1
|
Wang Q, Sun J, Jiang H, Yu M. Emerging roles of extracellular vesicles in oral and maxillofacial areas. Int J Oral Sci 2025; 17:11. [PMID: 39900916 PMCID: PMC11791077 DOI: 10.1038/s41368-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
The oral and maxillofacial region is a highly complex area composed of multiple tissue types and bears various critical functions of the human body. Diseases in this region pose significant diagnostic and management challenges; therefore, exploring new strategies for early diagnosis, targeted treatment, and tissue reconstruction is key to improving patient prognosis and quality of life. Extracellular vesicles are a group of heterogeneous lipid-bilayer membrane structures secreted by most cell types, including exosomes, microvesicles, and apoptotic bodies. Present in various body fluids and tissues, they act as messengers via the transfer of nucleic acids, proteins, and metabolites to recipient cells. To date, studies have revealed the different roles of extracellular vesicles in physiological or pathological processes, as well as applications in disease diagnosis, prognosis, and treatment. The importance and tissue specificity of the dental and maxillofacial tissues indicate that extracellular vesicles derived from this region are promising for further research. This paper reviews the published data on extracellular vesicles derived from cells, body fluids, and tissues in oral and maxillofacial regions, summarizes the latest advances in extracellular vesicles from extensive sources, and concludes with a focus on the current research progress and application prospects of engineered exosomes in oral science.
Collapse
Affiliation(s)
- Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jiayu Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Haci Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Gupta S, Singh B, Abhishek R, Gupta S, Sachan M. The emerging role of liquid biopsy in oral squamous cell carcinoma detection: advantages and challenges. Expert Rev Mol Diagn 2024; 24:311-331. [PMID: 38607339 DOI: 10.1080/14737159.2024.2340997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Oral Squamous Cell Carcinoma (OSCC), the sixth most widespread malignancy in the world, accounts for 90% of all cases of oral cancer. The primary risk factors are tobacco chewing, alcohol consumption, viral infection, and genetic modifications. OSCC has a high morbidity rate due to the lack of early diagnostic methods. Nowadays, liquid biopsy plays a vital role in the initial diagnosis of oral cancer. ctNAs extracted from saliva and serum/plasma offer meaningful insights into tumor genetics and dynamics. The interplay of these elements in saliva and serum/plasma showcases their significance in advancing noninvasive, effective OSCC detection and monitoring. AREAS COVERED This review mainly focused on the role of liquid biopsy as an emerging point in the diagnosis and prognosis of OSCC and the current advancements and challenges associated with liquid biopsy. EXPERT OPINION Liquid biopsy is regarded as a new, minimally invasive, real-time monitoring tool for cancer diagnosis and prognosis. Many biomolecules found in bodily fluids, including ctDNA, ctRNA, CTCs, and EVs, are significant biomarkers to identify cancer in its early stages. Despite these groundbreaking strides, challenges persist. Standardization of sample collection, isolation, processing, and detection methods is imperative for ensuring result reproducibility across diverse studies.
Collapse
Affiliation(s)
- Sudha Gupta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Brijesh Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Rajul Abhishek
- Department of Surgical Oncology, Motilal Nehru Medical College, Prayagraj, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
3
|
Kalele K, Nyahatkar S, Mirgh D, Muthuswamy R, Adhikari MD, Anand K. Exosomes: A Cutting-Edge Theranostics Tool for Oral Cancer. ACS APPLIED BIO MATERIALS 2024; 7:1400-1415. [PMID: 38394624 DOI: 10.1021/acsabm.3c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) secreted by cells. In cancer, they are key cellular messengers during cancer development and progression. Tumor-derived exosomes (TEXs) promote cancer progression. In oral cancer, the major complication is oral squamous cell carcinoma (OSCC). Exosomes show strong participation in several OSCC-related activities such as uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and drug and therapeutic resistance. It is also a potential biomarker source for oral cancer. Some therapeutic exosome sources such as stem cells, plants (it is more effective compared to others), and engineered exosomes reduce oral cancer development. This therapeutic approach is effective because of its specificity, biocompatibility, and cell-free therapy (it reduced side effects in cancer treatment). This article highlights exosome-based theranostics signatures in oral cancer, clinical trials, challenges of exosome-based oral cancer research, and future improvements. In the future, exosomes may become an effective and affordable solution for oral cancer.
