1
|
Amin SA, Sessa L, Tarafdar R, Gayen S, Piotto S. A semiempirical and machine learning approach for fragment-based structural analysis of non-hydroxamate HDAC3 inhibitors. Biophys Chem 2025; 320-321:107409. [PMID: 39978120 DOI: 10.1016/j.bpc.2025.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Interest in HDAC3 inhibitors (HDAC3i) for pharmacological applications outside of cancer is growing. However, concerns regarding the possible mutagenicity of the commonly used hydroxamates (zinc-binding groups, ZBGs) are also increasing. Considering these concerns, non-hydroxamate ZBGs offer a promising alternative for the development of non-mutagenic HDAC3 inhibitors. Unfortunately, the quantum chemical space of non-hydroxamates has not been studied in detail. This study has three primary goals: (i) to perform semiempirical quantum chemical calculations, examining AM-1 model parameters relevant to zinc binding, (ii) to develop supervised mathematical learning models to train a diverse set of non-hydroxamate-based HDAC3i, and (iii) to apply fragment-based approaches to identify sub-structural fragments (fingerprints) that promote or hinder HDAC3 inhibitory activity through classification-based QSARs. In addition, flexible molecular docking analysis, 200 ns MD simulation, and free energy landscape (FEL) analysis further established the importance of identified fingerprints in the modulation of HDAC3 inhibitory activity. This comprehensive analysis of structural variations among non-hydroxamate HDAC3i provides valuable insights, contributing to the design of potential non-mutagenic HDAC3i.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India.
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Rajdip Tarafdar
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
2
|
Sun WJ, An XD, Zhang YH, Tang SS, Sun YT, Kang XM, Jiang LL, Zhao XF, Gao Q, Ji HY, Lian FM. Autophagy-dependent ferroptosis may play a critical role in early stages of diabetic retinopathy. World J Diabetes 2024; 15:2189-2202. [PMID: 39582563 PMCID: PMC11580571 DOI: 10.4239/wjd.v15.i11.2189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/16/2024] Open
Abstract
Diabetic retinopathy (DR), as one of the most common and significant microvascular complications of diabetes mellitus (DM), continues to elude effective targeted treatment for vision loss despite ongoing enrichment of the understanding of its pathogenic mechanisms from perspectives such as inflammation and oxidative stress. Recent studies have indicated that characteristic neuroglial degeneration induced by DM occurs before the onset of apparent microvascular lesions. In order to comprehensively grasp the early-stage pathological changes of DR, the retinal neurovascular unit (NVU) will become a crucial focal point for future research into the occurrence and progression of DR. Based on existing evidence, ferroptosis, a form of cell death regulated by processes like ferritinophagy and chaperone-mediated autophagy, mediates apoptosis in retinal NVU components, including pericytes and ganglion cells. Autophagy-dependent ferroptosis-related factors, including BECN1 and FABP4, may serve as both biomarkers for DR occurrence and development and potentially crucial targets for future effective DR treatments. The aforementioned findings present novel perspectives for comprehending the mechanisms underlying the early-stage pathological alterations in DR and open up innovative avenues for investigating supplementary therapeutic strategies.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Dong An
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Yue-Hong Zhang
- Department of Endocrinology, Fangshan Hospital of Beijing University of Chinese Medicine, Beijing 102400, China
| | - Shan-Shan Tang
- Department of Endocrinology, Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, China
| | - Yu-Ting Sun
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xiao-Min Kang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Lin-Lin Jiang
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Xue-Fei Zhao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Qing Gao
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Hang-Yu Ji
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| | - Feng-Mei Lian
