1
|
Wei DP, Jiang WW, Chen CX, Chen ZY, Zhou FQ, Zhang Y, Lu J. Identification and validation of autophagy-related genes in sepsis based on bioinformatics studies. Virol J 2025; 22:81. [PMID: 40114170 PMCID: PMC11924728 DOI: 10.1186/s12985-025-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
We identified 14 key genes associated with mitochondrial autophagy in sepsis through differential analysis of the dataset and then analysed the identified genes for functional enrichment. The analysis of key genes and deeper analysis of key genes by molecular typing, Weighted Gene Correlation Network Analysis (WGCNA) and ceRNA were also carried out. We have also validated these key genes with clinical data. Finally, sepsis diagnostic models are constructed by combining key genes with machine learning methods. In addition, we discuss the importance of the immune system in sepsis and its relationship with signature genes, which opens up new directions for studying the role of the immune system in sepsis. Overall, our study adds new ideas to the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Dong-Po Wei
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Wei-Wei Jiang
- Department of Emergency and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chang-Xing Chen
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Zi-Yang Chen
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Fang-Qing Zhou
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China
| | - Yu Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
| | - Jian Lu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Shanghai, 200080, China.
- Department of Critical Care Medicine, Shanghai United Family Hospital, Shanghai, China.
| |
Collapse
|
2
|
Chen Y, Chang L, Hu L, Yan C, Dai L, Shelat VG, Yarmohammadi H, Sun J. Identification of a lactylation-related gene signature to characterize subtypes of hepatocellular carcinoma using bulk sequencing data. J Gastrointest Oncol 2024; 15:1636-1646. [PMID: 39279958 PMCID: PMC11399878 DOI: 10.21037/jgo-24-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background Prior studies indicate that lactylation regulates various biological mechanisms within cancer. However, lactylation-related genes (LRGs) have been found to have limited value in predicting the prognosis of hepatocellular carcinoma (HCC). The aim of this study was to review HCC LRGs using data from The Cancer Genome Atlas (TCGA). Methods The RNA sequencing data and related clinical information of patients with HCC patients were collected from the TCGA database. A total of 20 LRGs were selected and bioinformatics analysis was performed. A consistency cluster analysis was conducted to classify the HCC tumors. Using a lactylation-related model of HCC, prognosis, immune cell infiltration, and immunotherapy was evaluated. Results A total of 4,378 genes were associated with prognosis. Twenty LRGs (i.e., ACIN1, RAN, PPP1CB, ALDOB, SUMO2, THOC2, HDAC1, SF3A1, SF3B1, HNRNPM, PPP1CC, SRRM1, PRPF6, HDAC2, H2AFV, ALYREF, H2AFZ, H2AFX, HNRNPK, and MAGOH) were identified. The 20 LRGs were used to divide TCGA-HCC patients into low-risk (G1) and high-risk (G2) categories. The upregulated genes in the G1 group primarily participate in the p53 signaling pathway, focal adhesion, extracellular matrix (ECM)-receptor interaction, and cell cycle, while the downregulated genes primarily participate in the glycolysis/gluconeogenesis, carbon metabolism, and biosynthesis of amino acids. The box plots showed a significant difference in the immune cell populations, with a higher abundance of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and myeloid dendritic cells in the G1 than the G2 HCC samples. Further, the box plots showed higher expression levels of seven of the eight immune checkpoint inhibitor (ICI)-related genes in the G1 HCC samples than the G2 samples. There was a significant disparity in the cancer stem cell (CSC) scores between the G1 and G2 TCGA-HCC patients. Additionally, the G1 TCGA-HCC patients had higher tumor immune dysfunction and exclusion (TIDE) scores than the G2 TCGA-HCC patients. The prognosis of the HCC patients was also predicted using a six-LRG model, comprising HDAC2, SRRM1, SF3B1, HDAC1, THOC2, and PPP1CB. Conclusions Strong correlation between LRGs and tumor classification as well as immunity in patients with HCC was identified. LRG signatures serve as reliable prognostic markers for HCC.
