1
|
Byun JH, Lebeau PF, Trink J, Uppal N, Lanktree MB, Krepinsky JC, Austin RC. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat Rev Nephrol 2025; 21:299-313. [PMID: 39988577 DOI: 10.1038/s41581-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The endoplasmic reticulum (ER) has crucial roles in metabolically active cells, including protein translation, protein folding and quality control, lipid biosynthesis, and calcium homeostasis. Adverse metabolic conditions or pathogenic genetic variants that cause misfolding and accumulation of proteins within the ER of kidney cells initiate an injurious process known as ER stress that contributes to kidney disease and its cardiovascular complications. Initiation of ER stress activates the unfolded protein response (UPR), a cellular defence mechanism that functions to restore ER homeostasis. However, severe or chronic ER stress rewires the UPR to activate deleterious pathways that exacerbate inflammation, apoptosis and fibrosis, resulting in kidney injury. This insidious crosstalk between ER stress, UPR activation, oxidative stress and inflammation forms a vicious cycle that drives kidney disease and vascular damage. Furthermore, genetic variants that disrupt protein-folding mechanisms trigger ER stress, as evidenced in autosomal-dominant tubulointerstitial kidney disease and Fabry disease. Emerging therapeutic strategies that enhance protein-folding capacity and reduce the burden of ER stress have shown promising results in kidney diseases. Thus, integrating knowledge of how genetic variants cause protein misfolding and ER stress into clinical practice will enhance treatment strategies and potentially improve outcomes for various kidney diseases and their vascular complications.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Trink
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Uppal
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
He J, Chen Y, Li Y, Feng Y. Molecular mechanisms and therapeutic interventions in acute kidney injury: a literature review. BMC Nephrol 2025; 26:144. [PMID: 40121405 PMCID: PMC11929251 DOI: 10.1186/s12882-025-04077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Acute kidney injury (AKI) is a clinical challenge characterized by elevated morbidity and a substantial impact on individual health and socioeconomic factors. A comprehensive examination of the molecular pathways behind AKI is essential for its prevention and management. In recent years, vigorous research in the domain of AKI has concentrated on pathophysiological characteristics, early identification, and therapeutic approaches across many aetiologies and highlighted the principal themes of oxidative stress, inflammatory response, apoptosis, necrosis, and immunological response. This review comprehensively reviewed the molecular mechanisms underlying AKI, including oxidative stress, inflammatory pathways, immune cell-mediated injury, activation of the renin-angiotensin-aldosterone (RAAS) system, mitochondrial damage and autophagy, apoptosis, necrosis, etc. Inflammatory pathways are involved in the injuries in all four structural components of the kidney. We also summarized therapeutic techniques and pharmacological agents associated with the aforementioned molecular pathways. This work aims to clarify the molecular mechanisms of AKI thoroughly, offer novel insights for further investigations of AKI, and facilitate the formulation of efficient therapeutic methods to avert the progression of AKI.
Collapse
Affiliation(s)
- Jiajia He
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqin Chen
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yi Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China
| | - Yunlin Feng
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China.
| |
Collapse
|
3
|
Zhou X, Li Z, Ren F, Deng H, Wen J, Xiang Q, Zhou Z, Yang X, Rao C. Endoplasmic reticulum stress and unfolded protein response in renal lipid metabolism. Exp Cell Res 2025; 446:114463. [PMID: 39971174 DOI: 10.1016/j.yexcr.2025.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
The endoplasmic reticulum (ER) is a crucial cellular organelle involved in protein synthesis, folding, modification, and transport. Exposure to internal and external stressors can induce endoplasmic reticulum stress (ERS), leading to abnormal protein folding and ER malfunction. This stress can disrupt lipid synthesis, metabolism, and transport processes. Fatty acid oxidation is the primary energy source for the renal system. When energy intake exceeds the storage capacity of adipose tissue, lipids accumulate abnormally in non-adipose tissues, including kidneys, liver, and pancreas. Lipids accumulate in the kidneys of nearly all cell types, including thylakoid membranous, pedunculated, and proximal renal tubular epithelial cells. Intracellular free fatty acids can significantly disrupt renal lipid metabolism, contributing to ischemia-reperfusion acute kidney injury, diabetic nephropathy, renal fibrosis, and lupus nephritis. Consequently, this study delineated the primary signaling pathways and mechanisms of the ERS-induced unfolded protein response, explored the mechanistic link between ERS and lipid metabolism, and elucidated its role in renal lipid metabolism. This study aimed to offer new perspectives on managing and treating renal disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ziyi Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hua Deng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhihui Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiyun Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
4
|
Li L, Wu YQ, Yang JE. Stress-Related LncRNAs and Their Roles in Diabetes and Diabetic Complications. Int J Mol Sci 2025; 26:2194. [PMID: 40076814 PMCID: PMC11900361 DOI: 10.3390/ijms26052194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder and one of the most significant global health burdens worldwide. Key pathophysiological mechanisms underlying its onset and associated complications include hyperglycemia-related stresses, such as oxidative stress and endoplasmic reticulum stress (ER stress). Long non-coding RNAs (lncRNAs), defined as RNA transcripts longer than 200 nucleotides and lacking protein-coding capacity, play crucial roles in various biological processes and have emerged as crucial regulators in the pathogenesis of diabetes. This review provides a comprehensive overview of lncRNA biogenesis and its functional roles, emphasizing recent findings that link stress-related lncRNAs to diabetic pathology and complications. Also, we discuss how lncRNAs influence diabetes and its complications by modulating pathways involved in cell death, proliferation, inflammation, and fibrosis, which contribute to pancreatic β cell dysfunction, insulin resistance, diabetic nephropathy, and retinopathy. By analyzing current research, we aim to enhance understanding of lncRNA involvement in diabetes while identifying potential therapeutic targets and guiding future research directions to elucidate the complex mechanisms underlying this pervasive condition.
