1
|
Park J, Kim WJ, Jung HW, Kim JJ, Park JY. Relationship between regional relative theta power and amyloid deposition in mild cognitive impairment: an exploratory study. Front Neurosci 2025; 19:1510878. [PMID: 39991752 PMCID: PMC11842361 DOI: 10.3389/fnins.2025.1510878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Electroencephalographic (EEG) abnormalities, such as increased theta power, have been proposed as biomarkers for neurocognitive disorders. Advancements in amyloid positron emission tomography (PET) imaging have enhanced our understanding of the pathology of neurocognitive disorders, such as amyloid deposition. However, much remains unknown regarding the relationship between regional amyloid deposition and EEG abnormalities. This study aimed to explore the relationship between regional EEG abnormalities and amyloid deposition in patients with mild cognitive impairment (MCI). Methods We recruited 24 older adults with MCI from a community center for dementia prevention, and 21 participants were included in the final analysis. EEG was recorded using a 64-channel system, and amyloid deposition was measured using amyloid PET imaging. Magnetic resonance imaging (MRI) data were used to create individualized brain models for EEG source localization. Correlations between relative theta power and standardized uptake value ratios (SUVRs) in 12 brain regions were analyzed using Spearman's correlation coefficient. Results Significant positive correlations between relative theta power and SUVR values were found in several brain regions in the individualized brain model during the resting eyes-closed condition, including right temporal lobe (r = 0.581, p = 0.006), left hippocampus (r = 0.438, p = 0.047), left parietal lobe (r = 0.471, p = 0.031), right parietal lobe (r = 0.509, p = 0.018), left occipital lobe (r = 0.597, p = 0.004), and right occipital lobe (r = 0.590, p = 0.005). During the visual working memory condition, significant correlations were found in both cingulate lobes (left: r = 0.483, p = 0.027; right: r = 0.449, p = 0.041), left parietal lobe (r = 0.530, p = 0.010), right parietal lobe (r = 0.606, p = 0.004), left occipital lobe (r = 0.648, p = 0.001), and right occipital lobe (r = 0.657, p = 0.001). Conclusion The result suggests that regional increases in relative theta power are associated with regional amyloid deposition in patients with MCI. These findings highlight the potential of EEG in detecting amyloid deposition. Future large-scale studies are needed to validate these preliminary findings and explore their clinical applications.
Collapse
Affiliation(s)
- Jaesub Park
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Jung Kim
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han Wool Jung
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Park
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, Gyeonggi, Republic of Korea
| |
Collapse
|
2
|
Wang X, Wang Q, Wang X, Zhao H, Zhao C, Jiao Y, Shi H, Chen C, Chen H, Wang P, Song T. Early intervention using long-term rhythmic pulsed magnetic stimulation alleviates cognitive decline in a 5xFAD mouse model of Alzheimer's disease. Exp Neurol 2024; 383:115002. [PMID: 39419435 DOI: 10.1016/j.expneurol.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent form of dementia, but no effective therapeutic strategy is available to date. Rhythmic magnetic stimulation is an attractive means of neuron modulation that could be beneficial for restoring learning and memory abilities. OBJECTIVE To assess the effect of a compound pulsed rhythmic magnetic field (cPMF) on cognition during AD progression and to explore the appropriate cPMF intervention period. METHODS Female 5xFAD mice aged 10 weeks and 18 weeks were exposed to cPMF with a carrier frequency of 40 Hz, repeated at 5 Hz for 1 h/d for 8 consecutive weeks. The Morris water maze (MWM) test was used for cognitive behavioral assessment. Furthermore, changes in molecular pathology within the brain were detected using immunofluorescence staining and real-time PCR. RESULTS 10-week-old AD mice treated with cPMF explored the target quadrant more frequently than sham-exposed AD mice in MWM test, exhibiting improved learning and memory abilities. Additionally, cPMF exposure alleviated Aβ plaque deposition and astrogliosis in the AD brain. Moreover, neurotrophic factor fibroblast growth factor 1 (FGF1) in the AD brain was upregulated by cPMF treatment. However, in 18-week-old AD mice treated with cPMF, cognitive performance and Fgf1 gene expression were not significantly improved, although Aβ plaque deposition and astrogliosis were alleviated. CONCLUSION Early intervention via long-term rhythmic cPMF stimulation may alleviate the histopathological features and enhance neuroprotective gene Fgf1 expression, thereby improving the cognitive performance of 5xFAD mice, which should provide promising insight for the clinical treatment of patients with AD.
