1
|
Luo D, Wang J, Zheng S, Li W, Yu B, Peng H, Gui F, Mao B, Chen Z. Crocin ameliorates hypertension-induced cardiac hypertrophy and apoptosis by activating AMPKα signalling. CLIN INVEST MED 2025; 48:11-23. [PMID: 40131211 DOI: 10.3138/cim-2024-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
PURPOSE Cardiac hypertrophy is a critical contributor to heart failure. Therapies that effectively manage cardiac hypertrophy are still inadequate. Crocin is a natural component of saffron, and its beneficial properties have been previously documented. This study aimed to investigate the role of crocin in cardiac hypertrophy and apoptosis and its related mechanisms. METHODS Sprague-Dawley rats were infused with angiotensin II (Ang II; 520 ng/kg/min) or normal saline and then intraperitoneally injected with crocin (40 mg/kg) or dimethyl sulfoxide for 4 weeks. Systolic and diastolic blood pressure were recorded. Cardiac hypertrophy was evaluated by echocardiography, heart weight, hematoxylin-eosin staining, TUNEL assay, and gene expression. For in vitro studies, H9C2 cells were treated with Ang II (1 μM) for 48 hours to induce cardiac hypertrophy-like conditions. An immunofluorescence assay was used for [Formula: see text]-actinin staining. reverse transcription quantitative real-time polymerase chain reaction was performed to measure the expression of hypertrophic markers, and western blotting was used to detect apoptosis and underlying mechanisms. RESULTS Our findings revealed that crocin attenuated diastolic dysfunction, cardiac hypertrophy, and apoptosis caused by Ang II in vivo. Additionally, crocin prevented Ang II-stimulated cardiomyocyte enlargement and apoptosis in vitro. Mechanistically, crocin induced AMP-activated protein kinase (AMPK)[Formula: see text] activation and mTOR/p70S6K inhibition in cellular and animal models of cardiac hypertrophy. Moreover, AMPK inhibition abolished the anti-hypertrophic effect of crocin in vitro, while mTOR inhibition enhanced the protective effect of crocin against Ang II-induced cardiomyocyte hypertrophy. CONCLUSION This study demonstrates that crocin can ameliorate Ang II-stimulated cardiac hypertrophy in vivo and in vitro by regulating AMPK[Formula: see text]/mTOR/ p70S6K signalling.
Collapse
Affiliation(s)
- Dan Luo
- Department of Emergency Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jueyan Wang
- School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Shijiao Zheng
- Department of Nephrology, The 7th Hospital of Wuhan, Wuhan, Hubei, China
| | - Wei Li
- Department of Emergency Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Yu
- Department of Emergency Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Peng
- Department of Emergency Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Gui
- Department of Emergency Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Mao
- Department of Pediatrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Chen
- Department of Emergency Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Zhang JW, Zhao Q, Li Z, Liu Q, Zang SS, Liu S. The effect of saffron supplementation on liver and kidney function, blood glucose and pressure in patients with diabetes and prediabetes: A grade assessed systematic review and meta-analysis of randomized controlled trials. Prostaglandins Other Lipid Mediat 2025; 177:106949. [PMID: 39818282 DOI: 10.1016/j.prostaglandins.2025.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Saffron has been traditionally used for various health benefits, but its effects on biomarkers of liver function, kidney function, and blood pressure in diabetes are not well understood. This meta-analysis aims to evaluate the impact of saffron supplementation on systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), liver enzymes (ALT, AST), and kidney function markers (BUN, creatinine) in patients with diabetes and prediabetes. A comprehensive search was conducted across multiple databases to identify randomized controlled trials (RCTs) assessing saffron/crocin supplementation on glycemic control, hepatic and renal function, and blood pressure regulation in patients with diabetes and prediabetes. Data were extracted and analyzed using random effects model to determine the effect sizes and 95 % confidence intervals (CIs) for each biomarker. The GRADE framework was employed to assess the certainty of the evidence for each outcome. Thirteen studies were included in the meta-analysis. Saffron supplementation significantly reduced SBP (SMD = -0.57, 95 % CI: -0.8 to -0.34, p = 0.036) with the high certainty of evidence, FBG (SMD = -0.57, 95 % CI: -0.93 to -0.22, p = 0.001) with the low certainty of evidence, and AST (SMD = -0.49, 95 % CI: -0.97 to -0.00, p = 0.049) with the low certainty of evidence. Other studied biomarkers were not affected significantly by saffron/crocin supplementation. Saffron/crocin supplementation is effective in decreasing AST, SBP, and FBG levels in patients with diabetes and prediabetes. However, it has no significant effect on ALT, renal function, and DBP. Our observed effect sizes on AST, SBP, and FBG are not clinically important.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- Department of Geratology and Special Hospital Ward, Affiliated Hospital of Hebei University,Baoding, Hebei Province 071000, China
| | - Qing Zhao
- Department of Geratology and Special Hospital Ward, Affiliated Hospital of Hebei University,Baoding, Hebei Province 071000, China
| | - Zhe Li
- Department of Nephrology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China
| | - Qian Liu
- Department of Nephrology, Geratology and Medical Oncology,Xiong Xian Hospital, The Xiongan New Area, Hebei 071800, China
| | - Sha-Sha Zang
- Department of Geratology and Special Hospital Ward, Affiliated Hospital of Hebei University,Baoding, Hebei Province 071000, China.
