1
|
Alotaibi F, Aba Alkhayl FF, Foudah AI, Azhar Kamal M, Moglad EH, Khan S, Rehman ZU, Warsi MK, Jawaid T, Alam A. Investigating the effects of four medicinal plants against dengue virus through QSAR modeling and molecular dynamics studies. J Biomol Struct Dyn 2025; 43:4063-4080. [PMID: 38197579 DOI: 10.1080/07391102.2024.2301744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).
Collapse
Affiliation(s)
- Faisal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, Sudan
| | - Shamshir Khan
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Zia Ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Sasikala M, Mohan S, Karuppaiah A, Karthick V, Ragul PA, Nagarajan A. NanoFlora: Unveiling the therapeutic potential of Ipomoea aquatica nanoparticles. J Genet Eng Biotechnol 2025; 23:100470. [PMID: 40074444 PMCID: PMC11915003 DOI: 10.1016/j.jgeb.2025.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Improving the pharmacokinetics of drugs is achieved through nano formulations and the role of natural product in the synthesis of nanomaterials is gaining prominence due to its eco-friendly nature, cost-effectiveness, and demonstrated efficacy. Metal nanoparticles (NPs) derived from Ipomoea aquatica Forsskal have been synthesized and evaluated for their antioxidant and antidiabetic properties towards enhancing the anticancer activity of the plant extracts. METHODOLOGY Hydroalcoholic extract was obtained from the entire Ipomoea aquatica plant and utilized as a key ingredient in the green synthesis of metal NPs. The characterization of the synthesized NPs involved UV/visible and FT-IR spectroscopic analyses, along with particle size determination using Zetasizer technology. Antioxidant activity was assessed through DPPH radical scavenging assays, while antidiabetic potential was evaluated via alpha-amylase inhibitory activity using HPTLC bioautography. RESULTS The formation of silver nanoparticles (AgNPs) was confirmed by a color change from light brown to dark brown. UV-VIS spectrum analysis showed strong absorbance between 380 and 400 nm, with a peak at 428 nm, indicating successful synthesis via bioreduction by Ipomoea aquatica extract. FT-IR spectra revealed phytochemicals like flavonoids and proteins, with shifts in peak positions confirming AgNP formation. DLS showed an average particle size of 36.27 nm, and TEM images confirmed spherical morphology. The AgNPs exhibited significant antioxidant and antidiabetic activities, outperforming standards such as ascorbic acid and Glibenclamide. Toxicity prediction identified the extract as slightly toxic, guiding safe dose administration. CONCLUSION The study underscores the potential of plant-based nanoparticles in scavenging free radicals and supporting cytotoxicity, thus hinting at their potential role in cancer therapy. Moreover, the nanoparticles derived from Ipomoea aquatica exhibit promising antioxidant and antidiabetic activities compared to the crude plant extract. This research paves the way for further exploration of Ipomoea aquatica nanoparticles as a novel therapeutic intervention for various diseases.
Collapse
Affiliation(s)
- Manickavasagam Sasikala
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| | - Sellappan Mohan
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| | - Arjunan Karuppaiah
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India; PSG College of Pharmacy, Peelamedu, Avinashi Road, Coimbatore 641004, India
| | - Vedi Karthick
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India
| | - Palanigoundar Atheyannan Ragul
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India
| | - Arumugam Nagarajan
- Karpagam College of Pharmacy, Coimbatore 641 032 Tamil Nadu, India; The Tamil Nadu Dr. M.G.R. Medical University, Chennai 600032 Tamil Nadu, India.