Collapse
Affiliation(s)
| | | | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, China; (L.L.); (Y.-Q.W.)
| |
Collapse
|
5
|
Younis D, Shemies R, Zakaria MM, Omar SA, Mosbah A, El-Kannishy G, Sabry A, Elnagar S. Urinary congophilia as a predictive biomarker of lupus nephritis in pregnant and non-pregnant women with systemic lupus erythematosus. Lupus 2025; 34:149-156. [PMID: 39749775 DOI: 10.1177/09612033241312746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND Endoplasmic reticulum stress with protein misfolding has been introduced as a key pathogenetic mechanism in lupus nephritis (LN). Pregnancy is thought to exaggerate proteostasis, which leads to the accumulation of potentially pathogenic misfolded proteins in the urine, serum, and placenta particularly in women with preeclampsia. The detection of misfolded proteins is made using Congo red stain, which is referred to as congophilia. This study aimed to assess the predictive value of urinary congophilia as a marker of LN activity in pregnant and non-pregnant LN women. METHODS Urine samples from non-pregnant LN women (n = 45), pregnant LN women (n = 12), as well as pregnant healthy controls (n = 38) were collected. Urinary congophilia was assessed by Congo Red Dot Blot assay. The disease activity was defined according to SLE Disease Activity Index (SLEDAI) score, and SLE Disease Activity Index-Renal Domain (SLEDAI-R) score. Renal biopsy was done for 33 non-pregnant LN women as it was clinically indicated, and modified NIH activity index (AI) was assessed according to the classification of LN by the International Society of Nephrology/Renal Pathology Society (ISN/RPS). RESULTS Congo red retention (CRR) values were significantly higher for pregnant active LN patients, in comparison with pregnant inactive LN patients (p = .014), as well as pregnant healthy controls (p = .009). Additionally, CRR values were significantly higher for non-pregnant active LN patients, in comparison with non-pregnant inactive LN patients (p = .016), as well as pregnant healthy controls (p ≤ .001). There were significant positive correlations between CRR on one hand, and anti-ds-DNA (r = 0.791, p ≤ .001), serum creatinine (r = 0.620, p ≤ .001), SLEDAI score (r = 0.623, p ≤ .001), as well as SLEDAI-R score (r = 0.473, p = .005) on the other hand. A highly significant negative correlation was detected between CRR, and serum albumin (r = -0.454, p = .001). CRR at a cut point ≥21.85 had 83% sensitivity, and 58% specificity to capture high LN activity status (NIH-AI >10) versus lower LN activity status. CONCLUSION Urinary congophilia may add a diagnostic value in patients with LN and can be a reliable marker of disease activity. CRR is related to disease activity rather than pregnancy.
Collapse
Affiliation(s)
- Dalia Younis
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Rasha Shemies
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Zakaria
- Mansoura Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sameha A Omar
- Mansoura Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Alaa Mosbah
- Obstetrics and Gynecology Departments, Mansoura University, Mansoura, Egypt
| | - Ghada El-Kannishy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Alaa Sabry
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Li H, Chen H, Gao R, Yin M, Huang F. Traditional Chinese Medicine Formulae and Chinese Patent Medicines for the Treatment of Diabetic Kidney Disease: Efficacies and Mechanisms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:675-707. [PMID: 40374376 DOI: 10.1142/s0192415x25500260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Diabetic kidney disease is one of the most significant comorbidities of diabetic patients, and has become the second cause of end-stage renal disease. Current clinical management programs have difficulty in reducing morbidity and poor prognosis, and thus new treatment options and concepts need to be developed. Traditional Chinese medicine formulae and Chinese patent medicines contain a variety of medicinal flavors, laying the material foundation for the multi-target, multi-level therapeutic features. This study describes the main pathologic features of DKD as well as its pathogenesis. Additionally, the categorization of TCM according to its different therapeutic mechanisms is discussed, and the signaling pathways targeted and corresponding biological effects are described in detail. For example, TCM formulae can alleviate oxidative stress through pathways such as Nrf2 and NOX4, can inhibit the development of inflammation through pathways such as TGF-β and NF-κB, and can ameliorate DKD by inhibiting endoplasmic reticulum stress and apoptosis. Moreover, it highlights the superior efficacy of the combined application of TCM formulae and Western medicine over Western medicine alone, which can compensate for the shortcomings of existing DKD treatment methods to a certain extent. TCM formulae and CPMs are promising candidates for the auxiliary treatment of DK, however, the lack of clarity regarding the active ingredients intensifies the difficulty of integrating TCM formulae and CPMs into clinical practice. Further research is warranted to explore the material basis and molecular mechanisms of action of TCM formulae against DKD.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Huan Chen
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Renhao Gao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Mingjing Yin
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Fang Huang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Shi C, Zhang Q, Li Y, Zhao J, Wang C, Zhang Y. Polyethylene glycol loxenatide protects diabetic kidneys by inhibiting GRP78/PERK/eIF2α pathway, and improves cardiac injury by suppressing TLR4/NF-κB inflammatory pathway. BMC Cardiovasc Disord 2024; 24:704. [PMID: 39695387 DOI: 10.1186/s12872-024-04427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cardiovascular and renal complications of type 2 diabetes are the main causes of death in diabetic patients. Clinical studies have found that polyethylene glycol loxenatide (PEG-Loxe), a GLP-1 analog widely used to treat type 2 diabetes, boosts renal and cardiac functions in diabetic patients. However, its mechanism of action remains to be elucidated. METHODS Using injury models of HK-2 human renal proximal tubular epithelial cells and H9C2 rat myocardial cells, as well as db/db mouse models of type 2 diabetes, this study assessed the protective effects of PEG-Loxe on T2DM mice kidneys and hearts and revealed their mechanisms of action. RESULTS PEG-Loxe treatment significantly reduced the contents of serum creatinine, urea nitrogen, and 24 h urine protein, alleviated glomerular injury and inflammatory reaction, markedly elevated cardiac left ventricular ejection fraction (LVEF) and fractional shortening (LVFS) levels, diminished pathological injuries in cardiac tissues, and improved renal and cardiac functions in db/db mice. In addition, PEG-Loxe considerably decreased the GRP78 mRNA and protein expressions of GRP78, p-eIF2α, ATF4, and CHOP in the kidneys of T2DM mice, inhibited GRP78/PERK/eIF2α pathway-related proteins in HK-2 cells cultured in high glucose concentrations, subdued renal endoplasmic reticulum stress, and eased renal injury in T2DM mice. PEG-Loxe also obstructed the TLR4/NF-κB inflammatory pathway and myocardial apoptosis and mitigated cardiac trauma in T2DM by reducing TLR4, MyD88, and p-NF-κBp65 protein expressions in cardiac tissues. The H9C2 cell experiment further confirmed PEG-Loxe's ability to protect the cardiovascular system of T2DM patients by inhibiting the TLR4/NF-κB inflammatory pathway and lessening LDH and CK-MB levels. CONCLUSION We showed that PEG-Loxe could decrease renal stress response and improve renal injury in T2DM by inhibiting endoplasmic reticulum stress via the GRP78/PERK/eIF2α pathway. Additionally, PEG-Loxe could hinder the TLR4/NF-κB inflammatory pathway and myocardial apoptosis and boost cardiac function, thus exerting protective effects on the cardiovascular system in T2DM.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yufeng Li