Collapse
Affiliation(s)
- Ketki Kalele
- Neuron Institute of Applied Research, Rajapeth-Irwin Square Flyover, Amravati, Maharashtra 444601, India
| | - Sidhanti Nyahatkar
- VYWS Dental College & Hospital, WQMV+7X6, Tapovan-Wadali Road, Camp Rd, SRPF Colony, Amravati, Maharashtra 444602, India
| | - Divya Mirgh
- Department of Infectious Diseases, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Raman Muthuswamy
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
4
|
He J, Yang L. [Advances in salivary exosomal miRNAs in head and neck squamous carcinoma]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:261-266. [PMID: 38433699 PMCID: PMC11233219 DOI: 10.13201/j.issn.2096-7993.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 03/05/2024]
Abstract
Salivary exosomes are extracellular vesicles of 30-150 nm in diameter that exist in saliva and play an important role in substance exchange and signal transduction between cells, delivering the lipids, proteins and nucleic acids they carry to the recipient cells and regulating the physiological and pathological processes of the recipient cells. miRNA, as an important "cargo" in exosomes, is transported to the recipient cells and regulates the signaling pathways of the recipient cells, thus playing a regulatory role in disease progression. The miRNAs are transported to the recipient cells and regulate the signaling pathways of the recipient cells, thus playing a regulatory role in the progression of diseases. With the development of technological tools this year, numerous studies have revealed the important role of salivary exosomal miRNAs in the development of head and neck squamous carcinoma and the role of salivary exosomal miRNAs in the diagnosis and treatment of head and neck squamous carcinoma. This paper reviews the occurrence, treatment and prognosis of salivary exosomal miRNA in head and neck squamous carcinoma, and discusses the potential prospects and importance of salivary exosomal miRNA as a biomarker in the diagnosis of head and neck squamous carcinoma.
Collapse
Affiliation(s)
- Jinyi He
- West China School of Clinical Medicine,Sichuan University,Chengdu,610041,China
| | - Liu Yang
- Department of Otolaryngology Head & Neck Surgery,West China Hospital,Sichuan University
| |
Collapse
|
5
|
Wang J, Jing J, Zhou C, Fan Y. Emerging roles of exosomes in oral diseases progression. Int J Oral Sci 2024; 16:4. [PMID: 38221571 PMCID: PMC10788352 DOI: 10.1038/s41368-023-00274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Rodríguez-Zorrilla S, Lorenzo-Pouso AI, Fais S, Logozzi MA, Mizzoni D, Di Raimo R, Giuliani A, García-García A, Pérez-Jardón A, Ortega KL, Martínez-González Á, Pérez-Sayáns M. Increased Plasmatic Levels of Exosomes Are Significantly Related to Relapse Rate in Patients with Oral Squamous Cell Carcinoma: A Cohort Study. Cancers (Basel) 2023; 15:5693. [PMID: 38067397 PMCID: PMC10705147 DOI: 10.3390/cancers15235693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is characterized by an immunosuppressive tumor microenvironment. Their plasma-derived exosomes deliver immunomodulatory molecules and cargo that correlate significantly with clinical parameters. This study aims to assess the exosomal profile as a potential tool for early detection of relapse and long-term outcomes in OSCC patients undergoing conventional therapy. METHODS 27 OSCC patients with a median 38-month follow-up were included in this study. The relationship between NTA-derived parameters and clinical pathological parameters was examined, and receiver operating characteristic (ROC) curves were utilized to evaluate the diagnostic efficacy of these values in detecting cancer relapse. RESULTS Plasmatic levels of exosomes prior to surgery showed a drastic reduction after surgical intervention (8.08E vs. 1.41 × 109 particles/mL, p = 0.006). Postsurgical concentrations of exosomes were higher in patients who experienced relapse compared to those who remained disease-free (2.97 × 109 vs. 1.11 × 109 particles/mL, p = 0.046). Additionally, patients who relapsed exhibited larger exosome sizes after surgery (141.47 vs. 132.31 nm, p = 0.03). Patients with lower concentrations of exosomes prior to surgery demonstrated better disease-free survival compared to those with higher levels (p = 0.012). ROC analysis revealed an area under the curve of 0.82 for presurgical exosome concentration in identifying relapse. CONCLUSIONS Presurgical exosomal plasmatic levels serve as independent predictors of early recurrence and survival in OSCC. All in all, our findings indicate that the detection of peripheral exosomes represents a novel tool for the clinical management of OSCC, with potential implications for prognosis assessment.
Collapse
Affiliation(s)
- Samuel Rodríguez-Zorrilla
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
| | - Alejandro I. Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.F.); (M.A.L.)
| | - Maria A. Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.F.); (M.A.L.)