| |
Collapse
|
3
|
Sharma KB, Subramani C, Ganesh K, Sharma A, Basu B, Balyan S, Sharma G, KA S, Deb A, Srivastava M, Chugh S, Sehrawat S, Bharadwaj K, Rout A, Sahoo PK, Saurav S, Motiani RK, Singh R, Jain D, Asthana S, Wadhwa R, Vrati S. Withaferin A inhibits Chikungunya virus nsP2 protease and shows antiviral activity in the cell culture and mouse model of virus infection. PLoS Pathog 2024; 20:e1012816. [PMID: 39775571 PMCID: PMC11723598 DOI: 10.1371/journal.ppat.1012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/10/2025] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV. In the ERMS cells, WFA inhibited CHIKV replication early during the life cycle by binding the CHIKV non-structural protein nsP2 and inhibiting its protease activity. This inhibited the viral polyprotein processing and the minus-sense viral RNA synthesis. WFA mounted the nsP2 protease inhibitory activity through its oxidising property as the reducing agents N-acetylcysteine and Glutathione-monoethyl ester effectively reversed the WFA-mediated protease inhibition in vitro and abolished the WFA-mediated antiviral activity in cultured cells. WFA inhibited CHIKV replication in the C57BL/6 mouse model of chikungunya disease, resulting in significantly lower viremia. Importantly, CHIKV-infected mice showed significant joint swelling which was not seen in WFA-treated mice. These data demonstrate the potential of WFA as a novel CHIKV antiviral.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shouri KA
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Mitul Srivastava
- Translational Health Science and Technology Institute, Faridabad, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Archana Rout
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Suman Saurav
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepti Jain
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
4
|
Latarissa IR, Meiliana A, Sormin IP, Sugiono E, Wathoni N, Barliana MI, Lestari K. The efficacy of herbal medicines on the length of stay and negative conversion time/rate outcomes in patients with COVID-19: a systematic review. Front Pharmacol 2024; 15:1383359. [PMID: 38873430 PMCID: PMC11169809 DOI: 10.3389/fphar.2024.1383359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction In recent years, diverse initiatives have been carried out to control the COVID-19 pandemic, ranging from measures restricting social activities to analyzing drugs and vaccines. Studies on herbal medicines are also increasingly conducted in various countries as an adjuvant therapy or supplement. Therefore, this systematic review aimed to investigate the efficacy of herbal medicines analyzed from various countries through clinical trials with the randomized controlled trial method. The outcomes of Length of Stay (LOS), Negative Conversion Time (NCT), and Negative Conversion Rate (NCR) were the main focus. Methods An extensive review of literature spanning from 2019 to 2023 was carried out using well-known databases including PubMed, Scopus, and Cochrane. The search included relevant keywords such as "randomized controlled trial," "COVID-19," and "herbal medicine." Results A total of 8 articles were part of the inclusion criteria with outcomes of LOS, NCT, and NCR. In terms of LOS outcomes, all types of herbal medicines showed significant results, such as Persian Medicine Herbal (PM Herbal), Persian Barley Water (PBW), Jingyin Granules (JY granules), Reduning Injection, and Phyllanthus emblica (Amla). However, only JY granules showed significant results in NCR outcome, while JY granules and Reduning Injection showed significant results in reducing NCT. Conclusion These findings enrich our understanding of the potential benefits of herbal medicines in influencing LOS, NCR and NCT parameters in COVID-19 patients. Herbal medicines worked to treat COVID-19 through antiviral, anti-inflammatory, and immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | | | - Ida Paulina Sormin
- Faculty of Pharmacy, University of 17 August 1945 Jakarta, Jakarta, Indonesia
- Prodia Diacro Laboratory, Jakarta, Indonesia
| | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
5
|
Ozeer FZ, Nagandran S, Wu YS, Wong LS, Stephen A, Lee MF, Kijsomporn J, Guad RM, Batumalaie K, Oyewusi HA, Verma A, Yadav E, Afzal S, Sekar M, Subramaniyan V, Fuloria NK, Fuloria S, Sarker MMR. A comprehensive review of phytochemicals of Withania somnifera (L.) Dunal (Solanaceae) as antiviral therapeutics. DISCOVER APPLIED SCIENCES 2024; 6:187. [DOI: 10.1007/s42452-024-05845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 11/22/2024]
Abstract
AbstractViruses have caused millions and billions of infections and high mortality rates without successful immunization due to a lack of antiviral drugs approved for clinical use. Therefore, the discovery of novel antiviral drugs is impertinent and natural products are excellent alternative sources. Withania somnifera (L.) Dunal (Solanaceae) is recognized as one of the most significant herbs in the Ayurvedic system and it had been utilized in various biological actions for more than 3000 years. This review aimed to discuss the therapeutic effects and associated molecular mechanisms of Withania somnifera (WS) and its phytochemicals, withanolides against various viruses in preclinical and clinical settings towards developing potential inhibitors which could target virus proteins or their respective host cell receptors. WS was reported to attenuate coronavirus disease 2019 (COVID-19), serve as a potential ligand against the herpes simplex virus (HSV) DNA polymerase, suppress Alzheimer’s disease progression by inhibiting the cytotoxicity induced by the human immunodeficiency virus 1 (HIV-1)-activated beta-amyloid (Aβ), and attenuate the neuraminidase activity of H1N1 influenza. WS root extracts have also reduced the mortality rates and stress levels in tilapia infected with tilapia lake virus (TiLV), and stimulated antiviral nitric oxide formation in chicks infected with infectious bursal disease (IBD). With increasing evidence from previous literatures, further in vitro and in vivo investigations of WS against other viral infections may provide promising results.