- Department of Endocrinology, Guang’anmen Hospital, Beijing 100053, China
| |
Collapse
|
3
|
Makgoba TB, Kapp E, Egieyeh S, Joubert J. HDAC3 inhibitors: a patent review of their broad-spectrum applications as therapeutic agents. Expert Opin Ther Pat 2024; 34:273-295. [PMID: 38873766 DOI: 10.1080/13543776.2024.2363890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Histone deacetylases (HDACs) are a class of zinc-dependent enzymes. They maintain acetylation homeostasis, with numerous biological functions and are associated with many diseases. HDAC3 strictly requires multi-subunit complex formation for activity. It is associated with the progression of numerous non-communicable diseases. Its widespread involvement in diseases makes it an epigenetic drug target. Preexisting HDAC3 inhibitors have many uses, highlighting the need for continued research in the discovery of HDAC3-selective inhibitors. AREA COVERED This review provides an overview of 24 patents published from 2010 to 2023, focusing on compounds that inhibit the HDAC3 isoenzyme. EXPERT OPINION HDAC3-selective inhibitors - pivotal for pharmacological applications, as single or combination therapies - are gaining traction as a strategy to move away from complications laden pan-HDAC inhibitors. Moreover, there is an unmet need for HDAC3 inhibitors with alternative zinc-binding groups (ZBGs) because some preexisting ZBGs have limitations related to toxicity and side effects. Difficulties in achieving HDAC3 selectivity may be due to isoform selectivity. However, advancements in computer-aided drug design and experimental data of HDAC3 3D co-crystallized models could lead to the discovery of novel HDAC3-selective inhibitors, which bear alternative ZBGs with balanced selectivity for HDAC3 and potency.
Collapse
Affiliation(s)
- Thabo Brighton Makgoba
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Erika Kapp
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Samuel Egieyeh
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | | |
Collapse
|
4
|
Jun JH, Kim JS, Palomera LF, Jo DG. Dysregulation of histone deacetylases in ocular diseases. Arch Pharm Res 2024; 47:20-39. [PMID: 38151648 DOI: 10.1007/s12272-023-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.
Collapse
Affiliation(s)
- Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin, 16995, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Leon F Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
5
|
Liu Q, Liu C, Lei B. siRNA Mediated Downregulation of RhoA Expression Reduces Oxidative Induced Apoptosis in Retinal Ganglion Cells. Curr Mol Med 2024; 24:630-636. [PMID: 37171014 DOI: 10.2174/1566524023666230511095628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUNDS Glaucoma is the second leading cause of blindness. Apoptosis of retinal ganglion cells (RGCs) is an important mechanism of glaucomatous optic injury. Rho kinase expression is significantly increased in apoptotic RGCs. This study aimed to investigate the role of RhoA, a Rho GTPase, on the survival of RGCs and further to explore its potential therapeutic applications. METHODS RGCs were treated with siRhoA for 24 hours in vitro. Knockdown of RhoA was confirmed with quantitative RT-PCR. Oxidative stress was induced by treating the RGCs with 200 μM of H2O2 for 1 hour, and apoptosis of RGCs was quantified with TUNEL assay in situ, and with flow cytometry. The mRNA expression levels of RhoA, Nogo receptor, caspase 3 and Bcl-2 were evaluated by quantitative RT-PCR, and the protein levels of RhoA, ROCK1, ROCK2, Nogo receptor, caspase 3 and Bcl-2 were evaluated by Western blot. We found siRhoA treatment efficiently downregulated the expression of RhoA in RGCs and protected against H2O2-induced injury in RGCs in vitro. Apoptosis of RGC cells under oxidative stress was quantified in situ using TUNEL assay and confirmed with flow cytometry (FCM). RESULTS With the knockdown of RhoA, the expression of ROCK1, ROCK2, Nogo Receptor, Casepase-3 were decreased, while the expression of Bcl-2 was increased in both mRNA and protein level. Our data indicated that siRhoA prevented H2O2-induced apoptosis in RGC cells by modulating the RhoA/ROCK pathway. CONCLUSION The results suggested that siRhoA may exert potentially effective neuroprotection for RGCs by reducing injury.
