1
|
El-Kashak WA, Essa AF, Abdelhameed MF, Ahmed YH, Abd Elkarim AS, Elghonemy MM, Ibrahim BMM, Gaara AH, Mohamed TK, Elshamy AI. Unveiling the neuroprotective potential of Ipomoea carnea ethanol extract via the modulation of tau and β-secretase pathways in AlCl 3-induced memory impairment in rats in relation to its phytochemical profiling. Inflammopharmacology 2025; 33:2043-2068. [PMID: 40072673 PMCID: PMC11991951 DOI: 10.1007/s10787-025-01687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 03/14/2025]
Abstract
Alzheimer's disease (AD) is a widespread condition that affects adults and the community considerably. The causes are yet unknown, except from advanced age and genetic predisposition. Natural products provided advantageous advantages for managing AD due to their efficacy, safety, and accessibility. The memory boosting effects of chemically characterized Ipomoea carnea ethanol extract (IPC-EtOH) on behavioral, biochemical, histological, and molecular levels against cognitive impairment induced by AlCl3 exposure in rats were assessed using donepezil as a reference drug. Behavioral tests (spontaneous alternation T-maze and open field test) and assays for GSK3β, CREB, FOXO1a, β-secretase, tau, oxidative stress biomarkers, histopathology, and immunohistochemistry for cyclooxygenase 2 (COX-2) were conducted. The chemical profiling of IPC-EtOH using UPLC-ESI-qTOF-MS coupled with molecular networking revealed the identification of 83 bioactive metabolites, including pyrrolizidine alkaloids and cinnamic acid derivatives which previously undescribed from this species. AlCl3 injection significantly elevated tau, β-secretase, GSSG, GSK-3β, and FOXO3a levels and down regulated CAT, SOD, and CREB, with strong COX-2 immunoexpression in the cortex and hippocampus compared to controls. Oral co-administration of donepezil or IPC-EtOH to AlCl3-treated rats restored near-normal function in these brain regions, significantly attenuating spatial learning, memory, and locomotor impairments. These results suggest that IPC-EtOH could be a promising therapy for mitigating aluminum-induced neurotoxicity, though further studies are needed to elucidate its precise mechanisms of action. These outcomes emphasize I. carnea ethanol extract's potential as an appealing therapy for AD by demonstrating its neuroprotective and memory-enhancing properties in rats having AlCl3-induced memory impairment.
Collapse
Affiliation(s)
- Walaa A El-Kashak
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt
| | - Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt
| | | | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Asmaa S Abd Elkarim
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Mai M Elghonemy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt
| | - Bassant M M Ibrahim
- Pharmacology Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Ahmed H Gaara
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt
| | - Tahia K Mohamed
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Bhattacharya RS, Singh R, Panghal A, Thakur A, Singh L, Verma RK, Singh C, Goyal M, Kumar J. Multi-Targeting Phytochemicals for Alzheimer's Disease. Phytother Res 2025; 39:1453-1483. [PMID: 39815655 DOI: 10.1002/ptr.8435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/23/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative illness in which β-amyloid (Aβ) and tau protein accumulate in neurons in the form of tangles. The pathophysiological pathway of AD consists of Aβ-amyloid peptides, tau proteins, and oxidative stress in neurons and increased neuro-inflammatory response. Food and Drug Administration in the United States has authorized various drugs for the effective treatment of AD, which include galantamine, rivastigmine, donepezil, memantine, sodium oligomannate, lecanemab, and aducanumab. The major disadvantage of these drugs is that they only provide "symptomatic" relief. They are most effective in the early stages or for mild to moderate cases of the disease, but are not suitable for long-term use. Besides conventional therapies, phytochemicals have the potential to stop the progression of AD. According to research, the use of potential phytochemicals against AD has gained attention due to their potent anti-inflammatory, antioxidant, anti-hyperphosphorylation of the tau protein, metal chelation, and anti-amyloid properties. This study seeks to provide an up-to-date compilation of the most current and promising breakthroughs in AD therapy using phytochemicals. It could be concluded that phytochemicals light serve as an effective therapy for AD. However, more mechanistic investigations are needed to determine the clinical implications of phytochemicals in AD treatment.