Collapse
Affiliation(s)
- Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmeng Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Zhao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuncheng Zhao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongkai Shi
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Baranich TI, Skvortsova KA, Voronkov DN, Egorova AV, Averchuk AS, Ryazanova MV, Stavrovskaya AV, Glinkina VV, Salmina AB, Sukhorukov VS. Immunohistochemical Analysis of Mitochondrial Dynamics in Different Zones of the Hippocampus during Experimental Modeling of Alzheimer's Disease. Bull Exp Biol Med 2024; 176:523-527. [PMID: 38492101 DOI: 10.1007/s10517-024-06060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 03/18/2024]
Abstract
We performed a comparative assessment of the immunohistochemical distribution of markers of mitochondrial fission (Drp-1), mitochondrial fusion (Mfn-2), and mitochondrial biogenesis (PGC-1α) in pyramidal neurons of different zones of the hippocampus in mice with intrahippocampal administration of β-amyloid peptide 25-35. The most pronounced changes in the dynamics associated with a decrease in the amount of the fission marker and an increase in the amount of the fusion marker were observed in the CA3 field on day 38 after peptide administration. In the CA1 field, a significant decrease in the marker of mitochondrial biogenesis PGC-1α was found on day 38, which can indicate a decrease in the intensity of mitochondrial biogenesis. Early mitochondrial changes can play an important role in the pathogenesis of all types of memory impairment in Alzheimer's disease.
Collapse
Affiliation(s)
- T I Baranich
- Research Center of Neurology, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - K A Skvortsova
- Research Center of Neurology, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - A V Egorova
- Research Center of Neurology, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | | | | - V V Glinkina
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A B Salmina
- Research Center of Neurology, Moscow, Russia
| | - V S Sukhorukov
- Research Center of Neurology, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Shao S, Ye X, Su W, Wang Y. Curcumin alleviates Alzheimer's disease by inhibiting inflammatory response, oxidative stress and activating the AMPK pathway. J Chem Neuroanat 2023; 134:102363. [PMID: 37989445 DOI: 10.1016/j.jchemneu.2023.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common degenerative brain disorder with limited therapeutic options. Curcumin (Cur) exhibits neuroprotective function in many diseases. We aimed to explore the role and mechanism of Cur in AD. MATERIALS AND METHODS Firstly, we established AD mice by injecting amyloid-β1-42 (Aβ1-42) solution into the hippocampus. Then, the AD mice received 150 mg/kg/d Cur for 10 consecutive days. The Morris water maze test was conducted to evaluate the cognitive function of the mice by hidden platform training and probe trials. To assess the spatial memory of the mice, spontaneous alternation behavior, the number of crossing the novel arm and the time spent in the novel arm during the Y-maze test was recorded. Hematoxylin and eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNAL) assay were performed to assess the pathological damage and apoptosis of brain tissues. The number of damaged neurons was inspected by Nissl staining. Immunohistochemical staining was then performed to detect Aβ1-42 deposition. The levels of tumor necrosis factor-α (TNF-a), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in serum and hippocampus, the contents of super oxide dismutase (SOD) and malondialdehyde (MDA) in brain tissues were assessed by enzyme-linked immunosorbent assay (ELISA). Additionally, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), RelA (p65) protein expressions and Adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation were tested using Western blot. RESULTS Cur not only improved cognitive function and spatial memory, but also alleviated the pathological damage and apoptosis of brain tissues for AD mice. Meanwhile, upon Cur treatment, the number of damaged neurons in AD mice was decreased, the level of Aβ1-42 in AD mice was significantly decreased. Furthermore, the AD mice treated with Cur exhibited lower TNF-a, IL-6, IL-1β and MDA levels and a higher SOD content. Besides, Cur also downregulated p65 expression and upregulated AMPK phosphorylation. CONCLUSION Cur may improve AD via suppressing the inflammatory response, oxidative stress and activating the AMPK pathway, suggesting that Cur may be a potential drug for AD.
Collapse
Affiliation(s)
- Sen Shao
- Department of Neurology, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Ye
- Department of Neurology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenwen Su
- Department of Internal Medicine, CiXi Seventh People's Hospital, Ningbo, China
| | - Yanbo Wang
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China.
| |
Collapse
|
5
|
Gauthier-Umaña C, Valderrama M, Múnera A, Nava-Mesa MO. BOARD-FTD-PACC: a graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Inform 2023; 10:12. [PMID: 37155028 PMCID: PMC10167074 DOI: 10.1186/s40708-023-00191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/01/2023] [Indexed: 05/10/2023] Open
Abstract
In order to understand the link between brain functional states and behavioral/cognitive processes, the information carried in neural oscillations can be retrieved using different analytic techniques. Processing these different bio-signals is a complex, time-consuming, and often non-automatized process that requires customization, due to the type of signal acquired, acquisition method implemented, and the objectives of each individual research group. To this end, a new graphical user interface (GUI), named BOARD-FTD-PACC, was developed and designed to facilitate the visualization, quantification, and analysis of neurophysiological recordings. BOARD-FTD-PACC provides different and customizable tools that facilitate the task of analyzing post-synaptic activity and complex neural oscillatory data, mainly cross-frequency analysis. It is a flexible and user-friendly software that can be used by a wide range of users to extract valuable information from neurophysiological signals such as phase-amplitude coupling and relative power spectral density, among others. BOARD-FTD-PACC allows researchers to select, in the same open-source GUI, different approaches and techniques that will help promote a better understanding of synaptic and oscillatory activity in specific brain structures with or without stimulation.