Collapse
Affiliation(s)
- Qian Liu
- Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Changgeng Liu
- Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Bo Lei
- Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital and Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
6
|
Fu W, Gu H, Ye Y. Long Noncoding RNA MIAT Modulates Chronic Retinal Ischemia-Reperfusion Injury in Mice via the microRNA-203-3p/SNAI2 Axis. Chem Res Toxicol 2023; 36:1683-1692. [PMID: 37870436 DOI: 10.1021/acs.chemrestox.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Retinal ischemia-reperfusion injury (RIRI) is a vital pathological process of multiple ocular diseases. This study aimed at investigating the effects of the MIAT/miR-203-3p/SNAI2 axis on RIRI. RIRI was produced by inducing an exceedingly high intraocular pressure (IOP) in mice. Mouse retinal ganglion cells (RGCs) were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic in vitro models. Relevant oligonucleotides or plasmids were transfected into OGD/R-induced RGCs in vitro or injected into RIRI mice models in vivo via a vitreous cavity. The findings of our paper indicated that MIAT and SNAI2 were highly expressed and miR-203-3p was lowly expressed in mouse RIRI tissues and OGD/R-induced RGCs. Interfering MIAT promoted the viability of OGD/R-induced RGCs, decreased apoptosis, and reduced oxidative stress in vitro. Silencing MIAT increased retinal neuronal cell numbers and decreased retinal neuronal cell apoptosis in mouse RIRI tissues in vivo. MIAT sponged miR-203-3p, and miR-203-3p targeted and inhibited SNAI2 expression. SNAI2 up-regulation or miR-203-3p down-regulation reversed the protective effects of MIAT down-regulation on RIRI in mice and OGD/R-induced RGCs. MIAT sponges miR-203-3p upregulated the expression of SNAI2, thereby promoting RIRI in mice. In summary, MIAT may be a therapeutic target for the treatment of chronic RIRI.
Collapse
Affiliation(s)
- Weina Fu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Hong Gu
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yunyan Ye
- Department of Ophthalmology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| |
Collapse
|
7
|
Feng Y, Li T, Lin Z, Li Y, Han X, Pei X, Fu Z, Wu Q, Shao D, Li C. Inhibition of Polo-like kinase 1 (PLK1) triggers cell apoptosis via ROS-caused mitochondrial dysfunction in colorectal carcinoma. J Cancer Res Clin Oncol 2023; 149:6883-6899. [PMID: 36810816 DOI: 10.1007/s00432-023-04624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. Polo-like kinase 1 (PLK1), a member of the serine/threonine kinase PLK family, is the most investigated and essential in the regulation of cell cycle progression, including chromosome segregation, centrosome maturation and cytokinesis. However, the nonmitotic role of PLK1 in CRC is poorly understood. In this study, we explored the tumorigenic effects of PLK1 and its potential as a therapeutic target in CRC. METHODS GEPIA database and immunohistochemistry analysis were performed to evaluate the abnormal expression of PLK1 in CRC patients. MTT assay, colony formation and transwell assay were performed to assess cell viability, colony formation ability and migration ability after inhibiting PLK1 by RNAi or the small molecule inhibitor BI6727. Cell apoptosis, mitochondrial membrane potential (MMP) and ROS levels were evaluated by flow cytometry. Bioluminescence imaging was performed to evaluate the impact of PLK1 on CRC cell survival in a preclinical model. Finally, xenograft tumor model was established to study the effect of PLK1 inhibition on tumor growth. RESULTS First, immunohistochemistry analysis revealed the significant accumulation of PLK1 in patient-derived CRC tissues compared with adjacent healthy tissues. Furthermore, PLK1 inhibition genetically or pharmacologically significantly reduced cell viability, migration and colony formation, and triggered apoptosis of CRC cells. Additionally, we found that PLK1 inhibition elevated cellular reactive oxygen species (ROS) accumulation and decreased the Bcl2/Bax ratio, which led to mitochondrial dysfunction and the release of Cytochrome c, a key process in initiating cell apoptosis. CONCLUSION These data provide new insights into the pathogenesis of CRC and support the potential value of PLK1 as an appealing target for CRC treatment. Overall, the underlying mechanism of inhibiting PLK1-induced apoptosis indicates that the PLK1 inhibitor BI6727 may be a novel potential therapeutic strategy in the treatment of CRC.