Collapse
Affiliation(s)
- Radha Shree Bhattacharya
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Punjab, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, Himachal Pradesh, India
| | - Lachhman Singh
- Faculty of Pharmacy, Government Pharmacy College, Seraj, V.P.O. Bagsaid, Mandi, Himachal Pradesh, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, India
| |
Collapse
|
3
|
Paula L, Ana JG, Hannu P, Carlos MJ, Eeva-Riikka V, Cristina J. Role of red beetroot in bread for reducing mycotoxin risks: Bioavailability of beetroot polyphenols and betalains with ochratoxin a, aflatoxin B1 and zearalenone in Caco-2 cells. Food Chem 2025; 465:142036. [PMID: 39561602 DOI: 10.1016/j.foodchem.2024.142036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
The interaction between dietary bioactive compounds and mycotoxins in food safety is crucial due to the potential health risks raised by mycotoxins and the protective functions of bioactive substances. This study is focused on red beetroot (Beta vulgaris), a rich source of polyphenols and betalains, incorporated into a daily consumption food such as bread, to examine its effects on the bioavailability of mycotoxins using an in vitro Caco-2 cell model. This study investigates how these compounds affect the bioavailability of mycotoxins, specifically ochratoxin A (OTA), aflatoxin B1 (AFB1), and zearalenone (ZEA), which are known to compromise intestinal barrier function and nutrient absorption. Additionally, bioaccesibility and bioavailability of total betalains (betacyanins and betaxanthins) (TBC) and polyphenols (TPC) content was evaluated. The beetroot-enriched breads were subjected to an in vitro digestion process, followed by a transepithelial transport assay to assess the bioavailability in differentiated Caco-2 cells. Results indicate an increase in the bioaccesibility of TBC and TPC (up to 99 % and 27 %, respectively) during digestion, suggesting enhanced absorption and protective effects against mycotoxin-induced damage. The presence of beetroot bread polyphenols and betalains increased the bioavailability of mycotoxins, with complex interactions observed, particularly in triple mycotoxin's combination. The results highlight the complex interactions between dietary components and mycotoxins' bioavailability, underlining the importance of further research into their mechanisms of action and potential applications in food safety and nutrition.
Collapse
Affiliation(s)
- Llorens Paula
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Juan-García Ana
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| | - Pakkanen Hannu
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, FI-40014 Jyväskylä, Finland; Department of Chemistry, University of Jyväskylä, Survontie 9C, FI-40014 Jyväskylä, Finland
| | - Moltó Juan Carlos
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Vehniäinen Eeva-Riikka
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, FI-40014 Jyväskylä, Finland; Department of Biology, University of Turku, 20014 Turku, Finland
| | - Juan Cristina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
4
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
5
|
Vicente-Zurdo D, Gómez-Mejía E, Rosales-Conrado N, León-González ME. A Comprehensive Analytical Review of Polyphenols: Evaluating Neuroprotection in Alzheimer's Disease. Int J Mol Sci 2024; 25:5906. [PMID: 38892094 PMCID: PMC11173253 DOI: 10.3390/ijms25115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's Disease (AD), a prevalent neurodegenerative disorder, is the primary cause of dementia. Despite significant advancements in neuroscience, a definitive cure or treatment for this debilitating disease remains elusive. A notable characteristic of AD is oxidative stress, which has been identified as a potential therapeutic target. Polyphenols, secondary metabolites of plant origin, have attracted attention due to their potent antioxidant properties. Epidemiological studies suggest a correlation between the consumption of polyphenol-rich foods and the prevention of chronic diseases, including neurodegenerative disorders, which underscores the potential of polyphenols as a therapeutic strategy in AD management. Hence, this comprehensive review focuses on the diverse roles of polyphenols in AD, with a particular emphasis on neuroprotective potential. Scopus, ScienceDirect, and Google Scholar were used as leading databases for study selection, from 2018 to late March 2024. Analytical chemistry serves as a crucial tool for characterizing polyphenols, with a nuanced exploration of their extraction methods from various sources, often employing chemometric techniques for a holistic interpretation of the advances in this field. Moreover, this review examines current in vitro and in vivo research, aiming to enhance the understanding of polyphenols' role in AD, and providing valuable insights for forthcoming approaches in this context.