Collapse
Affiliation(s)
- Yan Chen
- Department of Laboratory, Yangzhou Hongquan Hospital, Yangzhou, China
| | - Li Chang
- Department of Laboratory, Yangzhou Hongquan Hospital, Yangzhou, China
| | - Ling Hu
- Department of Laboratory, Yangzhou Hongquan Hospital, Yangzhou, China
| | - Cuiping Yan
- Department of Laboratory, Yangzhou Hongquan Hospital, Yangzhou, China
| | - Liu Dai
- Department of Laboratory, Yangzhou Second People’s Hospital, Yangzhou, China
| | - Vishal G. Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Sun
- Department of Oncology, Yangzhou Hongquan Hospital, Yangzhou, China
| |
Collapse
|
3
|
Shen M, Zhang Q, Pan W, Wang B. CircUCK2 promotes hepatocellular carcinoma development by upregulating UCK2 in a mir-149-5p-dependent manner. Discov Oncol 2024; 15:14. [PMID: 38245591 PMCID: PMC10799813 DOI: 10.1007/s12672-024-00863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) participate in the regulation of Hepatocellular Carcinoma (HCC) progression. The objective of this study was to explore the function and mechanism of circUCK2 in HCC development. METHODS The RNA levels of circUCK2, miR-149-5p and uridine-cytidine kinase 2 (UCK2) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). EdU incorporation assay and colony formation assay were respectively performed to analyze cell proliferation and colony formation. Wound healing assay and transwell assay were conducted for cell migration and invasion. Flow cytometry was used for cell apoptosis analysis. Western blot assay was conducted to determine the protein levels of E-cadherin, N-cadherin, matrix metallopeptidase 9 (MMP-9) and UCK2. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay were conducted to confirm the interaction between miR-149-5p and circUCK2 or UCK2. The xenograft model was established to explore the role of circUCK2 in tumor growth in vivo. RESULTS CircUCK2 level was elevated in HCC, and circUCK2 depletion suppressed HCC cell proliferation, colony formation, migration and invasion and accelerated cell apoptosis. Mechanistically, circUCK2 could positively modulate UCK2 expression by interacting with miR-149-5p. Furthermore, the repressive effects of circUCK2 knockdown on the malignant behaviors of HCC cells were alleviated by UCK2 overexpression or miR-149-5p inhibition. The promoting effects of circUCK2 overexpression on HCC cell malignancy were alleviated by UCK2 silencing or miR-149-5p introduction. Additionally, circUCK2 knockdown hampered tumor growth in vivo. CONCLUSION CircUCK2 contributed to HCC malignant progression in vitro and in vivo via targeting miR-149-5p/UCK2 axis, demonstrating that circUCK2 might be a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Minghai Shen
- Department of General Surgury, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Qinghua Zhang
- Department of General Surgury, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Wanneng Pan
- Department of General Surgury, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Bei Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Shangcheng District, Hangzhou, 310023, China.
| |
Collapse
|
4
|
Meng X, Song W, Zhou B, Liang M, Gao Y. Prognostic and immune correlation analysis of mitochondrial autophagy and aging-related genes in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:16311-16335. [PMID: 37698683 DOI: 10.1007/s00432-023-05390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Mitophagy and aging (MiAg) are very important pathophysiological mechanisms contributing to tumorigenesis. MiAg-related genes have prognostic value in lung adenocarcinoma (LUAD). However, prognostic, and immune correlation studies of MiAg-related genes in LUAD are lacking. METHODS MiAg differentially expressed genes (DEGs) in LUAD were obtained from public sequencing datasets. A prognostic model including MiAg DEGs was constructed according to patients divided into low- and high-risk groups. Gene Ontology, gene set enrichment analysis, gene set variation analysis, CIBERSORT immune infiltration analysis, and clinical characteristic correlation analyses were performed for functional annotation and correlation of MiAgs with prognosis in patients with LUAD. RESULTS Seven MiAg DEGs of LUAD were identified: CAV1, DSG2, DSP, MYH11, NME1, PAICS, PLOD2, and the expression levels of these genes were significantly correlated (P < 0.05). The RiskScore of the MiAg DEG prognostic model demonstrated high predictive ability of overall survival of patients diagnosed with LUAD. Patients with high and low MiAg phenotypic scores exhibited significant differences in the infiltration levels of eight types of immune cells (P < 0.05). The multi-factor DEG regression model showed higher efficacy in predicting 5-year survival than 3- and 1-year survival of patients with LUAD. CONCLUSIONS Seven MiAg-related genes were identified to be significantly associated with the prognosis of patients diagnosed with LUAD. Moreover, the identified MiAg DEGs might affect the immunotherapy strategy of patients with LUAD.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Weijian Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China.