Collapse
Affiliation(s)
- Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhenkun Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, 150081, People's Republic of China
| | - Qiao Wu
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing, 10020, People's Republic of China
| | - Di Shao
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, No. 1 Health Road, Yuzhong District, Chongqing, 400014, People's Republic of China.
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
8
|
Fu C, Peng J, Ling Y, Zhao H, Zhao Y, Zhang X, Ai M, Peng Q, Qin Y. Apigenin inhibits angiogenesis in retinal microvascular endothelial cells through regulating of the miR-140-5p/HDAC3-mediated PTEN/PI3K/AKT pathway. BMC Ophthalmol 2023; 23:302. [PMID: 37415101 DOI: 10.1186/s12886-023-03046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common cause of visual impairment. Apigenin has been shown to have antiangiogenic effects in various diseases. Our study aimed to investigate the role of apigenin in DR and elucidate the underlying mechanism. METHODS Human retinal microvascular endothelial cells (HRMECs) were exposed to high glucose (HG) to establish a DR model. HRMECs were treated with apigenin. Then we knocked down or overexpressed miR-140-5p and HDAC3, and added PI3K/AKT inhibitor LY294002. The expression levels of miR-140-5p, HDAC3, and PTEN were measured using qRT-PCR. Western blot analysis was performed to assess the expression of HDAC3, PTEN, and PI3K/AKT pathway-related proteins. Finally, cell proliferation and migration were evaluated using MTT, wound-healing assay, and transwell assay, while angiogenesis was examined using the tube formation assay. RESULTS HG treatment resulted in reduced miR-140-5p expression and overexpression of miR-140-5p suppressed proliferation, migration, and angiogenesis of the HG-induced HRMECs. Apigenin treatment significantly restored the decreased level of miR-140-5p caused by HG treatment and inhibited proliferation, migration, and angiogenesis of the HG-induced HRMECs by upregulating miR-140-5p. Moreover, miR-140-5p targeted HDAC3, and overexpression of miR-140-5p reversed the HG-inducted upregulation of HDAC3 expression. HDAC3 was found to bind to the promoter region of PTEN, inhibiting its expression. Knockdown of HDAC3 suppressed the PI3K/AKT pathway by elevating PTEN expression. Furthermore, apigenin inhibited angiogenesis in DR cell models through the regulating of the miR-140-5p/HDAC3-mediated PTEN/PI3K/AKT pathway. CONCLUSIONS Apigenin effectively suppressed angiogenesis in HG-induced HRMECs by modulating the miR-140-5p/HDAC3-mediated PTEN/PI3K/AKT pathway. Our study may contribute to the development of novel therapeutic approaches and identification of potential targets for the treatment of DR.
Collapse
Affiliation(s)
- Chaojun Fu
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases With Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Rd., Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function With Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jun Peng
- Ophthalmology Department, The First Hospital of Hunan University of Chinese Medicine, Shaoshan Rd., Yuhua District, Changsha, 410007, Hunan, China
| | - Yanjun Ling
- Institute of Chinese Medicine of Hunan Province, Lushan Rd., Yuelu District, Changsha, 410006, Hunan, China
| | - Hongqing Zhao
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases With Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Rd., Yuelu District, Changsha, 410208, Hunan, China
| | - Yongwang Zhao
- Ophthalmology Department, Songjiang Branch of the First People's Hospital affiliated to Shanghai Jiao Tong University, Zhongshan Zhong Rd., Songjiang District, Shanghai, 201699, China
| | - Xiuli Zhang
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases With Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Rd., Yuelu District, Changsha, 410208, Hunan, China
| | - Min Ai
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases With Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Rd., Yuelu District, Changsha, 410208, Hunan, China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function With Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases With Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Rd., Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function With Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Yuhui Qin
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases With Chinese Medicine, Hunan University of Chinese Medicine, Hanpu Rd., Yuelu District, Changsha, 410208, Hunan, China.