Collapse
Affiliation(s)
- David Vicente-Zurdo
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Montepríncipe Urbanization, 28660 Boadilla del Monte, Spain
| | - Esther Gómez-Mejía
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| | - Noelia Rosales-Conrado
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| | - María Eugenia León-González
- Department of Analytical Chemistry, Faculty of Chemistry Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (E.G.-M.); (N.R.-C.)
| |
Collapse
|
6
|
Barbalace MC, Freschi M, Rinaldi I, Mazzara E, Maraldi T, Malaguti M, Prata C, Maggi F, Petrelli R, Hrelia S, Angeloni C. Identification of Anti-Neuroinflammatory Bioactive Compounds in Essential Oils and Aqueous Distillation Residues Obtained from Commercial Varieties of Cannabis sativa L. Int J Mol Sci 2023; 24:16601. [PMID: 38068924 PMCID: PMC10706820 DOI: 10.3390/ijms242316601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from 'Gorilla Glue' was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils' anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.
Collapse
Affiliation(s)
- Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Irene Rinaldi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Eugenia Mazzara
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy;
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy;
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Riccardo Petrelli
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| |
Collapse
|
7
|
Myint KZ, Zhou Z, Shi Q, Chen J, Dong X, Xia Y. Stevia Polyphenols, Their Antimicrobial and Anti-Inflammatory Properties, and Inhibitory Effect on Digestive Enzymes. Molecules 2023; 28:7572. [PMID: 38005293 PMCID: PMC10673113 DOI: 10.3390/molecules28227572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Polyphenols from stevia leaves (PPSs) are abundant byproducts from steviol glycoside production, which have been often studied as raw extracts from stevia extracts for their bioactivities. Herein, the PPSs rich in isochlorogenic acids were studied for their antimicrobial and anti-inflammatory properties, as well as their inhibitory effects on digestive enzymes. The PPSs presented stronger antibacterial activity against E. coli, S. aureus, P. aeruginosa, and B. subtilis than their antifungal activity against M. furfur and A. niger. Meanwhile, the PPSs inhibited four cancer cells by more than 60% based on their viability, in a dose-dependent manner. The PPSs presented similar IC50 values on the inhibition of digestive enzyme activities compared to epigallocatechin gallate (EGCG), but had weaker anti-inflammatory activity. Therefore, PPSs could be a potential natural alternative to antimicrobial agents. This is the first report on the bioactivity of polyphenols from stevia rebaudiana (Bertoni) leaves excluding flavonoids, and will be of benefit for understanding the role of PPSs and their application.