- Preclinical Development Department, Shanghai Hansoh Biomedical Co., Ltd., Shanghai, 201203, China
| | - Junjun Zhao
- Pharmaceutical Research Institute, Jiangsu Hansoh Pharmaceutical Group Co. Ltd., Lianyungang, 222069, China
| | - Cong Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
8
|
Wei Y, Mou S, Yang Q, Liu F, Cooper ME, Chai Z. To target cellular senescence in diabetic kidney disease: the known and the unknown. Clin Sci (Lond) 2024; 138:991-1007. [PMID: 39139135 PMCID: PMC11327223 DOI: 10.1042/cs20240717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Cellular senescence represents a condition of irreversible cell cycle arrest, characterized by heightened senescence-associated beta-galactosidase (SA-β-Gal) activity, senescence-associated secretory phenotype (SASP), and activation of the DNA damage response (DDR). Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease (ESRD) globally, with ongoing unmet needs in terms of current treatments. The role of senescence in the pathogenesis of DKD has attracted substantial attention with evidence of premature senescence in this condition. The process of cellular senescence in DKD appears to be associated with mitochondrial redox pathways, autophagy, and endoplasmic reticulum (ER) stress. Increasing accumulation of senescent cells in the diabetic kidney not only leads to an impaired capacity for repair of renal injury, but also the secretion of pro-inflammatory and profibrotic cytokines and growth factors causing inflammation and fibrosis. Current treatments for diabetes exhibit varying degrees of renoprotection, potentially via mitigation of senescence in the diabetic kidney. Targeting senescent cell clearance through pharmaceutical interventions could emerge as a promising strategy for preventing and treating DKD. In this paper, we review the current understanding of senescence in DKD and summarize the possible therapeutic interventions relevant to senescence in this field.
Collapse
Affiliation(s)
- Yuehan Wei
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Australia
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Yang
- Department of Nephrology, Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Mark E Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Benedet PO, Safikhan NS, Pereira MJ, Lum BM, Botezelli JD, Kuo CH, Wu HL, Craddock BP, Miller WT, Eriksson JW, Yue JTY, Conway EM. CD248 promotes insulin resistance by binding to the insulin receptor and dampening its insulin-induced autophosphorylation. EBioMedicine 2024; 99:104906. [PMID: 38061240 PMCID: PMC10750038 DOI: 10.1016/j.ebiom.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND In spite of new treatments, the incidence of type 2 diabetes (T2D) and its morbidities continue to rise. The key feature of T2D is resistance of adipose tissue and other organs to insulin. Approaches to overcome insulin resistance are limited due to a poor understanding of the mechanisms and inaccessibility of drugs to relevant intracellular targets. We previously showed in mice and humans that CD248, a pre/adipocyte cell surface glycoprotein, acts as an adipose tissue sensor that mediates the transition from healthy to unhealthy adipose, thus promoting insulin resistance. METHODS Molecular mechanisms by which CD248 regulates insulin signaling were explored using in vivo insulin clamp studies and biochemical analyses of cells/tissues from CD248 knockout (KO) and wild-type (WT) mice with diet-induced insulin resistance. Findings were validated with human adipose tissue specimens. FINDINGS Genetic deletion of CD248 in mice, overcame diet-induced insulin resistance with improvements in glucose uptake and lipolysis in white adipose tissue depots, effects paralleled by increased adipose/adipocyte GLUT4, phosphorylated AKT and GSK3β, and reduced ATGL. The insulin resistance of the WT mice could be attributed to direct interaction of the extracellular domains of CD248 and the insulin receptor (IR), with CD248 acting to block insulin binding to the IR. This resulted in dampened insulin-mediated autophosphorylation of the IR, with reduced downstream signaling/activation of intracellular events necessary for glucose and lipid homeostasis. INTERPRETATION Our discovery of a cell-surface CD248-IR complex that is accessible to pharmacologic intervention, opens research avenues toward development of new agents to prevent/reverse insulin resistance. FUNDING Funded by Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundations for Innovation (CFI), the Swedish Diabetes Foundation, Family Ernfors Foundation and Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Patricia O Benedet
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Nooshin S Safikhan
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Bryan M Lum
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - José Diego Botezelli
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Barbara P Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA; Veterans Affairs Medical Center, Northport, NY, USA
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Jessica T Y Yue
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
10
|
Li S, Cai X, Chen L, Lin M, Zhu Z, Xiao H, Nie P, Chen Q, Yang X. Inhibition of hepatocellular carcinoma growth via modulation of the miR-221/SOX11 axis by curcumin and berberine. PeerJ 2023; 11:e16593. [PMID: 38084140 PMCID: PMC10710771 DOI: 10.7717/peerj.16593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal malignancy that has limited treatment options. This study focused on the potential therapeutic effects of curcumin (CUR) and berberine (BBR) on the miR-221/SRY-box transcription factor 11 (SOX11) axis in HCC. We investigated the combined effects of CUR and BBR on HEPG2 and Huh7 cell survival and miR-221 expression using Cell Counting Kit-8 assays and RT-qPCR, respectively. Western blotting was used to detect changes in the apoptosis-related caspase-3/9 protein levels. We performed bioinformatics analysis and dual-luciferase assays and measured apoptotic protein levels to assess the role of the miR-221/SOX11 axis in mediating the effects of CUR-BBR. Both CUR and BBR suppressed HCC cell growth in a dose-dependent manner, with the most potent combined effect observed at a 2:1 ratio. CUR-BBR treatment significantly downregulated miR-221 expression, and miR-221 overexpression partially reversed the CUR-BBR-mediated decrease in cell survival. In addition, SOX11 was found to be a direct target of miR-221. CUR-BBR treatment upregulated SOX11 expression, and overexpression of SOX11 restored the inhibitory effects of CUR-BBR on cell growth, migration, and invasion and promoted apoptosis in the presence of miR-221. Furthermore, CUR-BBR activated pro-apoptotic proteins caspase-3/9 through the miR-221/SOX11 axis. The combined effect of CUR-BBR played an important role in inhibiting the growth of HCC cells. This combined effect was achieved by regulating the miR-221/SOX11 axis and activating the synthesis of pro-apoptotic proteins. Our findings highlight a promising combined therapeutic approach for HCC and underscore the importance of targeting the miR-221/SOX11 axis.