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function With Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
9
|
Jiang Y, Luo B. Histone deacetylase 3 inhibitor attenuates diabetic retinopathy in mice. J Neurophysiol 2023; 129:177-183. [PMID: 36541629 DOI: 10.1152/jn.00477.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy is one of the most common microvascular complications of diabetes. Inhibition of histone deacetylase 3 (Hdac3) was proven to be a successful way to ameliorate central nervous system injury and vision problem in a glaucoma mouse model. However, its role in diabetic retinopathy remains largely unknown. Eight-week-old C57BL/6J mice were intraperitoneally injected with 50 mg of streptozotocin for 5 consecutive days to induce diabetes. After 1 wk, diabetic mice were selected and treated with Hdac3 inhibitor RGFP966 once every 3 days for 12 consecutive weeks. It was found that RGFP966 could decrease the mRNA and protein expression of Hdac3. It significantly increased diabetic retinopathy-reduced retinal thickness without affecting fasting blood glucose. It also decreased diabetic retinopathy-activated oxidative stress and cell apoptosis. Moreover, diabetic retinopathy mice displayed an increased expression of vascular endothelial growth factor and a decreased expression of glial fibrillary acidic protein, both of which were partially restored by RGFP966 treatment. Mechanically, RGFP966 decreased the expression of NADPH oxidase 2 (Nox2) whereas it increased the expression of superoxide dismutase 2 (Sod2) in diabetic retinopathy mice. In conclusion, RGFP966 significantly reduces oxidative stress, inflammation, and cell apoptosis in the retina of streptozotocin-induced diabetic mice, which may be associated with its modulation of Nox2 and Sod2 expression.NEW & NOTEWORTHY The study demonstrated that RGFP966 significantly reduced oxidative stress, inflammation, and cell apoptosis in the retina of streptozotocin-induced diabetic mice, which may be associated with Nox2 and Sod2 expression.
Collapse
Affiliation(s)
- Yu Jiang
- Ophthalmology Department, Hefei Red Cross Eye Hospital, Hefei, Anhui, China
| | - Bo Luo
- Shanghai Yunhao Biotechnology Center, Shanghai, China
| |
Collapse
|
10
|
HDAC3 Inhibition Alleviates High-Glucose-Induced Retinal Ganglion Cell Death through Inhibiting Inflammasome Activation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4164824. [PMID: 36046456 PMCID: PMC9420628 DOI: 10.1155/2022/4164824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Purpose The exact effects of histone deacetylase 3 (HDAC3) inhibition in DR related retinal ganglion cells (RGCs) death remained unclear. This study is aimed at detecting the influence of HDAC3 on the high-glucose-induced retinal ganglion cell death. Methods The retinal HDAC3 expression in DR of different time points was analyzed by immunohistochemical assay and western blot. Besides, the expression of HDAC3 and both retinal thickness and RGC loss were analyzed. The effects of HDAC3 inhibitor on cell viability, oxidative stress, and apoptosis in high-glucose- (HG-) treated RGCs were analyzed. Both inflammatory and antioxidative factors were detected by ELISA. Results Advanced effects of HDAC3 inhibition on the expression of NLRP3 inflammasome were detected using western blots. High HDAC3 expression was detected only in the late DR mice (4 months of diabetes duration) but not early DR mice (2 months of diabetes duration). The immunohistochemical assay showed that HDAC3 expression was correlated with both retinal thickness and RCG contents. HDAC3 inhibitor significantly protected the HG-treated RGCs from damaged cell viability, severe apoptosis, and oxidative stress. Advanced pathway analyses showed that HDAC3 inhibition inactivated NLRP3 inflammasome and thus alleviated retinal inflammation. Conclusion. In conclusion, HDAC3 was involved in RGC loss and thus promoted the progression of neurodegeneration of DR. Besides, HDAC3 inhibitor demonstrated protective effects in neurodegeneration in DR through downregulation of NLRP3 activity. The effects of HDAC3 inhibitor in DR management should be confirmed in clinical trials.