| | - Davide Mizzoni
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Rossella Di Raimo
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Abel García-García
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Alba Pérez-Jardón
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Karem L. Ortega
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- School of Dentistry, Department of Oral Pathology, University of São Paulo, Av. Lineu Prestes, 2227, Cidade Universitária São Paulo, Sao Paulo 05508-000, Brazil
| | - Ángel Martínez-González
- Endocrinology and Nutrition Service, Complejo Hospitalario Universitario de Pontevedra, Mourente S/N, 36472 Pontevedra, Spain;
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
- Institute of Materials (IMATUS), Avenida do Mestre Mateo, 25, 15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Temilola DO, Adeola HA, Grobbelaar J, Chetty M. Liquid Biopsy in Head and Neck Cancer: Its Present State and Future Role in Africa. Cells 2023; 12:2663. [PMID: 37998398 PMCID: PMC10670726 DOI: 10.3390/cells12222663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The rising mortality and morbidity rate of head and neck cancer (HNC) in Africa has been attributed to factors such as the poor state of health infrastructures, genetics, and late presentation resulting in the delayed diagnosis of these tumors. If well harnessed, emerging molecular and omics diagnostic technologies such as liquid biopsy can potentially play a major role in optimizing the management of HNC in Africa. However, to successfully apply liquid biopsy technology in the management of HNC in Africa, factors such as genetic, socioeconomic, environmental, and cultural acceptability of the technology must be given due consideration. This review outlines the role of circulating molecules such as tumor cells, tumor DNA, tumor RNA, proteins, and exosomes, in liquid biopsy technology for the management of HNC with a focus on studies conducted in Africa. The present state and the potential opportunities for the future use of liquid biopsy technology in the effective management of HNC in resource-limited settings such as Africa is further discussed.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Henry Ademola Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Johan Grobbelaar
- Division of Otorhinolaryngology, Department of Surgical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town 7505, South Africa;
| | - Manogari Chetty
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa;
| |
Collapse
|
8
|
Qie Y, Sun X, Yang Y, Yan T. Emerging functions and applications of exosomes in oral squamous cell carcinoma. J Oral Pathol Med 2023; 52:886-894. [PMID: 37701945 DOI: 10.1111/jop.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Oral squamous cell carcinoma is the most common phenotype in pathology, which accounts for 80% of all oral cancers. The therapeutic methods of oral squamous cell carcinoma include surgical excision, chemotherapy, and radiotherapy. Whereas, the high recurrence rate and poor prognosis lead to a 5-year survival rate less than 50%. In order to explore more therapeutic strategies of oral squamous cell carcinoma, the relevant risk factors, mechanisms, and diagnostics are widely detected. The various exosome-mediated biological effects on the development of oral squamous cell carcinoma have drawn lots of attention. Exosomes, a kind of extracellular vesicles secreted from host cells and transferred to other cells, show great potential in the regulations of tumorigenesis, progression, and metastasis on oral squamous cell carcinoma. Moreover, some studies reported that the exosomes could interact with tumor microenvironment and be applied to diagnosis or therapy of oral squamous cell carcinoma. In this work, we will summarize the frontier studies of exosomes in the tumor growth, tumor-associated angiogenesis, invasion, and metastasis of oral squamous cell carcinoma, and then probe the current biological functions and applications of exosomes and exosome-derived materials for the therapeutic strategies of oral squamous cell carcinoma, which would help us to update the understanding of exosomes in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yingchun Qie
- Stomatology Department, Zibo First Hospital, Zibo, Shandong Province, China
| | - Xia Sun
- Stomatology Department, Yidu Central Hospital of Weifang, Qingzhou, Shandong Province, China
| | - Yongqiang Yang
- Stomatology Department, Yidu Central Hospital of Weifang, Qingzhou, Shandong Province, China
| | - Tao Yan
- Intensive Care Unit, Zibo First Hospital, Zibo, Shandong Province, China
| |
Collapse
|
9
|
Kalmatte A, Rekha PD, Ratnacaram CK. Emerging cell cycle related non-coding RNA biomarkers from saliva and blood for oral squamous cell carcinoma. Mol Biol Rep 2023; 50:9479-9496. [PMID: 37717257 DOI: 10.1007/s11033-023-08791-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
The unnotified or undifferentiable early stages of oral squamous cell carcinoma (OSCC) progression are the prime reasons for late-stage detection and poor survival outcomes of oral cancer. This review summarizes the prior research and recent advancements on the influence of dysregulated non-coding RNA (ncRNA) on cell cycle and their employability as diagnostic and prognostic biomarkers of oral cancer. The literature search was performed using the following keywords: 'serum/saliva non-coding RNAs' and 'serum/saliva non-coding RNAs and cell cycle', 'serum/saliva dysregulated ncRNAs and cell cycle', 'Cdk/CKI and ncRNAs', 'tissue ncRNAs' concerning 'oral cancer''. The compiled data focuses mainly on the diagnostic and prognostic significance of MicroRNAs (miRNAs), Circular RNAs (circRNAs), and Long noncoding RNAs (lncRNAs) on oral cancer and all other cancers as well as subject-relevant articles published in languages other than English are beyond the scope of this review and excluded from the study. Moreover, articles focusing on DNA, protein, and metabolite markers are eliminated from the study. While there exist various potential biomolecules such as DNA, RNA, proteins, metabolites, and specific antigens representing predictive biomarkers in body fluids for oral cancer, this review completely focuses on non-coding RNAs restricted to saliva and blood, picking out a few of the reliable ones amongst the recent investigations based on the sophisticated techniques, cohort, and sensitivity as well as specificity, i.e., salivary miR-1307-5p, miR-3928, hsa_circ_0001874 and ENST00000412740, NR_131012, ENST00000588803, NR_038323, miR-21 in circulation. Thus, further studies are required to clinically confirm the usage of these non-invasive biomarkers in oral cancer.