Collapse
Affiliation(s)
- Sheng Li
- Department of Internal Medicine, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoliang Cai
- Department of Internal Medicine, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Liang Chen
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Manbian Lin
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Ziqi Zhu
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Huihuang Xiao
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Pingping Nie
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Quanwen Chen
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoyu Yang
- Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
11
|
Xiong W, Feng J, Liu Y, Liu J, Fu L, Wang Q, Li X, Li S. ShenQiWan ameliorates renal injury in type 2 diabetic mice by modulating mitochondrial fusion and endoplasmic reticulum stress. Front Pharmacol 2023; 14:1265551. [PMID: 38026991 PMCID: PMC10667480 DOI: 10.3389/fphar.2023.1265551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background: ShenQiWan is commonly used in traditional Chinese medicine for the treatment of diabetic nephropathy, which is closely related to mitochondrial fusion and endoplasmic reticulum stress. This study aimed to investigate the intervention effect and molecular mechanisms of ShenQiWan on renal injury in KKAy mice. Methods: C57BL/6J mice (11 weeks old) were fed a regular diet upon arrival, while KKAy mice (11 weeks old) were fed a high-fat diet upon arrival. At 12 weeks of age, KKAy mice with random blood glucose ≥13.9 mmol/L were identified as diabetic mice and randomly divided into the model group (n = 30) and the treatment group (n = 30), while C57BL/6J mice of 12 weeks old (n = 30) served as the control group. The treatment group received daily aqueous decoction of ShenQiWan (13.5 g/kg), while the control group and model group received daily equal amounts of saline from 12 weeks old to 24 weeks old. The general status of mice was observed regularly, and fasting blood glucose and 24-hour urine microalbumin were measured. Ten mice were euthanized in each group at the age of 16, 20, and 24 weeks, serum samples were used for biochemical indexes and kidney tissues were used for morphological studies. GRP78, OPA1, MFN1, MFN2 mRNA and protein expression were detected by Real-time PCR, immunohistochemistry and Western blot. Results: The mice in the model group exhibited symptoms of lethargy, slow movement, obesity, polyuria and proteinuria. Morphological observation revealed pathological changes, including thickening of the glomerular basement membrane and interstitial fibrosis. After treatment with ShenQiWan, the fasting blood glucose level of KKAy mice was significantly reduced, urinary albuminuria was decreased, serum biochemical indexes were improved, renal tissue pathological changes were significantly alleviated. The results also showed a significant reduction in the expression of endoplasmic reticulum stress-related factor GRP78 and an increase in the expression of mitochondrial fusion-related factors OPA1, MFN1 and MFN2 after treatment with ShenQiWan. Conclusion: ShenQiWan can protect diabetic mice from renal damage by modulating mitochondrial fusion and alleviating endoplasmic reticulum stress, exerting its protective effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xia Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Liu Y, Qiao Y, Pan S, Chen J, Mao Z, Ren K, Yang Y, Feng Q, Liu D, Liu Z. Broadening horizons: the contribution of mitochondria-associated endoplasmic reticulum membrane (MAM) dysfunction in diabetic kidney disease. Int J Biol Sci 2023; 19:4427-4441. [PMID: 37781026 PMCID: PMC10535705 DOI: 10.7150/ijbs.86608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is a global health issue that presents a complex pathogenesis and limited treatment options. To provide guidance for precise therapies, it is crucial to accurately identify the pathogenesis of DKD. Several studies have recognized that mitochondrial and endoplasmic reticulum (ER) dysfunction are key drivers of the pathogenesis of DKD. The mitochondria-associated ER membrane (MAM) is a dynamic membrane contact site (MSC) that connects the ER and mitochondria and is essential in maintaining the normal function of the two organelles. MAM is involved in various cellular processes, including lipid synthesis and transport, calcium homeostasis, mitochondrial fusion and fission, and ER stress. Meanwhile, recent studies confirm that MAM plays a significant role in the pathogenesis of DKD by regulating glucose metabolism, lipid metabolism, inflammation, ER stress, mitochondrial fission and fusion, and autophagy. Herein, this review aims to provide a comprehensive summary of the physiological function of MAMs and their impact on the progression of DKD. Subsequently, we discuss the trend of pharmaceutical studies that target MAM resident proteins for treating DKD. Furthermore, we also explore the future development prospects of MAM in DKD research, thereby providing a new perspective for basic studies and clinical treatment of DKD.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zihui Mao
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
13
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales MA. Association between diabetes and cancer. Current mechanistic insights into the association and future challenges. Mol Cell Biochem 2023; 478:1743-1758. [PMID: 36565361 DOI: 10.1007/s11010-022-04630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
Compelling pieces of epidemiological, clinical, and experimental research have demonstrated that Diabetes mellitus (DM) is a major risk factor associated with increased cancer incidence and mortality in many human neoplasms. In the pathophysiology context of DM, many of the main classical actors are relevant elements that can fuel the different steps of the carcinogenesis process. Hyperglycemia, hyperinsulinemia, metabolic inflammation, and dyslipidemia are among the classic contributors to this association. Furthermore, new emerging actors have received particular attention in the last few years, and compelling data support that the microbiome, the epigenetic changes, the reticulum endoplasmic stress, and the increased glycolytic influx also play important roles in promoting the development of many cancer types. The arsenal of glucose-lowering therapeutic agents used for treating diabetes is wide and diverse, and a growing body of data raised during the last two decades has tried to clarify the contribution of therapeutic agents to this association. However, this research area remains controversial, because some anti-diabetic drugs are now considered as either promotors or protecting elements. In the present review, we intend to highlight the compelling epidemiological shreds of evidence that support this association, as well as the mechanistic contributions of many of these potential pathological mechanisms, some controversial points as well as future challenges.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Ivan Schneider
- Medicine Faculty, Catholic University of Maule, Talca, Chile
| | | | - Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Wu D, Huang LF, Chen XC, Huang XR, Li HY, An N, Tang JX, Liu HF, Yang C. Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis 2023; 14:473. [PMID: 37500613 PMCID: PMC10374544 DOI: 10.1038/s41419-023-05905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The endoplasmic reticulum (ER) plays important roles in biosynthetic and metabolic processes, including protein and lipid synthesis, Ca2+ homeostasis regulation, and subcellular organelle crosstalk. Dysregulation of ER homeostasis can cause toxic protein accumulation, lipid accumulation, and Ca2+ homeostasis disturbance, leading to cell injury and even death. Accumulating evidence indicates that the dysregulation of ER homeostasis promotes the onset and progression of kidney diseases. However, maintaining ER homeostasis through unfolded protein response, ER-associated protein degradation, autophagy or ER-phagy, and crosstalk with other organelles may be potential therapeutic strategies for kidney disorders. In this review, we summarize the recent research progress on the relationship and molecular mechanisms of ER dysfunction in kidney pathologies. In addition, the endogenous protective strategies for ER homeostasis and their potential application for kidney diseases have been discussed.