Collapse
|
11
|
Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol 2022; 13:953691. [PMID: 36016568 PMCID: PMC9396039 DOI: 10.3389/fphar.2022.953691] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness worldwide, is caused by retinal neurovascular unit dysfunction, and its cellular pathology involves at least nine kinds of retinal cells, including photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells, pericytes, and retinal pigment epithelial cells. Its mechanism is complicated and involves loss of cells, inflammatory factor production, neovascularization, and BRB impairment. However, the mechanism has not been completely elucidated. Drug treatment for DR has been gradually advancing recently. Research on potential drug targets relies upon clear information on pathogenesis and effective biomarkers. Therefore, we reviewed the recent literature on the cellular pathology and the diagnostic and prognostic biomarkers of DR in terms of blood, protein, and clinical and preclinical drug therapy (including synthesized molecules and natural molecules). This review may provide a theoretical basis for further DR research.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jiaxin Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| |
Collapse
|
12
|
Luan Y, Liu H, Luan Y, Yang Y, Yang J, Ren KD. New Insight in HDACs: Potential Therapeutic Targets for the Treatment of Atherosclerosis. Front Pharmacol 2022; 13:863677. [PMID: 35529430 PMCID: PMC9068932 DOI: 10.3389/fphar.2022.863677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS) features include progressive hardening and reduced elasticity of arteries. AS is the leading cause of morbidity and mortality. An increasing amount of evidence showed that epigenetic modifications on genes serve are a main cause of several diseases, including AS. Histone deacetylases (HDACs) promote the deacetylation at lysine residues, thereby condensing the chromatin structures and further inhibiting the transcription of downstream genes. HDACs widely affect various physiological and pathological processes through transcriptional regulation or deacetylation of other non-histone proteins. In recent years, the role of HDACs in vascular systems has been revealed, and their effects on atherosclerosis have been widely reported. In this review, we discuss the members of HDACs in vascular systems, determine the diverse roles of HDACs in AS, and reveal the effects of HDAC inhibitors on AS progression. We provide new insights into the potential of HDAC inhibitors as drugs for AS treatment.
Collapse
Affiliation(s)
- Yi Luan
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ying Luan
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Zhao Y, Yu S, Huang Z, Chen J, Zhang X, Qu C. Therapeutic Effects of Sirtuin 1 Activator on Glaucoma Mice and the Regulation Mechanism of Mitogen-Activated Protein Kinase Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study focused on the therapeutic effects of resveratrol, sirtuin 1 (Sirt1) activator, on glaucoma, and its influence on mitogen-activated protein kinase (MAPK) pathway. Specifically, C57BL/6 mice were used and the glaucoma mouse model was established by intraperitoneal injection
of N-methyl-D-aspartate (NMDA). According to different treatment methods, they were randomly rolled into 3 groups: control group (no treatment), model group (glaucoma mouse model), and resveratrol (Res) group (intraperitoneal injection of 20 mg/kg resveratrol solution on the basis of model
group). The intraocular pressure was measured, and Sirt1 mRNA and protein expression was detected using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Subsequently, hematoxylin-eosin staining was used to observe histopathological morphology, the immunofluorescence
labeling was used to identify retinal survival ganglia, and Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) and Western blot were for apoptotic cells determination and the expression of c-Jun N-terminal kinase (JNK), extracellular regulated protein
kinase (ERK), and p38 protein in mitogen-activated protein kinase (MAPK) pathway, respectively. The model group showed lower intraocular pressure, Sirt1 mRNA and protein expression, number of survival retinal ganglion cells (RGCs), and thinner retina versus the control group (P <
0.05), but number of apoptotic RGCs and the phosphorylation levels of the three kinds of protein were higher (P < 0.05), and it exhibited no notable difference from the Res group (P > 0.05). Also, compared with the control group, the number of survival RGCs in the Res group
was reduced (P < 0.05), but no notable difference was noted in the retinal thickness, the number of apoptotic RGCs, and the phosphorylation levels of the three kinds of protein (P > 0.05). In conclusion, resveratrol, the Sirt1 activator, can inhibit RGCs apoptosis through
the MAPK signaling pathway and improve the pathological manifestations of glaucoma animal models, thus playing a protective role of the retina.