Collapse
Affiliation(s)
- Cécile Gauthier-Umaña
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Department of Systems Engineering, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Mario Valderrama
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Múnera
- Behavioral Neurophysiology Laboratory, Physiological Sciences Department, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
6
|
van den Berg M, Toen D, Verhoye M, Keliris GA. Alterations in theta-gamma coupling and sharp wave-ripple, signs of prodromal hippocampal network impairment in the TgF344-AD rat model. Front Aging Neurosci 2023; 15:1081058. [PMID: 37032829 PMCID: PMC10075364 DOI: 10.3389/fnagi.2023.1081058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder caused by the accumulation of toxic proteins, amyloid-beta (Aβ) and tau, which eventually leads to dementia. Disease-modifying therapies are still lacking, due to incomplete insights into the neuropathological mechanisms of AD. Synaptic dysfunction is known to occur before cognitive symptoms become apparent and recent studies have demonstrated that imbalanced synaptic signaling drives the progression of AD, suggesting that early synaptic dysfunction could be an interesting therapeutic target. Synaptic dysfunction results in altered oscillatory activity, which can be detected with electroencephalography and electrophysiological recordings. However, the majority of these studies have been performed at advanced stages of AD, when extensive damage and cognitive symptoms are already present. The current study aimed to investigate if the hippocampal oscillatory activity is altered at pre-plaque stages of AD. The rats received stereotactic surgery to implant a laminar electrode in the CA1 layer of the right hippocampus. Electrophysiological recordings during two consecutive days in an open field were performed in 4-5-month-old TgF344-AD rats when increased concentrations of soluble Aβ species were observed in the brain, in the absence of Aβ-plaques. We observed a decreased power of high theta oscillations in TgF344-AD rats compared to wild-type littermates. Sharp wave-ripple (SWR) analysis revealed an increased SWR power and a decreased duration of SWR during quiet wake in TgF344-AD rats. The alterations in properties of SWR and the increased power of fast oscillations are suggestive of neuronal hyperexcitability, as has been demonstrated to occur during presymptomatic stages of AD. In addition, decreased strength of theta-gamma coupling, an important neuronal correlate of memory encoding, was observed in the TgF344-AD rats. Theta-gamma phase amplitude coupling has been associated with memory encoding and the execution of cognitive functions. Studies have demonstrated that mild cognitive impairment patients display decreased coupling strength, similar to what is described here. The current study demonstrates altered hippocampal network activity occurring at pre-plaque stages of AD and provides insights into prodromal network dysfunction in AD. The alterations observed could aid in the detection of AD during presymptomatic stages.
Collapse
Affiliation(s)
- Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- *Correspondence: Monica van den Berg, ; Georgios A. Keliris,
| | - Daniëlle Toen
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Crete, Greece
- *Correspondence: Monica van den Berg, ; Georgios A. Keliris,
| |
Collapse
|
7
|
Pupyshev AB, Belichenko VM, Tenditnik MV, Bashirzade AA, Dubrovina NI, Ovsyukova MV, Akopyan AA, Fedoseeva LA, Korolenko TA, Amstislavskaya TG, Tikhonova MA. Combined induction of mTOR-dependent and mTOR-independent pathways of autophagy activation as an experimental therapy for Alzheimer's disease-like pathology in a mouse model. Pharmacol Biochem Behav 2022; 217:173406. [DOI: 10.1016/j.pbb.2022.173406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022]
|
8
|
Leparulo A, Bisio M, Redolfi N, Pozzan T, Vassanelli S, Fasolato C. Accelerated Aging Characterizes the Early Stage of Alzheimer's Disease. Cells 2022; 11:238. [PMID: 35053352 PMCID: PMC8774248 DOI: 10.3390/cells11020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
For Alzheimer's disease (AD), aging is the main risk factor, but whether cognitive impairments due to aging resemble early AD deficits is not yet defined. When working with mouse models of AD, the situation is just as complicated, because only a few studies track the progression of the disease at different ages, and most ignore how the aging process affects control mice. In this work, we addressed this problem by comparing the aging process of PS2APP (AD) and wild-type (WT) mice at the level of spontaneous brain electrical activity under anesthesia. Using local field potential recordings, obtained with a linear probe that traverses the posterior parietal cortex and the entire hippocampus, we analyzed how multiple electrical parameters are modified by aging in AD and WT mice. With this approach, we highlighted AD specific features that appear in young AD mice prior to plaque deposition or that are delayed at 12 and 16 months of age. Furthermore, we identified aging characteristics present in WT mice but also occurring prematurely in young AD mice. In short, we found that reduction in the relative power of slow oscillations (SO) and Low/High power imbalance are linked to an AD phenotype at its onset. The loss of SO connectivity and cortico-hippocampal coupling between SO and higher frequencies as well as the increase in UP-state and burst durations are found in young AD and old WT mice. We show evidence that the aging process is accelerated by the mutant PS2 itself and discuss such changes in relation to amyloidosis and gliosis.
Collapse
Affiliation(s)
- Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| | - Marta Bisio
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
- Neuroscience Institute-Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35129 Padua, Italy
| | - Stefano Vassanelli
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
- Padua Neuroscience Center (PNC), University of Padua, Via G. Orus 2B, 35129 Padua, Italy
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (A.L.); (M.B.); (N.R.); (T.P.)
| |
Collapse
|