| | - Sha Liu
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China.
| |
Collapse
|
3
|
Chen F, Ma L, Liu Q, Zhou Z, Yi W. Recent advances and therapeutic applications of PPARγ-targeted ligands based on the inhibition mechanism of Ser273 phosphorylation. Metabolism 2025; 163:156097. [PMID: 39637972 DOI: 10.1016/j.metabol.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
PPARγ functions as a master ligand-dependent transcription factor that regulates the expressions of a variety of key genes related to metabolic homeostasis and inflammatory immunity. It has been recognized as a popular and druggable target in modern drug discovery. Similar to other nuclear receptors, PPARγ is a phosphoprotein, and its biological functions are regulated by phosphorylation, especially at Ser273 site which is mediated by CDK5 or ERK. In the past decade, the excessive level of PPARγ-Ser273 phosphorylation has been confirmed to be a crucial factor in promoting the occurrence and development of some major diseases. Ligands capable of inhibiting PPARγ-Ser273 phosphorylation have shown great potentials for treatment. Despite these achievements, to our knowledge, no related review focusing on this topic has been conducted so far. Therefore, we herein summarize the basic knowledge of PPARγ and CDK5/ERK-mediated PPARγ-Ser273 phosphorylation as well as its physiopathological role in representative diseases. We also review the developments and therapeutic applications of PPARγ-targeted ligands based on this mechanism. Finally, we suggest several directions for future investigations. We expect that this review can evoke more inspiration of scientific communities, ultimately facilitating the promotion of the PPARγ-Ser273 phosphorylation-involved mechanism as a promising breakthrough point for addressing the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
4
|
Ma L, Tang J, Chen F, Liu Q, Huang J, Liu X, Zhou Z, Yi W. Structure-based screening, optimization and biological evaluation of novel chrysin-based derivatives as selective PPARγ modulators for the treatment of T2DM and hepatic steatosis. Eur J Med Chem 2024; 276:116728. [PMID: 39089002 DOI: 10.1016/j.ejmech.2024.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
In consideration of several serious side effects induced by the classical AF-2 involved "lock" mechanism, recently disclosed PPARγ-Ser273 phosphorylation mode of action has become an alternative and mainstream mechanism for currently PPARγ-based drug discovery and development with an improved therapeutic index. In this study, by virtue of structure-based virtual high throughput screening (SB-VHTS), structurally chemical optimization by targeting the inhibition of the PPARγ-Ser273 phosphorylation as well as in vitro biological evaluation, which led to the final identification of a chrysin-based potential hit (YGT-31) as a novel selective PPARγ modulator with potent binding affinity and partial agonism. Further in vivo evaluation demonstrated that YGT-31 possessed potent glucose-lowering and relieved hepatic steatosis effects without involving the TZD-associated side effects. Mechanistically, YGT-31 presented such desired therapeutic index, mainly because it effectively inhibited the CDK5-mediated PPARγ-Ser273 phosphorylation, selectively elevated the level of insulin sensitivity-related Glut4 and adiponectin but decreased the expression of insulin-resistance-associated genes PTP1B and SOCS3 as well as inflammation-linked genes IL-6, IL-1β and TNFα. Finally, the molecular docking study was also conducted to uncover an interesting hydrogen-bonding network of YGT-31 with PPARγ-Ser273 phosphorylation-related key residues Ser342 and Glu343, which not only gave a clear verification for our targeting modification but also provided a proof of concept for the abovementioned molecular mechanism.