Collapse
Affiliation(s)
- Asrarunissa Kalmatte
- Srinivas College Of Physiotherapy, City Campus, Pandeshwar, Mangaluru, Karnataka, 575001, India
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Punchappady Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Chandrahas Koumar Ratnacaram
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, 575018, India.
| |
Collapse
|
10
|
Ghafouri-Fard S, Shoorei H, Dong P, Poornajaf Y, Hussen BM, Taheri M, Akbari Dilmaghani N. Emerging functions and clinical applications of exosomal microRNAs in diseases. Noncoding RNA Res 2023; 8:350-362. [PMID: 37250456 PMCID: PMC10209650 DOI: 10.1016/j.ncrna.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Exosomes are an important group of extracellular vesicles that transfer several kinds of biomolecules and facilitate cell-cell communication. The content of exosomes, particularly the amounts of microRNA (miRNAs) inside these vesicles, demonstrates a disease-specific pattern reflecting pathogenic processes and may be employed as a diagnostic and prognostic marker. miRNAs may enter recipient cells through exosomes and generate a RISC complex that can cause degradation of the target mRNAs or block translation of their corresponding proteins. Therefore, exosome-derived miRNAs constitute an important mechanism of gene regulation in recipient cells. The miRNA content of exosomes can be used as an important tool in the detection of diverse disorders, particularly cancers. This research field has an important situation in cancer diagnosis. In addition, exosomal microRNAs offer a great deal of promise in the treatment of human disorders. However, there are still certain challenges to be resolved. The most important challenges are as follow: the detection of exosomal miRNAs should be standardized, exosomal miRNAs-associated studies should be conducted in large number of clinical samples, and experiment settings and detection criteria should be consistent across different labs. The goal of this article is to present an overview of the effects of exosome-derived microRNAs on a variety of diseases, including gastrointestinal, pulmonary, neurological, and cardiovascular diseases, with a particular emphasis on malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhang Y, Liu J, Liu S, Yu L, Liu S, Li M, Jin F. Extracellular vesicles in oral squamous cell carcinoma: current progress and future prospect. Front Bioeng Biotechnol 2023; 11:1149662. [PMID: 37304135 PMCID: PMC10250623 DOI: 10.3389/fbioe.2023.1149662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most aggressive oral and maxillofacial malignancy with a high incidence and low survival rate. OSCC is mainly diagnosed by tissue biopsy, which is a highly traumatic procedure with poor timeliness. Although there are various options for treating OSCC, most of them are invasive and have unpredictable therapeutic outcomes. Generally, early diagnosis and noninvasive treatment cannot be always satisfied simultaneously in OSCC. Extracellular vesicles (EVs) are involved in intercellular communication. EVs facilitate disease progression and reflect the location and status of the lesions. Therefore, EVs are relatively less invasive diagnostic tools for OSCC. Furthermore, the mechanisms by which EVs are involved in tumorigenesis and tumor treatment have been well studied. This article dissects the involvement of EVs in the diagnosis, development, and treatment of OSCC, providing new insight into the treatment of OSCC by EVs. Different mechanisms, such as inhibiting EV internalization by OSCC cells and constructing engineered vesicles, with potential applications for treating OSCC will be discussed in this review article.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jianing Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Lu Yu
- Department of Periodontology, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Siying Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Meng Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Wu T, Liu Y, Ali NM, Zhang B, Cui X. Effects of Exosomes on Tumor Bioregulation and Diagnosis. ACS OMEGA 2023; 8:5157-5168. [PMID: 36816660 PMCID: PMC9933233 DOI: 10.1021/acsomega.2c06567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Exosomes are lipid bilayer vesicles in biological fluids, which can participate in biological processes by mediating intercellular communication and activating intracellular signaling pathways, especially cancerogenic processes, such as proliferation, metastasis, invasion, and immune regulation of cancer cells. Besides, cancer-derived exosomes are also involved in tumor diagnosis and therapy as biomarkers and nanotransport devices. This article reviews the latest research progress on the biological regulation and disease diagnosis of exosomes in tumors, with the aim of providing new ideas for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Tong Wu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Ying Liu
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
- Department
of Oncology, Affiliated Zhongshan Hospital
of Dalian University, Dalian 116011, P.R. China
| | - Nasra Mohamoud Ali
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Bin Zhang
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| | - Xiaonan Cui
- Department
of Oncology, First Affiliated Hospital of
Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
13
|
The Roles of Exosomes in the Diagnose, Development and Therapeutic Resistance of Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24031968. [PMID: 36768288 PMCID: PMC9916286 DOI: 10.3390/ijms24031968] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Oral cancer is one of the most common cancers worldwide, of which more than half of patients are diagnosed at a locally advanced stage with poor prognosis due to recurrence, metastasis and resistant to treatment. Thus, it is imperative to further explore the potential mechanism of development and drug resistance of oral cancer. Exosomes are small endosome-derived lipid nanoparticles that are released by cells. Since the cargoes of exosomes were inherited from their donor cells, the cargo profiles of exosomes can well recapitulate that of their donor cells. This is the theoretical basis of exosome-based liquid biopsy, providing a tool for early diagnosis of oral cancer. As an important intracellular bioactive cargo delivery vector, exosomes play a critical role in the development of oral cancer by transferring their cargoes to receipt cells. More importantly, recent studies have revealed that exosomes could induce therapy-resistance in oral cancer through multiple ways, including exosome-mediated drug efflux. In this review, we summarize and compare the role of exosomes in the diagnosis, development and therapy-resistant of oral cancer. We also highlight the clinical application of exosomes, and discuss the advantages and challenges of exosomes serving as predictive biomarker, therapy target and therapy vector in oral cancer.