Collapse
Affiliation(s)
- Khaing Zar Myint
- State Key Laboratory of Food Science and Resource, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhuoyu Zhou
- State Key Laboratory of Food Science and Resource, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qiandai Shi
- State Key Laboratory of Food Science and Resource, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Junming Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xinyu Dong
- State Key Laboratory of Food Science and Resource, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Resource, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
8
|
Marrazzo P, Mandrone M, Chiocchio I, Zambonin L, Barbalace MC, Zalambani C, Angeloni C, Malaguti M, Prata C, Poli F, Fiorentini D, Hrelia S. By-Product Extracts from Castanea sativa Counteract Hallmarks of Neuroinflammation in a Microglial Model. Antioxidants (Basel) 2023; 12:antiox12040808. [PMID: 37107183 PMCID: PMC10135167 DOI: 10.3390/antiox12040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Castanea sativa is very common in Italy, and the large amount of waste material generated during chestnut processing has a high environmental impact. Several studies demonstrated that chestnut by-products are a good source of bioactive compounds, mainly endowed with antioxidant properties. This study further investigates the anti-neuroinflammatory effect of chestnut leaf and spiny bur extracts, together with the deepest phytochemical characterisation (by NMR and MS) of active biomolecules contained in leaf extracts, which resulted in being more effective than spiny bur ones. BV-2 microglial cells stimulated with lipopolysaccharide (LPS) were used as a model of neuroinflammation. In BV-2 cells pre-treated with chestnut extracts, LPS signalling is partially blocked via the reduced expression of TLR4 and CD14 as well as the expression of LPS-induced inflammatory markers. Leaf extract fractions revealed the presence of specific flavonoids, such as isorhamnetin glucoside, astragalin, myricitrin, kaempferol 3-rhamnosyl (1-6)(2″-trans-p-coumaroyl)hexoside, tiliroside and unsaturated fatty acids, all of which could be responsible for the observed anti-neuroinflammatory effects. Interestingly, the kaempferol derivative has been identified in chestnut for the first time. In conclusion, the exploitation of chestnut by-products is suitable for the achievement of two goals: satisfaction of consumers’ demand for new, natural bio-active compounds and valorisation of by-products.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum—University of Bologna, Via Belmeloro, 8, 40126 Bologna, Italy
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy
| | - Ilaria Chiocchio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy
| | - Laura Zambonin
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Chiara Zalambani
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
- Correspondence: (M.M.); (C.P.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy
- Correspondence: (M.M.); (C.P.)
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio, 42, 40126 Bologna, Italy
| | - Diana Fiorentini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
9
|
Farouk A, Alsulami T, Ali HS, Badr AN. In-Vitro and In-Silico Investigation for the Spent-Coffee Bioactive Phenolics as a Promising Aflatoxins Production Inhibitor. Toxins (Basel) 2023; 15:toxins15030225. [PMID: 36977116 PMCID: PMC10051990 DOI: 10.3390/toxins15030225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Aflatoxin, is a naturally occurring polyketide generated by Aspergillus flavus via biosynthetic pathways, including polyketide synthase (PKS) and non-ribosomal enzymes. The in vitro analysis supported by molecular dynamics (MD) techniques was used to examine the antifungal and anti-aflatoxigenic activity of spent coffee grounds (SCGs) methanol extract. The High-Performance Liquid Chromatography results revealed the presence of 15 phenolic acids and five flavonoids. (R)-(+)-Rosmarinic acid (176.43 ± 2.41 µg/g) was the predominant of the detected acids, followed by gallic acid (34.83 ± 1.05 µg/g). At the same time, apigenin-7-glucoside is the dominant flavonoid in the SCGs extract by 1717.05 ± 5.76 µg/g, and naringin (97.27 ± 1.97 µg/g) comes next. The antifungal and anti-aflatoxigenic activity of the SCGs extracts was 380 µL/mL and 460 µL/mL, respectively. The SGGs’ effect of inhibiting five Aspergillus strains’ growth on the agar media ranged between 12.81 ± 1.71 to 15.64 ± 1.08 mm by two diffusion assays. Molecular docking results confirmed the inhibitory action of different phenolics and flavonoids on the PKS and NPS key enzymes of the aflatoxin biosynthetic mechanism. The SCGs extract components with the highest free binding energy, naringin (−9.1 kcal/mL) and apigenin 7-glucoside (−9.1 kcal/mol), were subjected to an MD simulation study. The computational results infer the stabilizing effects on the enzymes upon ligand binding led to the impairment in its functionality. The current study represents a novel attempt to assess the anti aflatoxins mechanism of phenolics and flavonoids targeting PKS and NPS via computational approaches compared to in-vitro assays.