Collapse
Affiliation(s)
- Lei Ma
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junyuan Tang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China; Department of Food and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang, 422100, China
| | - Fangyuan Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Qingmei Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junjun Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xiawen Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Zhi Zhou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Wei Yi
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
5
|
Elkanawati RY, Sumiwi SA, Levita J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des Devel Ther 2024; 18:3337-3360. [PMID: 39100221 PMCID: PMC11298177 DOI: 10.2147/dddt.s468147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Insulin resistance (IR) is a complex pathological condition central to metabolic diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease, non-alcoholic fatty liver disease, and polycystic ovary syndrome (PCOS). This review evaluates the impact of lipids on insulin resistance (IR) by analyzing findings from human and animal studies. The articles were searched on the PubMed database using two keywords: (1) "Role of Lipids AND Insulin Resistance AND Humans" and (2) "Role of Lipids AND Insulin Resistance AND Animal Models". Studies in humans revealed that elevated levels of free fatty acids (FFAs) and triglycerides (TGs) are closely associated with reduced insulin sensitivity, and interventions like metformin and omega-3 fatty acids show potential benefits. In animal models, high-fat diets disrupt insulin signaling and increase inflammation, with lipid mediators such as diacylglycerol (DAG) and ceramides playing significant roles. DAG activates protein kinase C, which eventually impairs insulin signaling, while ceramides inhibit Akt/PKB, further contributing to IR. Understanding these mechanisms is crucial for developing effective prevention and treatment strategies for IR-related diseases.
Collapse
Affiliation(s)
- Rani Yulifah Elkanawati
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, West Java, 45363, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
6
|
Bursać B, Bellachioma L, Gligorovska L, Jovanović M, Teofilović A, Vratarić M, Vojnović Milutinović D, Albacete A, Martínez-Melgarejo PA, Morresi C, Damiani E, Bacchetti T, Djordjevic A. Crocus sativus tepals extract suppresses subcutaneous adipose tissue hypertrophy and improves systemic insulin sensitivity in mice on high-fat diet. Biofactors 2024; 50:828-844. [PMID: 38318672 DOI: 10.1002/biof.2043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Obesity is a pressing problem worldwide for which standard therapeutic strategies have limited effectiveness. The use of natural products seems to be a promising approach to alleviate obesity and its associated complications. The tepals of Crocus sativus (Cr) plant, usually wasted in saffron production, are an unexplored source of bioactive compounds. Our aim was to elucidate the mechanisms of Cr tepals extract in obesity by investigating its effects on adipocyte differentiation, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) hypertrophy, and lipid metabolism in an animal model of diet-induced obesity. To this end, mouse 3T3-F442A preadipocytes were treated with Cr tepals extract and the expression of adipocyte differentiation genes was determined. Caloric intake, body mass, triglycerides, systemic insulin sensitivity, histology, insulin signaling, and lipid metabolism in VAT and SAT were analyzed in mice fed a 60% fat diet for 14 weeks and treated orally with Cr tepals extract during the last 5 weeks of the diet. We demonstrated for the first time that Cr tepals extract inhibits adipocyte differentiation in vitro. The animal model confirmed that oral treatment with Cr tepals extract results in weight loss, improved systemic insulin sensitivity, lower triglycerides, and improved lipid peroxidation. The suppressive effect of Cr tepals extract on adipocyte hypertrophy and inflammation was observed only in SAT, which, together with preserved SAT insulin signaling, most likely contributed to improved systemic insulin sensitivity. Our results suggest the functionality of SAT as a possible target for the treatment of obesity and its complications.