Collapse
Affiliation(s)
- Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong, China.
| |
Collapse
|
15
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
16
|
Roumeliotis S, Liakopoulos V, Veljkovic A, Dounousi E. Redox Systems Biology in Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9864037. [PMID: 37180759 PMCID: PMC10171981 DOI: 10.1155/2023/9864037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Evangelia Dounousi
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
17
|
Han YP, Liu LJ, Yan JL, Chen MY, Meng XF, Zhou XR, Qian LB. Autophagy and its therapeutic potential in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1139444. [PMID: 37020591 PMCID: PMC10067862 DOI: 10.3389/fendo.2023.1139444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, is the most significant microvascular complication of diabetes and poses a severe public health concern due to a lack of effective clinical treatments. Autophagy is a lysosomal process that degrades damaged proteins and organelles to preserve cellular homeostasis. Emerging studies have shown that disorder in autophagy results in the accumulation of damaged proteins and organelles in diabetic renal cells and promotes the development of DN. Autophagy is regulated by nutrient-sensing pathways including AMPK, mTOR, and Sirt1, and several intracellular stress signaling pathways such as oxidative stress and endoplasmic reticulum stress. An abnormal nutritional status and excess cellular stresses caused by diabetes-related metabolic disorders disturb the autophagic flux, leading to cellular dysfunction and DN. Here, we summarized the role of autophagy in DN focusing on signaling pathways to modulate autophagy and therapeutic interferences of autophagy in DN.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
18
|
Endoplasmic Reticulum Stress in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054914. [PMID: 36902344 PMCID: PMC10003093 DOI: 10.3390/ijms24054914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The endoplasmic reticulum is an organelle exerting crucial functions in protein production, metabolism homeostasis and cell signaling. Endoplasmic reticulum stress occurs when cells are damaged and the capacity of this organelle to perform its normal functions is reduced. Subsequently, specific signaling cascades, together forming the so-called unfolded protein response, are activated and deeply impact cell fate. In normal renal cells, these molecular pathways strive to either resolve cell injury or activate cell death, depending on the extent of cell damage. Therefore, the activation of the endoplasmic reticulum stress pathway was suggested as an interesting therapeutic strategy for pathologies such as cancer. However, renal cancer cells are known to hijack these stress mechanisms and exploit them to their advantage in order to promote their survival through rewiring of their metabolism, activation of oxidative stress responses, autophagy, inhibition of apoptosis and senescence. Recent data strongly suggest that a certain threshold of endoplasmic reticulum stress activation needs to be attained in cancer cells in order to shift endoplasmic reticulum stress responses from a pro-survival to a pro-apoptotic outcome. Several endoplasmic reticulum stress pharmacological modulators of interest for therapeutic purposes are already available, but only a handful were tested in the case of renal carcinoma, and their effects in an in vivo setting remain poorly known. This review discusses the relevance of endoplasmic reticulum stress activation or suppression in renal cancer cell progression and the therapeutic potential of targeting this cellular process for this cancer.
Collapse
|
19
|
Zhang J, Wu Y, Zhang J, Zhang R, Wang Y, Liu F. ABCA1 deficiency-mediated glomerular cholesterol accumulation exacerbates glomerular endothelial injury and dysfunction in diabetic kidney disease. Metabolism 2023; 139:155377. [PMID: 36521550 DOI: 10.1016/j.metabol.2022.155377] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hyperglycemia and dyslipidemia are two major characteristics of diabetes. In this study, the effects of glomerular cholesterol accumulation primarily due to ABCA1 deficiency on glomerular endothelial injury in diabetic kidney disease (DKD) and the possible mechanisms were investigated. METHODS The effects of ABCA1 deficiency on glomerular lipid deposition and kidney injury were examined in a type 2 diabetic mouse model with ABCA1 deficiency in glomerular endothelial cells (DM-ABCA1-/- mice) and human renal glomerular endothelial cells (HRGECs) cultured in high glucose and high cholesterol conditions, which simulated type 2 diabetes in vitro. RESULTS ABCA1 deficiency in glomerular endothelial cells exacerbated renal lipid deposition and kidney injuries in type 2 diabetic mice and manifested as increased creatinine levels, more severe proteinuria, mesangial matrix expansion and fusion of foot processes, and more pronounced renal inflammatory injury and cell death. In HRGECs cultured under high glucose and high cholesterol conditions, ABCA1 deficiency increased the deposition of cellular cholesterol, contributed to inflammation and apoptosis, damaged the endothelial glycocalyx barrier, and induced endoplasmic reticulum stress (ERS). Conversely, ABCA1 overexpression enhancing cholesterol efflux or inhibition of ERS in vitro, significantly protected against glomerular endothelial injury stimulated by high glucose and high cholesterol. CONCLUSIONS These findings establish a pathogenic role of ABCA1 deficiency in glomerular endothelium injury and dysfunction and imply that ABCA1 may represent a potential effective therapeutic target for early diabetic kidney disease.