| |
Collapse
|
5
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
6
|
Chen Y, Xu H, Tang H, Li H, Zhang C, Jin S, Bai D. miR-9-5p expression is associated with vascular invasion and prognosis in hepatocellular carcinoma, and in vitro verification. J Cancer Res Clin Oncol 2023; 149:14657-14671. [PMID: 37584711 DOI: 10.1007/s00432-023-05257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a common liver malignancy. Early vascular invasion (VI) has been associated with poor prognosis in HCC patients. MicroRNAs (miRNAs) play a significant role in the emergence and development of many tumor types. METHODS Differential expression analysis of miRNAs related to VI was performed based on data from the TCGA database, and survival-associated miRNAs identified. We identified miR-9-5p as a survival-related miRNA and verified its expression in 61 clinical samples using quantitative real-time PCR. We further performed functional enrichment analysis, protein-protein interaction analysis, univariate and multivariate analysis of the survival-related miRNAs, and cell function assays. RESULTS In this study, we identified miR-9-5p that could predict VI and prognosis in HCC patients. Cellular experiments demonstrated that downregulation of miR‑9‑5p inhibits migration, invasion, and angiogenesis of HCC cells. Further, we explored and verified the possible mechanism through which miR-9-5p is involved in HCC progression. Univariate and multivariate analysis revealed that miR-9-5p was an independent risk factor for HCC. Finally, the nomogram based on miR-9-5p showed a good predictive value of HCC survival. CONCLUSIONS MiR-9-5p is associated with VI in HCC, and higher expression of miR-9-5p indicates poor prognosis in HCC.
Collapse
Affiliation(s)
- Yuan Chen
- Yangzhou University Medical College, Yangzhou, Jiangsu, China
| | - Hao Xu
- Yangzhou University Medical College, Yangzhou, Jiangsu, China
- General Surgery Department of Siyang Hospital, Suqian, Jiangsu, China
| | - Hao Tang
- Yangzhou University Medical College, Yangzhou, Jiangsu, China
| | - Hongyuan Li
- Dalian Medical University, Dalian, Liaoning, China
| | - Chi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shengjie Jin
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dousheng Bai
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
7
|
Oncology JO. Retracted: Development and Validation of a Novel Mitophagy-Related Gene Prognostic Signature for Hepatocellular Carcinoma Based on Immunoscore Classification of Tumor. JOURNAL OF ONCOLOGY 2023; 2023:9803262. [PMID: 37869587 PMCID: PMC10586381 DOI: 10.1155/2023/9803262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
[This retracts the article DOI: 10.1155/2021/5070099.].
Collapse
|
8
|
Zhao K, Wu Y, Zhao D, Zhang H, Lin J, Wang Y. Six mitophagy-related hub genes as peripheral blood biomarkers of Alzheimer's disease and their immune cell infiltration correlation. Front Neurosci 2023; 17:1125281. [PMID: 37274215 PMCID: PMC10232817 DOI: 10.3389/fnins.2023.1125281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Background Alzheimer's disease (AD), a neurodegenerative disorder with progressive symptoms, seriously endangers human health worldwide. AD diagnosis and treatment are challenging, but molecular biomarkers show diagnostic potential. This study aimed to investigate AD biomarkers in the peripheral blood. Method Utilizing three microarray datasets, we systematically analyzed the differences in expression and predictive value of mitophagy-related hub genes (MRHGs) in the peripheral blood mononuclear cells of patients with AD to identify potential diagnostic biomarkers. Subsequently, a protein-protein interaction network was constructed to identify hub genes, and functional enrichment analyses were performed. Using consistent clustering analysis, AD subtypes with significant differences were determined. Finally, infiltration patterns of immune cells in AD subtypes and the relationship between MRHGs and immune cells were investigated by two algorithms, CIBERSORT and single-sample gene set enrichment analysis (ssGSEA). Results Our study identified 53 AD- and mitophagy-related differentially expressed genes and six MRHGs, which may be potential biomarkers for diagnosing AD. Functional analysis revealed that six MRHGs significantly affected biologically relevant functions and signaling pathways such as IL-4 Signaling Pathway, RUNX3 Regulates Notch Signaling Pathway, IL-1 and Megakaryocytes in Obesity Pathway, and Overview of Leukocyteintrinsic Hippo Pathway. Furthermore, CIBERSORT and ssGSEA algorithms were used for all AD samples to analyze the abundance of infiltrating immune cells in the two disease subtypes. The results showed that these subtypes were significantly related to immune cell types such as activated mast cells, regulatory T cells, M0 macrophages, and neutrophils. Moreover, specific MRHGs were significantly correlated with immune cell levels. Conclusion Our findings suggest that MRHGs may contribute to the development and prognosis of AD. The six identified MRHGs could be used as valuable diagnostic biomarkers for further research on AD. This study may provide new promising diagnostic and therapeutic targets in the peripheral blood of patients with AD.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yinyan Wu