Collapse
Affiliation(s)
- Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Luisa Bellachioma
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirna Jovanović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Teofilović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miloš Vratarić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Alfonso Albacete
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Purificación A Martínez-Melgarejo
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Yaribeygi H, Maleki M, Rashid-Farrokhi F, Abdullahi PR, Hemmati MA, Jamialahmadi T, Sahebkar A. Modulating effects of crocin on lipids and lipoproteins: Mechanisms and potential benefits. Heliyon 2024; 10:e28837. [PMID: 38617922 PMCID: PMC11015417 DOI: 10.1016/j.heliyon.2024.e28837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Dyslipidemia poses a significant risk to cardiovascular health in both diabetic and non-diabetic individuals. Therefore, it is crucial to normalize lipid homeostasis in order to prevent or minimize complications associated with dyslipidemia. However, pharmacological interventions for controlling lipid metabolism often come with adverse effects. As an alternative, utilizing herbal-based agents, which typically have fewer side effects, holds promise. Crocin, a naturally occurring nutraceutical, has been shown to impact various intracellular pathways, reduce oxidative stress, and alleviate inflammatory processes. Recent evidence suggests that crocin may also confer lipid-related benefits and potentially contribute to the normalization of lipid homeostasis. However, the specific advantages and the cellular pathways involved are not yet well understood. In this review, we present the latest findings regarding the lipid benefits of crocin, which could be instrumental in preventing or reducing disorders associated with dyslipidemia. Additionally, we explore the potential cellular mechanisms and pathways that mediate these lipid benefits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farin Rashid-Farrokhi
- CKD Research Centre, Shahid Beheshti University of Medical Science, IranNephrology Department, Masih Daneshvari Hospital, Telemedicine Research Center, National Research Institute of Tuberculosis and Lung Disease, Tehran, Iran
| | | | - Mohammad Amin Hemmati
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Liu Q, Ma L, Chen F, Zhang S, Huang Z, Zheng X, Chen Z, Ye J, Hou N, Yi W, Zhou Z. Raloxifene-driven benzothiophene derivatives: Discovery, structural refinement, and biological evaluation as potent PPARγ modulators based on drug repurposing. Eur J Med Chem 2024; 269:116325. [PMID: 38527378 DOI: 10.1016/j.ejmech.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024]
Abstract
By virtue of the drug repurposing strategy, the anti-osteoporosis drug raloxifene was identified as a novel PPARγ ligand through structure-based virtual high throughput screening (SB-VHTS) of FDA-approved drugs and TR-FRET competitive binding assay. Subsequent structural refinement of raloxifene led to the synthesis of a benzothiophene derivative, YGL-12. This compound exhibited potent PPARγ modulation with partial agonism, uniquely promoting adiponectin expression and inhibiting PPARγ Ser273 phosphorylation by CDK5 without inducing the expression of adipongenesis associated genes, including PPARγ, aP2, CD36, FASN and C/EBPα. This specific activity profile resulted in effective hypoglycemic properties, avoiding major TZD-related adverse effects like weight gain and hepatomegaly, which were demonstrated in db/db mice. Molecular docking studies showed that YGL-12 established additional hydrogen bonds with Ile281 and enhanced hydrogen-bond interaction with Ser289 as well as PPARγ Ser273 phosphorylation-related residues Ser342 and Glu343. These findings suggested YGL-12 as a promising T2DM therapeutic candidate, thereby providing a molecular framework for the development of novel PPARγ modulators with an enhanced therapeutic index.
Collapse
Affiliation(s)
- Qingmei Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Lei Ma
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fangyuan Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Shuyun Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zexin Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xiufen Zheng
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zikai Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junwei Ye
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Ning Hou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Wei Yi
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Zhi Zhou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
9
|