Collapse
Affiliation(s)
- Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yiting Wang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Yiang GT, Wu CC, Lu CL, Hu WC, Tsai YJ, Huang YM, Su WL, Lu KC. Endoplasmic Reticulum Stress in Elderly Patients with COVID-19: Potential of Melatonin Treatment. Viruses 2023; 15:156. [PMID: 36680196 PMCID: PMC9863214 DOI: 10.3390/v15010156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aging processes, including immunosenescence, inflammation, inflammasome formation, genomic instability, telomeric attrition, and altered autophagy, are involved in viral infections and they may contribute to increased pathophysiological responses to the SARS-CoV-2 infection in the elderly; this poses additional risks of accelerated aging, which could be found even after recovery. Aging is associated with oxidative damage. Moreover, SARS-CoV-2 infections may increase the production of reactive oxygen species and such infections will disturb the Ca++ balance via an endoplasmic reticulum (ER) stress-mediated unfolded protein response. Although vaccine development and anti-inflammation therapy lower the severity of COVID-19, the prevalence and mortality rates are still alarming in some countries worldwide. In this review, we describe the involvement of viral proteins in activating ER stress transducers and their downstream signals and in inducing inflammation and inflammasome formation. Furthermore, we propose the potential of melatonin as an ER stress modulator, owing to its antioxidant, anti-inflammatory, and immunoregulatory effects in viral infections. Considering its strong safety profile, we suggest that additive melatonin supplementation in the elderly could be beneficial in treating COVID-19.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei 24352, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| | - Yi-Ju Tsai
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei 243, Taiwan
| | - Yiao-Mien Huang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| | - Wen-Lin Su
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei 24352, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| |
Collapse
|
21
|
Colombini B, Dinu M, Murgo E, Lotti S, Tarquini R, Sofi F, Mazzoccoli G. Ageing and Low-Level Chronic Inflammation: The Role of the Biological Clock. Antioxidants (Basel) 2022; 11:2228. [PMID: 36421414 PMCID: PMC9686908 DOI: 10.3390/antiox11112228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 09/01/2023] Open
Abstract
Ageing is a multifactorial physiological manifestation that occurs inexorably and gradually in all forms of life. This process is linked to the decay of homeostasis due to the progressive decrease in the reparative and regenerative capacity of tissues and organs, with reduced physiological reserve in response to stress. Ageing is closely related to oxidative damage and involves immunosenescence and tissue impairment or metabolic imbalances that trigger inflammation and inflammasome formation. One of the main ageing-related alterations is the dysregulation of the immune response, which results in chronic low-level, systemic inflammation, termed "inflammaging". Genetic and epigenetic changes, as well as environmental factors, promote and/or modulate the mechanisms of ageing at the molecular, cellular, organ, and system levels. Most of these mechanisms are characterized by time-dependent patterns of variation driven by the biological clock. In this review, we describe the involvement of ageing-related processes with inflammation in relation to the functioning of the biological clock and the mechanisms operating this intricate interaction.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
22
|
Zhu X, Xu X, Du C, Su Y, Yin L, Tan X, Liu H, Wang Y, Xu L, Xu X. An examination of the protective effects and molecular mechanisms of curcumin, a polyphenol curcuminoid in diabetic nephropathy. Biomed Pharmacother 2022; 153:113438. [DOI: 10.1016/j.biopha.2022.113438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022] Open
|
23
|
mTOR Modulates the Endoplasmic Reticulum Stress-Induced CD4+ T Cell Apoptosis Mediated by ROS in Septic Immunosuppression. Mediators Inflamm 2022; 2022:6077570. [PMID: 35915740 PMCID: PMC9338879 DOI: 10.1155/2022/6077570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/02/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction When sepsis attacks the body, the excessive reactive oxygen species (ROS) production can result to endoplasmic reticulum stress (ERS) and eventually cause lymphocyte apoptosis. The mammalian target of rapamycin (mTOR) is essential for regulating lymphocyte apoptosis; we hypothesized that it mediates CD4+ T cell apoptosis during ROS-related ERS. Method We, respectively, used ROS and ERS blockers to intervene septic mice and then detected ERS protein expression levels to verify the relationship between them. Additionally, we constructed T cell-specific mTOR and TSC1 gene knockout mice to determine the role of mTOR in ROS-mediated, ERS-induced CD4+ T cell apoptosis. Results Blocking ROS significantly suppressed the CD4+ T cell apoptosis associated with the reduction in ERS, as revealed by lower levels of GRP78 and CHOP. ERS rapidly induced mTOR activation, leading to the induction of CD4+ T cell apoptosis. However, mTOR knockout mice displayed reduced expression of apoptotic proteins and less ER vesiculation and expansion than what was observed in the wild-type sepsis controls. Conclusion By working to alleviate ROS-mediated, ERS-induced CD4+ T cell apoptosis, the mTOR pathway is vital for CD4+ T cell survival in sepsis mouse model.