Collapse
|
14
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
15
|
Gao H, Shen Y, Feng Z, Cai Y, Yang J, Zhu Y, Peng Q. The clinical implications of circulating microRNAs as potential biomarkers in screening oral squamous cell carcinoma. Front Oncol 2022; 12:965357. [PMID: 36465364 PMCID: PMC9714623 DOI: 10.3389/fonc.2022.965357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/26/2022] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Recent studies have highlighted the biomarker role of circulating miRNAs in oral squamous cell carcinoma (OSCC), indicating their potential application as early diagnostic markers for OSCC. However, the diagnostic results have proven inconclusive. This study was conducted to evaluate the diagnostic value of circulating miRNAs for OSCC diagnosis. METHODS Eligible published studies were identified by a literature search carried out in several databases by using combinations of keywords associated with OSCC, circulating miRNAs, and diagnosis. The bivariate meta-analysis model was adopted to summarize the pooled parameters. Afterwards, we thoroughly explored the sources of heterogeneity after evaluating the risk of bias. RESULTS A total of 60 studies focusing on 41 circulating miRNAs were included. The pooled sensitivity, specificity, and AUC were 0.75 (95%CI: 0.69-0.80), 0.76 (0.70-0.81), 0.82 (0.79-0.85), respectively. Subgroup analyses showed that miRNA combinations were more accurate than single miRNAs. Additionally, plasma may be a better matrix for miRNAs assays in OSCC diagnosis as the plasma-based miRNA assay had a higher level of diagnostic accuracy than serum-based miRNA assay. Subgroup analyses also suggested that using circulating miRNAs for OSCC diagnosis is more effective in Caucasians than in Asian ethnic groups. Finally, circulating miRNA assays based on large sample sizes have superior diagnostic accuracy than small sample sizes. CONCLUSION Circulating miRNAs might be applied as effective surrogate biomarkers for early diagnosis of OSCC. Nevertheless, future larger-scale prospective studies should be performed to enhance the diagnostic efficiency and investigate the miRNA combinations with more pronounced accuracy.
Collapse
Affiliation(s)
- Huan Gao
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Shen
- Department of Radiation Oncology, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Zhengyang Feng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxing Cai
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Jianxin Yang
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Hofmann L, Abou Kors T, Ezić J, Niesler B, Röth R, Ludwig S, Laban S, Schuler PJ, Hoffmann TK, Brunner C, Medyany V, Theodoraki MN. Comparison of plasma- and saliva-derived exosomal miRNA profiles reveals diagnostic potential in head and neck cancer. Front Cell Dev Biol 2022; 10:971596. [PMID: 36072342 PMCID: PMC9441766 DOI: 10.3389/fcell.2022.971596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Head and neck squamous cell carcinomas (HNSCC) lack tumor-specific biomarkers. Exosomes from HNSCC patients carry immunomodulatory molecules, and correlate with clinical parameters. We compared miRNA profiles of plasma- and saliva-derived exosomes to reveal liquid biomarker candidates for HNSCC. Methods: Exosomes were isolated by differential ultracentrifugation from corresponding plasma and saliva samples from 11 HNSCC patients and five healthy donors (HD). Exosomal miRNA profiles, as determined by nCounter® SPRINT technology, were analyzed regarding their diagnostic and prognostic potential, correlated to clinical data and integrated into network analysis. Results: 119 miRNAs overlapped between plasma- and saliva-derived exosomes of HNSCC patients, from which 29 tumor-exclusive miRNAs, associated with TP53, TGFB1, PRDM1, FOX O 1 and CDH1 signaling, were selected. By intra-correlation of tumor-exclusive miRNAs from plasma and saliva, top 10 miRNA candidates with the strongest correlation emerged as diagnostic panels to discriminate cancer and healthy as well as potentially prognostic panels for disease-free survival (DFS). Further, exosomal miRNAs were differentially represented in human papillomavirus (HPV) positive and negative as well as low and high stage disease. Conclusion: A plasma- and a saliva-derived panel of tumor-exclusive exosomal miRNAs hold great potential as liquid biopsy for discrimination between cancer and healthy as well as HPV status and disease stage. Exosomal miRNAs from both biofluids represent a promising tool for future biomarker studies, emphasizing the possibility to substitute plasma by less-invasive saliva collection.