Gu Y, Bai Y. Osteogenic effect of crocin in human periodontal ligament stem cells via Wnt/β-catenin signaling. Oral Dis 2024; 30:1429-1438. [PMID: 36705490 DOI: 10.1111/odi.14523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Crocin is a major class of medicinal components in saffron. This study aimed to determine whether crocin directly promotes the proliferation and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in vitro and in vivo. MATERIALS AND METHODS CCK8 cell proliferation assay, reverse transcription quantitative polymerase chain reaction (RT-qPCR), Western blot analysis and Alizarin Red staining were performed in PDLSCs using crocin as a stimulant. DKK1 was used to selectively inhibit Wnt/β-catenin signaling, and Western blotting was performed to investigate the underlying mechanism. The PDLSCs were mixed with calcium phosphate cement and implanted into nude mice subcutaneously to study the effect of crocin on PDLSC osteogenic differentiation in vivo. RESULTS The CCK-8 assay showed that crocin did not promote the proliferation of PDLSCs. Treatment with 400 μM crocin significantly promoted PDLSC mRNA levels of ALP, COL1 and OCN; RUNX2 and BMP2 protein expression; mineralized nodule formation in vitro and in vivo; and ALP activity in tissues in vivo. In addition, crocin significantly promoted the phosphorylation of β-catenin and cyclin D1. DKK1 inhibits Wnt/β-catenin activation and partially reverses crocin-mediated promotion of PDLSC osteogenic differentiation. CONCLUSION Crocin may contribute to the regeneration of periodontal bone tissue.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Xu S, Mao H. Crocin Inhibits Orbital Fibroblasts Fibrosis in Thyroid-Associated Ophthalmopathy. Curr Eye Res 2024; 49:330-337. [PMID: 37982317 DOI: 10.1080/02713683.2023.2280441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE To investigate the role of Crocin on proliferation, fibrosis, and migration of orbital fibroblasts, as well as the possible signaling pathway. METHODS Immunofluorescence assay was performed to detect the expression of fibroblast marker proteins vimentin cytokeratin, desmin, and S-100. The quantity of 5‑ethynyl‑2'‑deoxyuridine-positive cells in orbital fibroblast was analyzed. Quantitative real-time PCR and western blots were performed to evaluate the expression level of fibrosis-related marker including alpha-smooth muscle actin, connective-tissue growth factor, collagen 1A1, and fibronectin. Scratch wound assays were performed to assess wound widths of orbital fibroblast. The expression and phosphorylation of extracellular signal-regulated kinase/signal transducer and activator of transcription 3 were evaluated using western blots. The phosphorylation of smad2 and smad3 was evaluated using immunofluorescence assay. RESULTS Crocin treatment reduced 5‑ethynyl‑2'‑deoxyuridine-positive cells, indicating inhibitory effect on orbital fibroblast proliferation. The expression levels of alpha-smooth muscle actin, connective-tissue growth factor, collagen 1A1 and fibronectin were declined in Crocin treatment. Delayed wound closures were observed in Crocin treatment. Furthermore, Crocin did not affect the expression of extracellular signal-regulated kinase and signal transducer and activator of transcription 3, but weakened extracellular signal-regulated kinase and signal transducer and activator of transcription 3 phosphorylation in orbital fibroblast. The phosphorylation of smad2 and smad3 was attenuated by Crocin as well. CONCLUSION In conclusion, Crocin inhibits the phosphorylation of extracellular signal-regulated kinase and signal transducer and activator of transcription 3, contributing to the inhibitory effect on proliferation, fibrosis, and migration of orbital fibroblast, suggesting that Crocin has potential to be a novel therapeutic candidate for thyroid-associated ophthalmopathy treatment.
Collapse
Affiliation(s)
- Shuxian Xu
- Department of Ophthalmology, the Third People's Hospital of Changzhou, Changzhou, China
| | - Hanyan Mao
- Department of Ophthalmology, the Third People's Hospital of Changzhou, Changzhou, China
| |
Collapse
|
11
|
Xia J, Wang Z, Yu P, Yan X, Zhao J, Zhang G, Gong D, Zeng Z. Effect of Different Medium-Chain Triglycerides on Glucose Metabolism in High-Fat-Diet Induced Obese Rats. Foods 2024; 13:241. [PMID: 38254542 PMCID: PMC10815142 DOI: 10.3390/foods13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity can be associated with significant metabolic disorders. Our previous study found that medium-chain triglycerides (MCTs) improved lipid metabolism in obese rats. However, scant attention has been given to exploring the impact of MCTs on glucose metabolism in obese rats. This study is designed to examine the effects and mechanisms of three distinct MCTs on glucose metabolism in obese rats. To induce obesity, Sprague-Dawley (SD) rats were fed a high-fat diet, followed by a 12-week treatment with caprylic triglyceride (CYT), capric triglyceride (CT), and lauric triglyceride (LT). The results showed that three types of MCT intervention reduced the levels of lipids (TC, TG, LDL-c, and HDL-c), hyperglycemia, insulin resistance (insulin, OGTT, HOMA-IR, and ISI), and inflammatory markers (IL-4, IL-1β, and TNF-α) in obese rats (p < 0.01), The above parameters have been minimally improved in the high-fat restoring group (HR) group. MCTs can modulate the PI3K/AKT signaling pathways to alleviate insulin resistance and improve glucose metabolism in obese rats. Furthermore, MCTs can activate peroxisome proliferator-activated receptor (PPAR) γ and reduce the phosphorylation of PPARγser237 mediated by CDK5, which can improve insulin sensitivity without lipid deposition in obese rats. Among the MCT group, CT administration performed the best in the above pathways, with the lowest blood glucose level and insulin resistance. These findings contribute to a deeper understanding of the connection between health benefits and the specific type of MCT employed.
Collapse
Affiliation(s)
- Jiaheng Xia
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (J.X.); (Z.W.)
| | - Zhixin Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (J.X.); (Z.W.)
| | - Ping Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (J.X.); (Z.W.)