Collapse
|
24
|
Xie H, Shi Y, Zhou Y, Liu H. TMBIM6 promotes diabetic tubular epithelial cell survival and albumin endocytosis by inhibiting the endoplasmic reticulum stress sensor, IRE1α. Mol Biol Rep 2022; 49:9181-9194. [PMID: 35857174 DOI: 10.1007/s11033-022-07744-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
AIM Reduced albumin reabsorption in proximal tubular epithelial cells (PTECs), resulting from decreased megalin plasma membrane (PM) localization due to prolonged endoplasmic reticulum (ER) stress, potentially contributes to albuminuria in early diabetic kidney disease (DKD). To examine this possibility, we investigated the cytoprotective effect of TMBIM6 in promoting diabetic PTEC survival and albumin endocytosis by attenuating ER stress with an IRE1α inhibitor, KIRA6. METHODS AND RESULTS Renal TMBIM6 distribution and expression were determined by immunohistochemistry, western blotting, and qPCR, whereas tubular injury was evaluated in db/db mice. High-glucose (HG)-treated HK-2 cells were either treated with KIRA6 or transduced with a lentiviral vector for TMBIM6 overexpression. ER stress was measured by western blotting and ER-Tracker Red staining, whereas apoptosis was determined by performing TUNEL assays. Megalin expression was measured by immunofluorescence, and albumin endocytosis was evaluated after incubating cells with FITC-labeled albumin. Tubular injury and TMBIM6 downregulation occurred in db/db mouse renal cortical tissues. Both KIRA6 treatment and TMBIM6 overexpression inhibited ER stress by decreasing the levels of phosphorylated IRE1α, XBP1s, GRP78, and CHOP, and stabilizing ER expansion in HG-treated HK-2 cells. TUNEL assays performed with KIRA6-treated or TMBIM6-overexpressing cells showed a significant decrease in apoptosis, consistent with the significant downregulation of BAX and upregulation of BCL-2, as measured by immunoblotting. Both KIRA6 and TMBIM6 overexpression promoted megalin PM localization and restored albumin endocytosis in HG-treated HK-2 cells. CONCLUSION TMBIM6 promoted diabetic PTEC survival and albumin endocytosis by negatively regulating the IRE1α branch of ER stress.
Collapse
Affiliation(s)
- Huidi Xie
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Shi
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhou
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hongfang Liu
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Dongzhimen Hospital, Renal Research Institute of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, No. 5, Haiyuncang Alley, Dongcheng District, 100700, Beijing, China.
| |
Collapse
|
25
|
Wei R, Qiao J, Cui D, Pan Q, Guo L. Screening and Identification of Hub Genes in the Development of Early Diabetic Kidney Disease Based on Weighted Gene Co-Expression Network Analysis. Front Endocrinol (Lausanne) 2022; 13:883658. [PMID: 35721731 PMCID: PMC9204256 DOI: 10.3389/fendo.2022.883658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Objective The study aimed to screen key genes in early diabetic kidney disease (DKD) and predict their biological functions and signaling pathways using bioinformatics analysis of gene chips interrelated to early DKD in the Gene Expression Omnibus database. Methods Gene chip data for early DKD was obtained from the Gene Expression Omnibus expression profile database. We analyzed differentially expressed genes (DEGs) between patients with early DKD and healthy controls using the R language. For the screened DEGs, we predicted the biological functions and relevant signaling pathways by enrichment analysis of Gene Ontology (GO) biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. Using the STRING database and Cytoscape software, we constructed a protein interaction network to screen hub pathogenic genes. Finally, we performed immunohistochemistry on kidney specimens from the Beijing Hospital to verify the above findings. Results A total of 267 differential genes were obtained using GSE142025, namely, 176 upregulated and 91 downregulated genes. GO functional annotation enrichment analysis indicated that the DEGs were mainly involved in immune inflammatory response and cytokine effects. KEGG pathway analysis indicated that C-C receptor interactions and the IL-17 signaling pathway are essential for early DKD. We identified FOS, EGR1, ATF3, and JUN as hub sites of protein interactions using a protein-protein interaction network and module analysis. We performed immunohistochemistry (IHC) on five samples of early DKD and three normal samples from the Beijing Hospital to label the proteins. This demonstrated that FOS, EGR1, ATF3, and JUN in the early DKD group were significantly downregulated. Conclusion The four hub genes FOS, EGR1, ATF3, and JUN were strongly associated with the infiltration of monocytes, M2 macrophages, and T regulatory cells in early DKD samples. We revealed that the expression of immune response or inflammatory genes was suppressed in early DKD. Meanwhile, the FOS group of low-expression genes showed that the activated biological functions included mRNA methylation, insulin receptor binding, and protein kinase A binding. These genes and pathways may serve as potential targets for treating early DKD.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrinology, Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Jingtao Qiao
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Di Cui
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Pan
- Department of Endocrinology, Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Lixin Guo
- Department of Endocrinology, Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
26
|
Oe Y, Vallon V. The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1. KIDNEY AND DIALYSIS 2022; 2:349-368. [PMID: 36380914 PMCID: PMC9648862 DOI: 10.3390/kidneydial2020032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SGLT2 inhibitors can protect the kidneys of patients with and without type 2 diabetes mellitus and slow the progression towards end-stage kidney disease. Blocking tubular SGLT2 and spilling glucose into the urine, which triggers a metabolic counter-regulation similar to fasting, provides unique benefits, not only as an anti-hyperglycemic strategy. These include a low hypoglycemia risk and a shift from carbohydrate to lipid utilization and mild ketogenesis, thereby reducing body weight and providing an additional energy source. SGLT2 inhibitors counteract hyperreabsorption in the early proximal tubule, which acutely lowers glomerular pressure and filtration and thereby reduces the physical stress on the filtration barrier, the filtration of tubule-toxic compounds, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity and improved mitochondrial function and autophagy, can reduce pro-inflammatory, pro-senescence, and pro-fibrotic signaling and preserve tubular function and GFR in the long-term. By shifting transport downstream, SGLT2 inhibitors more equally distribute the transport burden along the nephron and may mimic systemic hypoxia to stimulate erythropoiesis, which improves oxygen delivery to the kidney and other organs. SGLT1 inhibition improves glucose homeostasis by delaying intestinal glucose absorption and by increasing the release of gastrointestinal incretins. Combined SGLT1 and SGLT2 inhibition has additive effects on renal glucose excretion and blood glucose control. SGLT1 in the macula densa senses luminal glucose, which affects glomerular hemodynamics and has implications for blood pressure control. More studies are needed to better define the therapeutic potential of SGLT1 inhibition to protect the kidney, alone or in combination with SGLT2 inhibition.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
