespread attention for their excellent biocompatible property, nontoxicity, easy gelation, and functionalization. Polysaccharides can regulate the gut microbiota and improve the intestinal microenvironment, thus exerting the healthy effect of intestinal immunity. In an active substance delivery system, the extent and speed of the substance reaching its target are highly dependent on the carrier. Thus, the smart active substance delivery systems are gradually increasing. The smart polysaccharide-hydrogels possess the ability in response to external stimuli through changing their volume phase and structure, which are applied in various fields. Natural polysaccharide-based hydrogels possess excellent characteristics of environmental friendliness, good biocompatibility, and abundant sources. According to the response type, natural polysaccharide-based hydrogels are usually divided into stimulus-responsive hydrogels, including internal response (pH, temperature, enzyme, redox) and external response (light, electricity, magnetism) hydrogels. The delivery system based on polysaccharides can exert their effects in the gastrointestinal tract. At the same time, polysaccharides may also take part in regulating the brain signals through the microbiota-gut-brain axis. Therefore, natural polysaccharide-hydrogels are considered as promising biomaterials, which can be designed as delivery systems for regulating the gut-brain axis. This article reviews the research advance of stimulus-responsive hydrogels, which focus on the types, response characteristics, and applications for polysaccharide-based smart hydrogels as delivery systems.
Collapse
Affiliation(s)
- Yunzhen Zhang
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lezhen Dong
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lingyi Liu
- University of Nebraska Lincoln, Department of Food Science & Technology, Lincoln, Nebraska 68588, United States
| | - Zufang Wu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Daodong Pan
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lianliang Liu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| |
Collapse
|
15
|
Role of Polymer Concentration and Crosslinking Density on Release Rates of Small Molecule Drugs. Int J Mol Sci 2022; 23:ijms23084118. [PMID: 35456935 PMCID: PMC9028196 DOI: 10.3390/ijms23084118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few years, researchers have demonstrated the use of hydrogels to design drug delivery platforms that offer a variety of benefits, including but not limited to longer circulation times, reduced drug degradation, and improved targeting. Furthermore, a variety of strategies have been explored to develop stimulus-responsive hydrogels to design smart drug delivery platforms that can release drugs to specific target areas and at predetermined rates. However, only a few studies have focused on exploring how innate hydrogel properties can be optimized and modulated to tailor drug dosage and release rates. Here, we investigated the individual and combined roles of polymer concentration and crosslinking density (controlled using both chemical and nanoparticle-mediated physical crosslinking) on drug delivery rates. These experiments indicated a strong correlation between the aforementioned hydrogel properties and drug release rates. Importantly, they also revealed the existence of a saturation point in the ability to control drug release rates through a combination of chemical and physical crosslinkers. Collectively, our analyses describe how different hydrogel properties affect drug release rates and lay the foundation to develop drug delivery platforms that can be programmed to release a variety of bioactive payloads at defined rates.
Collapse
|
16
|
Ebrahimi R. Radiation initiated synthesis, characterization, and swelling behavior of poly (acrylic acid‐co‐acrylamide)/starch grafted hydrogel. J Appl Polym Sci 2021. [DOI: 10.1002/app.50931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rajabali Ebrahimi
- Department of Chemistry Takestan Branch, Islamic Azad University Takestan Iran
| |
Collapse
|
17
|
Karoyo AH, Wilson LD. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1095. [PMID: 33652859 PMCID: PMC7956345 DOI: 10.3390/ma14051095] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
Abstract
Hydrogels are hydrophilic 3D networks that are able to ingest large amounts of water or biological fluids, and are potential candidates for biosensors, drug delivery vectors, energy harvester devices, and carriers or matrices for cells in tissue engineering. Natural polymers, e.g., cellulose, chitosan and starch, have excellent properties that afford fabrication of advanced hydrogel materials for biomedical applications: biodegradability, biocompatibility, non-toxicity, hydrophilicity, thermal and chemical stability, and the high capacity for swelling induced by facile synthetic modification, among other physicochemical properties. Hydrogels require variable time to reach an equilibrium swelling due to the variable diffusion rates of water sorption, capillary action, and other modalities. In this study, the nature, transport kinetics, and the role of water in the formation and structural stability of various types of hydrogels comprised of natural polymers are reviewed. Since water is an integral part of hydrogels that constitute a substantive portion of its composition, there is a need to obtain an improved understanding of the role of hydration in the structure, degree of swelling and the mechanical stability of such biomaterial hydrogels. The capacity of the polymer chains to swell in an aqueous solvent can be expressed by the rubber elasticity theory and other thermodynamic contributions; whereas the rate of water diffusion can be driven either by concentration gradient or chemical potential. An overview of fabrication strategies for various types of hydrogels is presented as well as their responsiveness to external stimuli, along with their potential utility in diverse and novel applications. This review aims to shed light on the role of hydration to the structure and function of hydrogels. In turn, this review will further contribute to the development of advanced materials, such as "injectable hydrogels" and super-adsorbents for applications in the field of environmental science and biomedicine.
Collapse
Affiliation(s)
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|