Collapse
Affiliation(s)
- Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Tsima Abou Kors
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezić
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Ralph Röth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Sonja Ludwig
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Valentin Medyany
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Marie-Nicole Theodoraki,
| |
Collapse
|
17
|
Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Noncoding RNA 2022; 8:ncrna8040060. [PMID: 36005828 PMCID: PMC9414906 DOI: 10.3390/ncrna8040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common malignancies worldwide, accounting for 2% of all cases annually and 1.8% of all cancer deaths. To date, tissue biopsy and histopathological analyses are the gold standard methods for the diagnosis of oral cancers. However, oral cancer is generally diagnosed at advanced stages with a consequent poor 5-year survival (~50%) due to limited screening programs and inefficient physical examination strategies. To address these limitations, liquid biopsy is recently emerging as a novel minimally invasive tool for the early identification of tumors as well as for the evaluation of tumor heterogeneity and prognosis of patients. Several studies have demonstrated that liquid biopsy in oral cancer could be useful for the detection of circulating biomarkers including circulating tumor DNA (ctDNA), microRNAs (miRNAs), proteins, and exosomes, thus improving diagnostic strategies and paving the way to personalized medicine. However, the application of liquid biopsy in oral cancer is still limited and further studies are needed to better clarify its clinical impact. The present manuscript aims to provide an updated overview of the potential use of liquid biopsy as an additional tool for the management of oral lesions by describing the available methodologies and the most promising biomarkers.
Collapse
|
18
|
Hofmann L, Medyany V, Ezić J, Lotfi R, Niesler B, Röth R, Engelhardt D, Laban S, Schuler PJ, Hoffmann TK, Brunner C, Jackson EK, Theodoraki MN. Cargo and Functional Profile of Saliva-Derived Exosomes Reveal Biomarkers Specific for Head and Neck Cancer. Front Med (Lausanne) 2022; 9:904295. [PMID: 35899209 PMCID: PMC9309685 DOI: 10.3389/fmed.2022.904295] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022] Open
Abstract
Background Exosomes contribute to immunosuppression in head and neck squamous cell carcinoma (HNSCC), a tumor entity which lacks specific tumor biomarkers. Plasma-derived exosomes from HNSCC patients correlate with clinical parameters and have potential as liquid biopsy. Here, we investigate the cargo and functional profile of saliva-derived exosomes from HNSCC patients and their potential as non-invasive biomarkers for disease detection and immunomodulation. Methods Exosomes were isolated from saliva of HNSCC patients (n = 21) and healthy donors (HD, n = 12) by differential ultracentrifugation. Surface values of immune checkpoints and tumor associated antigens on saliva-derived exosomes were analyzed by bead-based flow cytometry using CD63 capture. Upon co-incubation with saliva-derived exosomes, activity and proliferation of T cells were assessed by flow cytometry (CD69 expression, CFSE assay). Adenosine levels were measured by mass spectrometry after incubation of saliva-derived exosomes with exogenous ATP. miRNA profiling of saliva-derived exosomes was performed using the nCounter® SPRINT system. Results Saliva-derived, CD63-captured exosomes from HNSCC patients carried high amounts of CD44v3, PDL1 and CD39. Compared to plasma, saliva was rich in tumor-derived, CD44v3+ exosomes and poor in hematopoietic cell-derived, CD45+ exosomes. CD8+ T cell activity was attenuated by saliva-derived exosomes from HNSCC patients, while proliferation of CD4+ T cells was not affected. Further, saliva-derived exosomes produced high levels of immunosuppressive adenosine. 62 HD- and 31 HNSCC-exclusive miRNAs were identified. Samples were grouped in "Healthy" and "Cancer" based on their saliva-derived exosomal miRNA profile, which was further found to be involved in RAS/MAPK, NF-κB complex, Smad2/3, and IFN-α signaling. Conclusions Saliva-derived exosomes from HNSCC patients were enriched in tumor-derived exosomes whose cargo and functional profile reflected an immunosuppressive TME. Surface values of CD44v3, PDL1 and CD39 on CD63-captured exosomes, adenosine production and the miRNA cargo of saliva-derived exosomes emerged as discriminators of disease and emphasized their potential as liquid biomarkers specific for HNSCC.
Collapse
Affiliation(s)
- Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Valentin Medyany
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezić
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen, Ulm, Germany.,Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Ralph Röth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Daphne Engelhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
19
|
Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules 2022; 12:1021. [PMID: 35892331 PMCID: PMC9331210 DOI: 10.3390/biom12081021] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer, occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants, epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma), saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over the last decades, including techniques such as next-generation sequencing, nanotechnology, or methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer, accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance and monitoring response. Therefore, they can help to optimize making decisions in clinical practice. Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however, needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity, specificity, and positive predictive value.