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
| | - Xianghui Yan
- School of Resources and Environment, Nanchang University, Nanchang 330031, China;
| | - Junxin Zhao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Guohua Zhang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China;
| | - Deming Gong
- New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand;
| | - Zheling Zeng
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| |
Collapse
|
12
|
Wang L, Yan Y, Wu L, Peng J. Natural products in non-alcoholic fatty liver disease (NAFLD): Novel lead discovery for drug development. Pharmacol Res 2023; 196:106925. [PMID: 37714392 DOI: 10.1016/j.phrs.2023.106925] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
With changing lifestyles, non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. A substantial increase in the incidence, mortality, and associated burden of NAFLD-related advanced liver disease is expected. Currently, the initial diagnosis of NAFLD is still based on ultrasound and there is no approved treatment method. Lipid-lowering drugs, vitamin supplementation, and lifestyle improvement treatments are commonly used in clinical practice. However, most lipid-lowering drugs can produce poor patient compliance and specific adverse effects. Therefore, the exploration of bio-diagnostic markers and active lead compounds for the development of innovative drugs is urgently needed. More and more studies have reported the anti-NAFLD effects and mechanisms of natural products (NPs), which have become an important source for new drug development to treat NAFLD due to their high activity and low side effects. At present, berberine and silymarin have been approved by the US FDA to enter clinical phase IV studies, demonstrating the potential of NPs against NAFLD. Studies have found that the regulation of lipid metabolism, insulin resistance, oxidative stress, and inflammation-related pathways may play important roles in the process. With the continuous updating of technical means and scientific theories, in-depth research on the targets and mechanisms of NPs against NAFLD can provide new possibilities to find bio-diagnostic markers and innovative drugs. As we know, FXR agonists, PPARα agonists, and dual CCR2/5 inhibitors are gradually coming on stage for the treatment of NAFLD. Whether NPs can exert anti-NAFLD effects by regulating these targets or some unknown targets remains to be further studied. Therefore, the study reviewed the potential anti-NAFLD NPs and their targets. Some works on the discovery of new targets and the docking of active lead compounds were also discussed. It is hoped that this review can provide some reference values for the development of non-invasive diagnostic markers and new drugs against NAFLD in the clinic.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
13
|
Casas M, Murray KD, Hino K, Vierra NC, Simó S, Trimmer JS, Dixon RE, Dickson EJ. NPC1-dependent alterations in K V2.1-Ca V1.2 nanodomains drive neuronal death in models of Niemann-Pick Type C disease. Nat Commun 2023; 14:4553. [PMID: 37507375 PMCID: PMC10382591 DOI: 10.1038/s41467-023-39937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Lysosomes communicate through cholesterol transfer at endoplasmic reticulum (ER) contact sites. At these sites, the Niemann Pick C1 cholesterol transporter (NPC1) facilitates the removal of cholesterol from lysosomes, which is then transferred to the ER for distribution to other cell membranes. Mutations in NPC1 result in cholesterol buildup within lysosomes, leading to Niemann-Pick Type C (NPC) disease, a progressive and fatal neurodegenerative disorder. The molecular mechanisms connecting NPC1 loss to NPC-associated neuropathology remain unknown. Here we show both in vitro and in an animal model of NPC disease that the loss of NPC1 function alters the distribution and activity of voltage-gated calcium channels (CaV). Underlying alterations in calcium channel localization and function are KV2.1 channels whose interactions drive calcium channel clustering to enhance calcium entry and fuel neurotoxic elevations in mitochondrial calcium. Targeted disruption of KV2-CaV interactions rescues aberrant CaV1.2 clustering, elevated mitochondrial calcium, and neurotoxicity in vitro. Our findings provide evidence that NPC is a nanostructural ion channel clustering disease, characterized by altered distribution and activity of ion channels at membrane contacts, which contribute to neurodegeneration.
Collapse
Affiliation(s)
- Maria Casas
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Karl D Murray
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Cheng X, Han X, Zhou L, Sun Y, Zhou Q, Lin X, Gao Z, Wang J, Zhao W. Cabernet sauvignon dry red wine ameliorates atherosclerosis in mice by regulating inflammation and endothelial function, activating AMPK phosphorylation, and modulating gut microbiota. Food Res Int 2023; 169:112942. [PMID: 37254366 DOI: 10.1016/j.foodres.2023.112942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Limited evidence suggests that the abundance of antioxidant polyphenols in dry red wine (DRW) may prevent cardiovascular diseases, a benefit likely attributed to abundant antioxidant polyphenols present in DRW. Here, we examined the anti-atherosclerotic effect of Cabernet Sauvignon DRW (CSDRW) in a mouse model of atherosclerosis (AS) using metabolomic profiling and molecular techniques. Oral administration of CSDRW reduced atherosclerotic lesion size in ApoE-/- mice, alleviated hyperlipidemia, ameliorated hepatic lipid accumulation mediated by AMPK activation, and promoted lipid metabolism via PPARγ-LXR-α-ABCA1 pathway regulation. CSDRW increased the relative abundance of beneficial gut microbiota, including Bacteroidetes, Verrucomicrobiota, and Akkermansiaceae. Metabolic analysis using liquid chromatography-tandem mass spectrometry revealed that CSDRW contained various polyphenols, including flavanol, phenolic acid, flavonol, and resveratrol, which possibly mediate the beneficial effects in AS by reducing inflammation, restoring normal endothelial function, regulating hepatic lipid metabolism, and modulating gut microbiota composition.