Collapse
Affiliation(s)
- Amr Farouk
- Flavor and Aroma Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Tawfiq Alsulami
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatem S. Ali
- Food Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt
- Correspondence: or ; Tel.: +20-1000327640
| |
Collapse
|
10
|
Agri-Food Wastes as Natural Source of Bioactive Antioxidants. Antioxidants (Basel) 2023; 12:antiox12020351. [PMID: 36829910 PMCID: PMC9951869 DOI: 10.3390/antiox12020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Nowadays, the health of the ecosystem and quality of life are jeopardized by the growing quantities of waste that are released into the environment [...].
Collapse
|
11
|
Antifungal Activity of Spent Coffee Ground Extracts. Microorganisms 2023; 11:microorganisms11020242. [PMID: 36838208 PMCID: PMC9963196 DOI: 10.3390/microorganisms11020242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Coffee is one of the most popular and consumed products in the world, generating tons of solid waste known as spent coffee grounds (SCG), containing several bioactive compounds. Here, the antifungal activity of ethanolic SCG extract from caffeinated and decaffeinated coffee capsules was evaluated against yeasts and filamentous fungi. These extracts had antifungal activity against Candida krusei, Candida parapsilosis, Trichophyton mentagrophytes, and Trichophyton rubrum, all skin fungal agents. Moreover, SCG had fungicidal activity against T. mentagrophytes and T. rubrum. To understand the underlying mechanisms of the antifungal activity, fungal cell membrane and cell wall components were quantified. SCG caused a significant reduction of the ergosterol, chitin, and β-(1,3)-glucan content of C. parapsilosis, revealing the synthesis of this membrane component and cell wall components as possible targets of these extracts. These extracts were cytotoxic for the tumoral cell lines tested but not for the non-tumoral PLP2 cell line. The analysis of the phenolic compounds of these extracts revealed the presence of caffeoylquinic acid, feruloylquinic acid, and caffeoylshikimic acid derivatives. Overall, this confirmed the antifungal activity of spent coffee grounds, presenting a potential increase in the sustainability of the life cycle of coffee grounds, as a source for the development of novel antifungal formulations, especially for skin or mucosal fungal infections.
Collapse
|
12
|
Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023; 15:nu15020449. [PMID: 36678322 PMCID: PMC9865516 DOI: 10.3390/nu15020449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases are known for their wide range of harmful conditions related to progressive cell damage, nervous system connections and neuronal death. These pathologies promote the loss of essential motor and cognitive functions, such as mobility, learning and sensation. Neurodegeneration affects millions of people worldwide, and no integral cure has been created yet. Here, bioactive compounds have been proven to exert numerous beneficial effects due to their remarkable bioactivity, so they could be considered as great options for the development of new neuroprotective strategies. Phenolic bioactives have been reported to be found in edible part of plants; however, over the last years, a large amount of research has focused on the phenolic richness that plant by-products possess, which sometimes even exceeds the content in the pulp. Thus, their possible application as an emergent neuroprotective technique could also be considered as an optimal strategy to revalorize these agricultural residues (those originated from plant processing). This review aims to summarize main triggers of neurodegeneration, revise the state of the art in plant extracts and their role in avoiding neurodegeneration and discuss how their main phenolic compounds could exert their neuroprotective effects. For this purpose, a diverse search of studies has been conducted, gathering a large number of papers where by-products were used as strong sources of phenolic compounds for their neuroprotective properties. Finally, although a lack of investigation is quite remarkable and greatly limits the use of these compounds, phenolics remain attractive for research into new multifactorial anti-neurodegenerative nutraceuticals.
Collapse
|
13
|
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants (Basel) 2022; 12:94. [PMID: 36670956 PMCID: PMC9854890 DOI: 10.3390/antiox12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.