27
|
Cheng M, Wang H, Yang G, Cheng Y, Yang Z, Chen X, Liu Y, Sun Z. Sustained developmental endothelial locus-1 overexpression promotes spinal cord injury recovery in mice through the SIRT1/SERCA2 signaling pathway. Brain Res Bull 2022; 181:65-76. [DOI: 10.1016/j.brainresbull.2022.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
|
28
|
Zhang Z, Hu Y, Liu W, Zhang X, Wang R, Li H, Sun D, Fang J. Yishen Capsule Alleviated Symptoms of Diabetic Nephropathy via NOD-like Receptor Signaling Pathway. Diabetes Metab Syndr Obes 2022; 15:2183-2195. [PMID: 35923253 PMCID: PMC9339947 DOI: 10.2147/dmso.s368867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To explore the mechanism of Yishen capsule against diabetic nephropathy (DN) based on the analysis of transcriptomics. MATERIAL AND METHODS SD rats (Male, SPF grade) were randomly divided into four groups, the normal group, the DN group, the Yishen capsule group and the resveratrol group. Urine and renal tissue samples were collected after feeding with physiological saline and above drugs for 8 weeks. 24-hour urine microalbumin protein was detected by ELISA. HE staining and PAS staining were performed on renal tissues. Differential gene expression in renal tissues was analyzed by transcriptome sequencing. The differentially expressed genes were analyzed by GO enrichment and KEGG enrichment, and verified by RT-PCR and immunohistochemistry staining. RESULTS The level of 24-hour urinary microalbumin in DN group was increased, while Yishen capsule treatment reversed the increasement of urinary microalbumin. Mesangial cell proliferation, matrix accumulation, edema and vacuolar degeneration of renal tubular epithelial cells and glycogen accumulation were observed in DN group. However, pathological phenotypes mentioned above were alleviated after Yisen capsule administration. This result indicates that Yishen capsule reversed pathological phenotypes of DN in rats. The expression of 261 genes were changed in Yishen capsule group compared with DN group. GO enrichment analysis and KEGG pathway analysis showed that these genes were implicated in pathways, including mineral absorption, adipocytokine signaling pathway, fatty acid biosynthesis, thyroid hormone synthesis, renin-angiotensin system, and NOD-like receptor signaling pathway. Based on previous reported study, the expression of key factors in NOD-like receptor signaling pathway was verified. RT-PCR and immunohistochemistry staining showed that the expression of NLRP3, Caspase-1 and IL-1β in renal tissues of DN group were increased (P < 0.05), which were decreased in Yishen capsule group (P < 0.05). CONCLUSION Yishen capsule reduced microalbuminuria and alleviated pathological changes in DN rats, which may be achieved by regulating NOD-like receptor signaling pathway.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yaling Hu
- Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wenyuan Liu
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaodong Zhang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ruihua Wang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui Li
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Dalin Sun
- Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingai Fang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Jingai Fang, Department of Nephrology, First Hospital of Shanxi Medical University, 85 Jiefangnan Road, Taiyuan, 030001, People’s Republic of China, Email
| |
Collapse
|
29
|
Chang J, Zheng J, Gao X, Dong H, Yu H, Huang M, Sun Z, Feng X. TangShenWeiNing Formula Prevents Diabetic Nephropathy by Protecting Podocytes Through the SIRT1/HIF-1α Pathway. Front Endocrinol (Lausanne) 2022; 13:888611. [PMID: 35721758 PMCID: PMC9204479 DOI: 10.3389/fendo.2022.888611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) represents a major complication of diabetes, and podocyte injury has a critical function in DN development. TangShenWeiNing formula (TSWN) has been demonstrated to efficiently decrease proteinuria and protect podocytes in DN. This work aimed to explore the mechanism by which TSWN alleviates DN and protects podocytes. METHODS The major bioactive components of TSWN were detected by mass spectrometry (MS) and pharmacological databases. Eight-week-old male C57BLKS/J db/m and db/db mice were provided pure water, valsartan, low dose TSWN, middle dose TSWN and high dose TSWN by gavage for 12 weeks, respectively. RESULTS MS and network pharmacology analyses suggested that TSWN might prevent DN through the sirtuin (SIRT)1/hypoxia-inducible factor (HIF)-1α pathway. Diabetic mice showed elevated urinary albumin in comparison with non-diabetic mice, and TSWN decreased urinary albumin in diabetic mice. Histological injury increased in the kidney in diabetic mice, which could be improved by TSWN. Fibrosis and collagen I expression were induced in the diabetic mouse kidney in comparison with the non-diabetic mouse kidney; TSWN alleviated these effects. Apoptosis and cleaved caspase-3 were induced in the diabetic mouse kidney in comparison with the non-diabetic mouse kidney, and TSWN blunted these effects. Podocytes were damaged in the diabetic mouse kidney, which was improved by TSWN. Podocin and nephrin amounts were decreased in the diabetic mouse kidney in comparison with the non-diabetic mouse kidney, and podocalyxin was increased in urine of diabetic animals in comparison with non-diabetic counterparts. After TSWN treatment, podocin and nephrin were raised in the diabetic mouse kidney, and urinary podocalyxin was depressed in diabetic animals. Diabetic mice had lower SIRT1 and higher HIF-1α amounts in kidney specimens in comparison with non-diabetic mice, and TSWN promoted SIRT1 and inhibited HIF-1α in the diabetic mouse kidney. Moreover, co-staining of SIRT1 and podocin revealed that SIRT1 decreased in podocytes from diabetic mice in comparison with those from non-diabetic mice, and TSWN elevated SIRT1 in podocytes. CONCLUSIONS This study indicated that TSWN alleviates DN by improving podocyte injury through the SIRT1/HIF-1α pathway in diabetic mouse kidneys.
Collapse
Affiliation(s)
- Jing Chang
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jinsu Zheng
- Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hengbei Dong
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Haitian Yu
- Education Division, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Mengxiu Huang
- Department of Hepatobiliary, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhencheng Sun
- Department of Osteology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaomeng Feng
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiaomeng Feng,
| |
Collapse
|
30
|
The Mitochondrial-Associated Endoplasmic Reticulum Membrane and Its Role in Diabetic Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8054817. [PMID: 34777695 PMCID: PMC8589504 DOI: 10.1155/2021/8054817] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
The mitochondrial-associated endoplasmic reticulum membrane (MAM) is located between the outer mitochondrial membrane and the endoplasmic reticulum membrane. The MAM is involved in a wide range of cellular functions, including calcium signaling, the division and fusion of mitochondria, endoplasmic reticulum stress, and the synthesis and transport of lipids. Recent studies have discovered that the MAM is involved in the pathogenesis of diabetic nephropathy (DN). In this article, we summarize the structure, function and role of the MAM in DN. We hope this study will provide clues and a theoretical basis for mechanistic and targeted drug research on DN.
Collapse
|