Collapse
Affiliation(s)
- Xinlong Cheng
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Xue Han
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China; School of Public Health, Hebei University, Baoding 071000, PR China
| | - Liangfu Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Yasai Sun
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Qian Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Xuan Lin
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhe Gao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Jie Wang
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Wen Zhao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|
15
|
Zhou H, Zhang S, Chen L, Liu Y, Shen L, Zhang J. Effective Therapeutic Verification of Crocin I, Geniposide, and Gardenia ( Gardenia jasminoides Ellis) on Type 2 Diabetes Mellitus In Vivo and In Vitro. Foods 2023; 12:foods12081668. [PMID: 37107463 PMCID: PMC10137615 DOI: 10.3390/foods12081668] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
For many centuries, Gardenia (Gardenia jasminoides Ellis) was highly valued as a food homologous Chinese herbal medicine with various bioactive compounds, including crocin I and geniposide. However, the functional mechanism underlying the hypoglycemic effect of gardenia is absent in the literature. To evaluate the effect of gardenia and its different extracts on type 2 diabetes mellitus (T2DM) in in vivo and in vitro experiments, the dried gardenia powder was extracted using 60% ethanol and eluted at different ethanol concentrations to obtain the corresponding purified fragments. After that, the active chemical compositions of the different purified gardenia fragments were analyzed using HPLC. Then, the hypoglycemic effects of the different purified gardenia fragments were compared using in vitro and in vivo experiments. Finally, the different extracts were characterized using UPLC-ESI-QTOF-MS/MS and the mass spectrometric fragmentation pathway of the two main compounds, geniposide and crocin I, were identified. The experimental results indicated that the inhibitory effect of the 40% EGJ (crocin I) on the α-glucosidase was better than the 20% EGJ (geniposide) in vitro. However, the inhibitory effect of geniposide on T2DM was better than crocin I in the animal experiments. The different results in vivo and in vitro presumed potentially different mechanisms between crocin I and geniposide on T2DM. This research demonstrated that the mechanism of hypoglycemia in vivo from geniposide is not only one target of the α-glucosidase but provides the experimental background for crocin I and the geniposide deep processing and utilization.
Collapse
Affiliation(s)
- Haibo Zhou
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Sen Zhang
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Lianghua Chen
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen 361006, China
| | - Yimei Liu
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Luhong Shen
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Jiuliang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
16
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Bastani S, Vahedian V, Rashidi M, Mir A, Mirzaei S, Alipourfard I, Pouremamali F, Nejabati H, Kadkhoda J, Maroufi NF, Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother 2022; 153:113297. [PMID: 35738178 DOI: 10.1016/j.biopha.2022.113297] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022] Open
Abstract
Crocin, an active ingredient derived from saffron, is one of the herbal components that has recently been considered by researchers. Crocin has been shown to have many anti-inflammatory and antioxidant properties, and therefore can be used to treat various diseases. It has been shown that Crocin has a positive effect on the prevention and treatment of cardiovascular disease, cancer, diabetes, and kidney disease. In addition, the role of this substance in COVID-19 pandemic has been identified. In this review article, we tried to have a comprehensive review of the antioxidant and anti-inflammatory effects of Crocin in different diseases and different tissues. In conclusion, Crocin may be helpful in pathological conditions that are associated with inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Brazil
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection - Faculty of Natural Sciences - University of Silesia - Katowice - Poland
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
18
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
19
|
Liu X, Wang Z, Song X, Chang X, Zu E, Ma X, Sukegawa M, Liu D, Wang DO. Crocetin Alleviates Ovariectomy-Induced Metabolic Dysfunction through Regulating Estrogen Receptor β. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14824-14839. [PMID: 34851635 DOI: 10.1021/acs.jafc.1c04570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolic dysfunction (MD) is a major health problem threatening the life quality of menopausal women. Saffron has been widely used in herb prescriptions for treating menopausal syndrome. However, the pharmacological effects and mechanisms of saffron are poorly understood. Here, we investigated the effect of crocin, the major ingredient of saffron and its active metabolite in blood, crocetin, on MD and lipid metabolism in ovariectomized (OVX) mice and 3T3-L1 adipocytes. The present study showed that intragastric treatment of crocin prevented weight gain, fat accumulation, and insulin resistance in OVX mice by increasing energy expenditure and fat oxidation. Mechanistically, crocin influenced adipose tissue homeostasis by regulating adipogenic and lipolytic factors, which was strongly associated with the restoration of the downregulated ERβ function in white adipose tissue (WAT). In vitro, crocetin facilitated lipid metabolism in an ERβ-dependent manner. Our results demonstrated the beneficial effects of crocetin/crocin-mediated intervention against metabolic dysfunction, revealing a prospective therapeutic application in menopausal women.