Collapse
Affiliation(s)
- Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
14
|
Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J Pers Med 2022; 12:jpm12091515. [PMID: 36143299 PMCID: PMC9500804 DOI: 10.3390/jpm12091515] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a tangle-shaped accumulation of beta-amyloid peptide fragments and Tau protein in brain neurons. The pathophysiological mechanism involves the presence of Aβ-amyloid peptide, Tau protein, oxidative stress, and an exacerbated neuro-inflammatory response. This review aims to offer an updated compendium of the most recent and promising advances in AD treatment through the administration of phytochemicals. The literature survey was carried out by electronic search in the following specialized databases PubMed/Medline, Embase, TRIP database, Google Scholar, Wiley, and Web of Science regarding published works that included molecular mechanisms and signaling pathways targeted by phytochemicals in various experimental models of Alzheimer’s disease in vitro and in vivo. The results of the studies showed that the use of phytochemicals against AD has gained relevance due to their antioxidant, anti-neuroinflammatory, anti-amyloid, and anti-hyperphosphorylation properties of Tau protein. Some bioactive compounds from plants have been shown to have the ability to prevent and stop the progression of Alzheimer’s.
Collapse
|
15
|
Morais MG, Saldanha AA, Azevedo LS, Mendes IC, Rodrigues JPC, Amado PA, Farias KDS, Zanuncio VSS, Cassemiro NS, Silva DBD, Soares AC, Lima LARDS. Antioxidant and anti-inflammatory effects of fractions from ripe fruits of Solanum lycocarpum St. Hil. (Solanaceae) and putative identification of bioactive compounds by GC–MS and LC-DAD-MS. Food Res Int 2022; 156:111145. [DOI: 10.1016/j.foodres.2022.111145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
|
16
|
New Therapeutic Approaches against Inflammation and Oxidative Stress in Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9824350. [PMID: 35633881 PMCID: PMC9135532 DOI: 10.1155/2022/9824350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
|
17
|
A 2A Adenosine Receptor Antagonists: Are Triazolotriazine and Purine Scaffolds Interchangeable? Molecules 2022; 27:molecules27082386. [PMID: 35458588 PMCID: PMC9032385 DOI: 10.3390/molecules27082386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
The A2A adenosine receptor (A2AAR) is one of the four subtypes activated by nucleoside adenosine, and the molecules able to selectively counteract its action are attractive tools for neurodegenerative disorders. In order to find novel A2AAR ligands, two series of compounds based on purine and triazolotriazine scaffolds were synthesized and tested at ARs. Compound 13 was also tested in an in vitro model of neuroinflammation. Some compounds were found to possess high affinity for A2AAR, and it was observed that compound 13 exerted anti-inflammatory properties in microglial cells. Molecular modeling studies results were in good agreement with the binding affinity data and underlined that triazolotriazine and purine scaffolds are interchangeable only when 5- and 2-positions of the triazolotriazine moiety (corresponding to the purine 2- and 8-positions) are substituted.
Collapse
|
18
|
Coffee By-Products as Sustainable Novel Foods: Report of the 2nd International Electronic Conference on Foods-"Future Foods and Food Technologies for a Sustainable World". Foods 2021; 11:foods11010003. [PMID: 35010128 PMCID: PMC8750261 DOI: 10.3390/foods11010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
The coffee plant Coffea spp. offers much more than the well-known drink made from the roasted coffee bean. During its cultivation and production, a wide variety of by-products are accrued, most of which are currently unused, thermally recycled, or used as fertilizer or animal feed. Modern, ecologically oriented society attaches great importance to sustainability and waste reduction, so it makes sense to not dispose of the by-products of coffee production but to bring them into the value chain, most prominently as foods for human nutrition. There is certainly huge potential for all of these products, especially on markets not currently accessible due to restrictions, such as the novel food regulation in the European Union. The by-products could help mitigate the socioeconomic burden of coffee farmers caused by globally low coffee prices and increasing challenges due to climate change. The purpose of the conference session summarized in this article was to bring together international experts on coffee by-products and share the current scientific knowledge on all plant parts, including leaf, cherry, parchment and silverskin, covering aspects from food chemistry and technology, nutrition, but also food safety and toxicology. The topic raised a huge interest from the audience and this article also contains a Q&A section with more than 20 answered questions.
Collapse
|