Collapse
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Gemma Armengol
- Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
20
|
A Circulating Risk Score, Based on Combined Expression of Exo-miR-130a-3p and Fibrinopeptide A, as Predictive Biomarker of Relapse in Resectable Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14143412. [PMID: 35884472 PMCID: PMC9317031 DOI: 10.3390/cancers14143412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary To date, the five-year survival rate of early stages of non-small cell lung cancer (NSCLC) is still disappointing and reliable prognostic factors are mandatory. Here, we performed in-depth high-throughput analyses of plasma circulating markers, including exosomal microRNAs and peptidome to identify a prognostic score. The miRnome profile selected the Exo-miR-130a-3p as the most overexpressed in relapsed patients. Peptidome analysis identified four progressively more degraded forms of fibrinopeptide A (FpA), which were depleted in relapse patients. Notably, a stepwise algorithm selected Exo-miR-130a-3p and the greatest FpA (2–16) to build a prognostic score, where high-risk patients had 18 months of median disease-free survival. Overexpression of miR-130a-3p cells led to a deregulation of pathways such as angiogenesis as well as the coagulation and metalloprotease, which might be linked to FpA reduction. The risk score integrating circulating markers may help clinicians predict early-stage NSCLC patients who are more likely to relapse after surgery. Abstract To date, the 5-year overall survival rate of 60% for early-stage non-small cell lung cancer (NSCLC) is still unsatisfactory. Therefore, reliable prognostic factors are needed. Growing evidence shows that cancer progression may depend on an interconnection between cancer cells and the surrounding tumor microenvironment; hence, circulating molecules may represent promising markers of cancer recurrence. In order to identify a prognostic score, we performed in-depth high-throughput analyses of plasma circulating markers, including exosomal microRNAs (Exo-miR) and peptides, in 67 radically resected NSCLCs. The miRnome profile selected the Exo-miR-130a-3p as the most overexpressed in relapsed patients. Peptidome analysis identified four progressively more degraded forms of fibrinopeptide A (FpA), which were depleted in progressing patients. Notably, stepwise Cox regression analysis selected Exo-miR-130a-3p and the greatest FpA (2-16) to build a score predictive of recurrence, where high-risk patients had 18 months of median disease-free survival. Moreover, in vitro transfections showed that higher levels of miR-130a-3p lead to a deregulation of pathways involved in metastasis and angiogenesis, including the coagulation process and metalloprotease increase which might be linked to FpA reduction. In conclusion, by integrating circulating markers, the identified risk score may help clinicians predict early-stage NSCLC patients who are more likely to relapse after primary surgery.
Collapse
|
21
|
Li Y, Gao S, Hu Q, Wu F. Functional Properties of Cancer Epithelium and Stroma-Derived Exosomes in Head and Neck Squamous Cell Carcinoma. Life (Basel) 2022; 12:life12050757. [PMID: 35629423 PMCID: PMC9145061 DOI: 10.3390/life12050757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Stroma–cancer cell crosstalk involves a complex signaling network that contributes to tumor progression, including carcinogenesis, angiogenesis, migration, invasion, and therapy resistance in cancers. Exosomes, as extracellular membranous nanovesicles released by almost all types of cells, including tumor cells and stromal cells, play a critical role in signal delivery and material communication, in which the characteristics of their parent cells are reflected. The tumor or stroma-derived exosomes mediate cell–cell communication in the tumor microenvironment by transporting DNA, RNA, proteins, lipids, and metabolites. Recent studies on head and neck squamous cell carcinoma (HNSCC) have demonstrated that tumor-derived exosomes support various tumor biological behaviors, whereas the functional roles of stroma-derived exosomes remain largely unknown. Although these exosomes are emerging as promising targets in early diagnosis, prognostic prediction, and pharmaceutical carriers for antitumor therapy, there are still multiple hurdles to be overcome before they can be used in clinical applications. Herein, we systematically summarize the promotive roles of the epithelium and stroma-derived exosomes in HNSCC and highlight the potential clinical applications of exosomes in the treatment of HNSCC.
Collapse
Affiliation(s)
- Yang Li
- Department of Oral Pathology, College of Stomatology, Ningxia Medical University, South Sheng Li Street 804, Yinchuan 750004, China;
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Yang Qiao Middle Road 246, Fuzhou 350004, China
| | - Shengtao Gao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, South Renmin Road, Sec. 3, No. 14, Chengdu 610041, China;
| | - Qi Hu
- College of Public Health and Management, Ningxia Medical University, South Sheng Li Street 1160, Yinchuan 750004, China;
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, South Renmin Road, Sec. 3, No. 14, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
22
|
Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D, Sekar D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer 2022; 21:54. [PMID: 35172817 PMCID: PMC8848669 DOI: 10.1186/s12943-022-01525-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Detecting cancer at an early stage before clinical manifestation could be an effective strategy to decrease cancer mortality. Thus, identifying liquid biopsy biomarkers with high efficacy could be a promising approach for non-invasive diagnosis of cancer. MAIN TEXT Liquid biopsies are increasingly used as a supplement to biopsy, as it enables disease progression to be detected months before clinical and radiographic confirmation. Many bodily fluids contain exosomal microRNAs (miRNAs) which could provide a new class of biomarkers for early and minimally invasive cancer diagnosis due to the stability of miRNAs in exosomes. In this review, we mainly focused on the exosomal miRNAs (liquid biopsy) as biomarkers in the diagnosis and prognosis of various cancers. CONCLUSION Exosomal miRNAs can be used as diagnostic and prognosis biomarkers that provide unique insights and a more dynamic perspective of the progression and therapeutic responses in various malignancies. Therefore, the development of novel and more sensitive technologies that exploit exosomal miRNAs should be a priority for cancer management.