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dongliang Zhao
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Zhang
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianyang Lin
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuanwei Wang
- Department of Neurology, Shuyang Hospital Affiliated to Xuzhou Medical University, Shuyang, Jiangsu, China
| |
Collapse
|
9
|
Zhang L, Yu S, Yin X, Tu M, Cai L, Zhang Y, Yu L, Zhang S, Pan X, Huang Y. MiR-942-5p inhibits tumor migration and invasion through targeting CST1 in esophageal squamous cell carcinoma. PLoS One 2023; 18:e0277006. [PMID: 36848349 PMCID: PMC9970063 DOI: 10.1371/journal.pone.0277006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/18/2022] [Indexed: 03/01/2023] Open
Abstract
INTRODUCTION Cysteine Protease Inhibitor 1 (CST1), a cystatin superfamily protein with the effect on the inhibition of cysteine protease activity, is reported to be involved in the development of many malignancies. MiR-942-5p has been demonstrated its regulatory effects on some malignancies. However, the roles of CST1 and miR-942-5p on esophageal squamous cell carcinoma (ESCC) are still unknown up to now. METHODS The expression of CST1 in ESCC tissues was analyzed by TCGA database, immunohistochemistry, and RT-qPCR, respectively. Matrigel-uncoated or-coated transwell assay was used to determine the effect of CST1 on migration and invasion of ESCC cells. Regulatory effect of miR-942-5p on CST1 was detected by dual luciferase assay. RESULTS CST1 was ectopically highly expressed in ESCC tissues, and had the effect on promoting the migration and invasion of ESCC cells by upregulating phosphorylated levels of key effectors including MEK1/2, ERK1/2, and CREB in MEK/ERK/CREB pathway. Dual-luciferase assay results showed that miR-942-5p had a regulatory effect on targeting CST1. CONCLUSIONS CST1 plays a carcinogenic role on ESCC, and miR-942-5p can regulate the migration and invasion of ESCC cells by targeting CST1 to downregulate MEK/ERK/CREB signaling pathway, suggesting that miR-942-5p/CST1 axis might be a promising target for diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Liangming Zhang
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Sunxing Yu
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Health Management Center (Preventive Treatment), the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoqing Yin
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingshu Tu
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Liqing Cai
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Yi Zhang
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Lili Yu
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Songgao Zhang
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaojie Pan
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Yi Huang
- Provincial Clinical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Central Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
- * E-mail:
| |
Collapse
|
10
|
Liu C, Wu Z, Wang L, Yang Q, Huang J, Huang J. A Mitophagy-Related Gene Signature for Subtype Identification and Prognosis Prediction of Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232012123. [PMID: 36292980 PMCID: PMC9603050 DOI: 10.3390/ijms232012123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is the sixth most common cancer. In this study, the correlation between mitophagy and HCC prognosis was evaluated using data from The Cancer Genome Atlas (TCGA). Clinical and transcriptomic data of HCC patients were downloaded from TCGA dataset, and mitophagy-related gene (MRG) datasets were obtained from the Molecular Signature Database. Then, a consensus clustering analysis was performed to classify the patients into two clusters. Furthermore, tumor prognosis, clinicopathological features, functional analysis, immune infiltration, immune checkpoint (IC)-related gene expression level, tumor stem cells, ferroptosis status, and N6-methyladenosine analysis were compared between the two clusters. Finally, a mitophagy-related signature was developed. Two clusters (C1 and C2) were identified using the consensus clustering analysis based on the MRG signature. Patients with the C1 subtype exhibited