Collapse
Affiliation(s)
- Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyu Chang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Er Zu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaowei Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Momoe Sukegawa
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida hon-machi, Kyoto 606-8501, Japan
| | - Dongchun Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Graduate School of Biostudies, Kyoto University, Yoshida hon-machi, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Glucose-Dependent Insulinotropic Polypeptide Suppresses Foam Cell Formation of Macrophages through Inhibition of the Cyclin-Dependent Kinase 5-CD36 Pathway. Biomedicines 2021; 9:biomedicines9070832. [PMID: 34356896 PMCID: PMC8301338 DOI: 10.3390/biomedicines9070832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) has been reported to have an atheroprotective property in animal models. However, the effect of GIP on macrophage foam cell formation, a crucial step of atherosclerosis, remains largely unknown. We investigated the effects of GIP on foam cell formation of, and CD36 expression in, macrophages extracted from GIP receptor-deficient (Gipr−/−) and Gipr+/+ mice and cultured human U937 macrophages by using an agonist for GIP receptor, [D-Ala2]GIP(1–42). Foam cell formation evaluated by esterification of free cholesterol to cholesteryl ester and CD36 gene expression in macrophages isolated from Gipr+/+ mice infused subcutaneously with [D-Ala2]GIP(1–42) were significantly suppressed compared with vehicle-treated mice, while these beneficial effects were not observed in macrophages isolated from Gipr−/− mice infused with [D-Ala2]GIP(1–42). When macrophages were isolated from Gipr+/+ and Gipr−/− mice, and then exposed to [D-Ala2]GIP(1–42), similar results were obtained. [D-Ala2]GIP(1–42) attenuated ox-LDL uptake of, and CD36 gene expression in, human U937 macrophages as well. Gene expression level of cyclin-dependent kinase 5 (Cdk5) was also suppressed by [D-Ala2]GIP(1–42) in U937 cells, which was corelated with that of CD36. A selective inhibitor of Cdk5, (R)-DRF053 mimicked the effects of [D-Ala2]GIP(1–42) in U937 cells. The present study suggests that GIP could inhibit foam cell formation of macrophages by suppressing the Cdk5-CD36 pathway via GIP receptor.
Collapse
|
21
|
Lu J, Lu Z, Liu L, Li X, Yu W, Lu X. Identification of Crocin as a New hIAPP Amyloid Inhibitor via a Simple Yet Highly Biospecific Screening System. Chem Biodivers 2021; 18:e2100270. [PMID: 33890414 DOI: 10.1002/cbdv.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/07/2022]
Abstract
Amylin (hIAPP) amyloid formation plays an important role in the pathogenesis of type 2 diabetes (T2D), which makes it a promising therapeutic target for T2D. In this study, we established a screening tool for identifying chemicals affecting hIAPP amyloid formation based on a reported genetic tool, which constantly tracks protein aggregates in Saccharomyces cerevisiae. In order to obtain the hIAPP with better aggregation ability, the gene of hIAPP was tandemly ligated to create 1×, 2×, 4× or 6×-hIAPP expressing strains. By measuring the cell density and fluorescence intensity of green fluorescent protein (GFP) regulated by the aggregation status of hIAPP, it was found that four intramolecular ligated hIAPP (4×hIAPP) could form obvious amyloids with mild toxicity. The validity and reliability of the screening tool were verified by testing six reported hIAPP inhibitors, including curcumin, epigallocatechin gallate and so on. Combined with surface plasmon resonance (SPR) and the screening tool, which could be a screening system for hIAPP inhibitors, we found that crocin specifically binds to hIAPP and acts inhibit amyloid formation of hIAPP. The effect of crocin was further confirmed by Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) analysis. Thus, a screening system for hIAPP amyloid inhibitors and a new mechanism of crocin on anti-T2D were obtained as a result of this study.
Collapse
Affiliation(s)
- Jingxuan Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Zhongxia Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Luxin Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Xinyu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, P. R. China
| | - Xinzhi Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|