Collapse
Affiliation(s)
- K Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Deusdedit Tusubira
- Biochemistry Department, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
23
|
Qiu K, Song Y, Rao Y, Liu Q, Cheng D, Pang W, Ren J, Zhao Y. Diagnostic and Prognostic Value of MicroRNAs in Metastasis and Recurrence of Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:711171. [PMID: 34646767 PMCID: PMC8503605 DOI: 10.3389/fonc.2021.711171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs have been proven to make remarkable differences in the clinical behaviors of head and neck squamous cell carcinoma (HNSCC). This study aims to systematically analyze whether differential expression levels of microRNAs are related to recurrence or metastasis in patients with HNSCC. A comprehensive search of the PubMed, EMBASE, and CENTRAL was conducted up to July 24th, 2021. Data were collected and combined from studies reporting recurrence-free survival (RFS) of HNSCC patients with high microRNA expression compared to those with low expression. Besides, studies providing necessary data for evaluating the diagnostic value of microRNAs for detecting recurrence and metastasis based on their expression levels were also included and combined. The pooled hazard ratio (HR) value for the outcomes of RFS in 1,093 HNSCC samples from 10 studies was 2.51 (95%CI: 2.13–2.96). A sensitivity of 0.79 (95% CI: 0.72–0.85) and specificity of 0.77 (95%CI: 0.68–0.83) were observed in three studies, of which 93 patients with recurrence and 82 nonrecurrence controls were included, and the area under the curve (AUC) was 0.85 (95% CI: 0.81–0.88). Additionally, high diagnostic accuracy of microRNAs in detecting lymph node metastasis (LNM) was also reported. In conclusion, two panels of microRNAs showed the potential to predict recurrence or diagnose recurrence in HNSCC patients, respectively, which could facilitate prognosis prediction and diagnosis of clinical behaviors in HNSCC patients.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Song
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Yufang Rao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiurui Liu
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Danni Cheng
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Wendu Pang
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianjun Ren
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China.,West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Dunlop RA, Banack SA, Cox PA. A comparison of the efficiency of RNA extraction from extracellular vesicles using the Qiagen RNeasy MinElute versus Enzymax LLC RNA Tini Spin columns and qPCR of miRNA. Biol Methods Protoc 2021; 6:bpab015. [PMID: 34423131 PMCID: PMC8344526 DOI: 10.1093/biomethods/bpab015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
One consequence of the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is an interruption to the supply of laboratory consumables, particularly those used for RNA extraction. This category includes column-based RNA extraction kits designed to retain short RNA species (defined as having fewer than 200 nucleotides), from small sample volumes, e.g. exosomes or extracellular vesicles (EVs). Qiagen manufactures several kits for the extraction and enrichment of short RNA species, such as microRNA (miRNA), which contain silica-membrane columns called “RNeasy MinElute Spin Columns.” These kits, which also contain buffers and collection tubes, range in price from USD380 to greater than USD1000 and have been subject to fulfillment delays. Scientists seeking to reduce single-use plastics and costs may wish to order the columns separately; however, Qiagen does not sell the RNeasy MinElute Spin Columns (in reasonable quantities) as an individual item. Thus, we sought an alternative product and found RNA Tini Spin columns from Enzymax LLC. We conducted a systematic comparison of the efficiency of RNA extraction for miRNA quantitative real-time PCR (qPCR) using the Qiagen RNeasy MinElute Spin Columns and Enzymax LLC RNA Tini Spin columns and the Qiagen total RNA extraction protocol that enriches for short RNA species. We compared the efficiency of extraction of five spike-in control miRNAs, six sample signal miRNAs, and nine low- to medium-abundance miRNAs by qPCR. The RNA was extracted from EV preparations purified from human plasma using CD81 immunoprecipitation. We report no statistically significant differences in extraction efficiencies between the two columns for any of the miRNAs examined. Therefore, we conclude that the Enzymax RNA Tini Spin columns are adequate substitutes for the Qiagen RNeasy MinElute Spin Columns for short RNA species enrichment and downstream qPCR from EVs in the miRNAs we examined.
Collapse
Affiliation(s)
| | - Sandra Anne Banack
- Brain Chemistry Labs, Suite 3, 1130 S Highway 89, Jackson, WY 83001, USA
| | - Paul Alan Cox
- Brain Chemistry Labs, Suite 3, 1130 S Highway 89, Jackson, WY 83001, USA
| |
Collapse
|