upregulated pathways with better liver function, downregulated cancer-related pathways, lower cancer stem cell scores, lower Tumor Immune Dysfunction and Exclusion scores (TIDE), different ferroptosis status, and better prognosis compared with the patients with the C2 subtype. The C2 subtype was characterized by the increased grade of HCC, as well as the increased number of immune-related pathways and m6A-related genes. Higher immune scores were also observed for the C2 subtype. A signature containing four MRGs (PGAM5, SQSTM1, ATG9A, and GABARAPL1) which can accurately predict the prognosis of HCC patients was then identified. This four-gene signature exhibited a predictive effect in five other cancer types, namely glioma, uveal melanoma, acute myeloid leukemia, adrenocortical carcinoma, and mesothelioma. The mitophagy-associated subtypes of HCC were closely related to the immune microenvironment, immune checkpoint-related gene expression, cancer stem cells, ferroptosis status, m6A, prognosis, and HCC progression. The established MRG signature could predict prognosis in patients with HCC.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu 610083, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200437, China
| | - Liping Wang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu 610083, China
| | - Qian Yang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu 610083, China
| | - Ji Huang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Department of Pathophysiology, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang 421009, China
| | - Jichang Huang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu 610083, China
- Correspondence:
| |
Collapse
|
11
|
Tumor-Suppressive and Oncogenic Roles of microRNA-149-5p in Human Cancers. Int J Mol Sci 2022; 23:ijms231810823. [PMID: 36142734 PMCID: PMC9501226 DOI: 10.3390/ijms231810823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant tumors are always a critical threat to human health, with complex pathogenesis, numerous causative factors, and poor prognosis. The features of cancers, such as gene mutations, epigenetic alterations, and the activation and inhibition of signaling pathways in the organism, play important roles in tumorigenesis and prognosis. MicroRNA (miRNA) enables the control of various molecular mechanisms and plays a variety of roles in human cancers, such as radiation sensitivity and tumor immunity, through the regulation of target genes. MiR-149-5p participates in the process and is closely related to lipogenesis, the migration of vascular endothelial cells, and the expression of stem-cell-related proteins. In recent years, its role in cancer has dramatically increased. In this review, we summarize the regular physiological roles of miRNAs, specifically miR-149-5p, in the organism and discuss the tumor-suppressive or oncogenic roles of miR-149-5p in different human cancers with respect to signaling pathways involved in regulation. Possible clinical applications of miR-149-5p in future targeted therapies and prognosis improvement in oncology are suggested.
Collapse
|
12
|
Kuang Y, Ye N, Kyani A, Ljungman M, Paulsen M, Chen H, Zhou M, Wild C, Chen H, Zhou J, Neamati N. Induction of Genes Implicated in Stress Response and Autophagy by a Novel Quinolin-8-yl-nicotinamide QN523 in Pancreatic Cancer. J Med Chem 2022; 65:6133-6156. [PMID: 35439009 PMCID: PMC9195374 DOI: 10.1021/acs.jmedchem.1c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a cytotoxicity-based phenotypic screen of a highly diverse library of 20,000 small-molecule compounds, we identified a quinolin-8-yl-nicotinamide, QN519, as a promising lead. QN519 represents a novel scaffold with drug-like properties, showing potent in vitro cytotoxicity in a panel of 12 cancer cell lines. Subsequently, lead optimization campaign generated compounds with IC50 values < 1 μM. An optimized compound, QN523, shows significant in vivo efficacy in a pancreatic cancer xenograft model. QN523 treatment significantly increased the expression of HSPA5, DDIT3, TRIB3, and ATF3 genes, suggesting activation of the stress response pathway. We also observed a significant increase in the expression of WIPI1, HERPUD1, GABARAPL1, and MAP1LC3B, implicating autophagy as a major mechanism of action. Due to the lack of effective treatments for pancreatic cancer, discovery of novel agents such as the QN series of compounds with unique mechanism of action has the potential to fulfill a clear unmet medical need.
Collapse
Affiliation(s)
- Yuting Kuang
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haijun Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Christopher Wild
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77550, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|