Collapse
Affiliation(s)
- Yuee Zhao
- Department of Ophthalmology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Songping Yu
- Department of Ophthalmology, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Zhenqiang Huang
- Clinical Laboratory, Lishui People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Jiaqi Chen
- Clinical Laboratory, Lishui People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Xuying Zhang
- Clinical Laboratory, Lishui People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Chunsheng Qu
- Clinical Laboratory, Lishui People’s Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| |
Collapse
|
14
|
Adornetto A, Gesualdo C, Laganà ML, Trotta MC, Rossi S, Russo R. Autophagy: A Novel Pharmacological Target in Diabetic Retinopathy. Front Pharmacol 2021; 12:695267. [PMID: 34234681 PMCID: PMC8256993 DOI: 10.3389/fphar.2021.695267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/09/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is the major catabolic pathway involved in removing and recycling damaged macromolecules and organelles and several evidences suggest that dysfunctions of this pathway contribute to the onset and progression of central and peripheral neurodegenerative diseases. Diabetic retinopathy (DR) is a serious complication of diabetes mellitus representing the main preventable cause of acquired blindness worldwide. DR has traditionally been considered as a microvascular disease, however this concept has evolved and neurodegeneration and neuroinflammation have emerged as important determinants in the pathogenesis and evolution of the retinal pathology. Here we review the role of autophagy in experimental models of DR and explore the potential of this pathway as a target for alternative therapeutic approaches.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
15
|
Abstract
In diabetic patients, diabetic retinopathy (DR) is the leading cause of blindness and seriously affects the quality of life. However, current treatment methods of DR are not satisfactory. Advances have been made in understanding abnormal protein interactions and signaling pathways in DR pathology, but little is known about epigenetic regulation. Non-coding RNAs, such as circular RNAs (circRNAs), have been shown to be associated with DR. In this review, we summarized the function of circRNAs and indicated their roles in the pathogenesis of DR, which may provide new therapeutic targets for clinical treatment.
Collapse
Affiliation(s)
- Huan-Ran Zhou
- Department of Endocrinology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Yu Kuang
- Department of Endocrinology, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Yang J, Miao X, Yang FJ, Cao JF, Liu X, Fu JL, Su GF. Therapeutic potential of curcumin in diabetic retinopathy (Review). Int J Mol Med 2021; 47:75. [PMID: 33693955 PMCID: PMC7949626 DOI: 10.3892/ijmm.2021.4908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is a type of retinal microangiopathy caused by diabetes mellitus. It has become the leading cause of blindness among working individuals worldwide. DR is becoming increasingly common among younger diabetic patients and there is a need for lifelong treatment. The pathogenic mechanisms of DR are influenced by a number of factors, such as hyperglycemia, hyperlipidemia, inflammatory response and oxidative stress, among others. Currently, the treatment methods for DR mainly include retinal photocoagulation, vitrectomy, or anti‑vascular endothelial growth factor (VEGF) therapy. However, these methods have some disadvantages and limitations. Therefore, it is a matter of great interest and urgency to discover drugs that can target the pathogenesis of DR. Since ancient times, traditional Chinese medicine practitioners have accumulated extensive experiences in the use of Chinese herbal medicine for the prevention and treatment of diseases. In the theory of traditional Chinese medicine, curcumin has the effects of promoting blood circulation and relieving pain. A number of studies have also demonstrated that curcumin has multiple biological activities, including exerting anti‑apoptotic, anti‑inflammatory, antioxidant and antitumor properties. In recent years, studies have also confirmed that curcumin can prevent a variety of diabetic complications, including diabetic nephropathy (DN). However, the preventive and curative effects of curcumin on DR and its mechanisms of action have not yet been fully elucidated. The present review aimed to explore the therapeutic potential of curcumin in diabetes mellitus and DR.
Collapse
Affiliation(s)
- Jian Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiao Miao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Feng-Juan Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Feng Cao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Ling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Guan-Fang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|