Graphical Abstract
Collapse
|
6
|
Gasmi A, Noor S, Dadar M, Semenova Y, Menzel A, Gasmi Benahmed A, Bjørklund G. The Role of Traditional Chinese Medicine and Chinese Pharmacopoeia in the Evaluation and Treatment of COVID-19. Curr Pharm Des 2024; 30:1060-1074. [PMID: 38523518 DOI: 10.2174/0113816128217263240220060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
The epidemic prompted by COVID-19 continues to spread, causing a great risk to the general population's safety and health. There are still no drugs capable of curing it. Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the two other diseases caused by coronaviruses. Traditional Chinese Medicine (TCM) showed benefits in treating SARS and MERS by preventing the disease early, substantially mitigating symptoms, shortening the treatment period, and minimizing risks and adverse reactions caused by hormone therapy. Although several vaccines have been developed and are being used for the treatment of COVID-19, existing vaccines cannot provide complete protection against the virus due to the rapid evolution and mutation of the virus, as mutated viral epitopes evade the vaccine's target and decrease the efficacy of vaccines. Thus, there is a need to develop alternative options. TCM has demonstrated positive effects in the treatment of COVID-19. Previous research studies on TCM showed broad-spectrum antiviral activity, offering a range of possibilities for their potential use against COVID-19. This study shed some light on common TCM used for SARS and MERS outbreaks and their effective use for COVID-19 management. This study provides new insights into COVID-19 drug discovery.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Dadar
- CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
7
|
Boone SA, Ijaz MK, Bright KR, Silva-Beltran NP, Nims RW, McKinney J, Gerba CP. Antiviral Natural Products, Their Mechanisms of Action and Potential Applications as Sanitizers and Disinfectants. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:265-280. [PMID: 37906416 DOI: 10.1007/s12560-023-09568-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
Plant extracts, natural products and plant oils contain natural virucidal actives that can be used to replace active ingredients in commercial sanitizers and disinfectants. This review focuses on the virucidal mechanisms of natural substances that may exhibit potential for indoor air and fomite disinfection. Review of scientific studies indicates: (1) most natural product studies use crude extracts and do not isolate or identify exact active antiviral substances; (2) many natural product studies contain unclear explanations of virucidal mechanisms of action; (3) natural product evaluations of virucidal activity should include methods that validate efficacy under standardized disinfectant testing procedures (e.g., carrier tests on applicable surfaces or activity against aerosolized viruses, etc.). The development of natural product disinfectants requires a better understanding of the mechanisms of action (MOA), chemical profiles, compound specificities, activity spectra, and the chemical formulations required for maximum activity. Combinations of natural antiviral substances and possibly the addition of synthetic compounds might be needed to increase inactivation of a broader spectrum of viruses, thereby providing the required efficacy for surface and air disinfection.
Collapse
Affiliation(s)
- Stephanie A Boone
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Kelly R Bright
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | | | | | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Marongiu L, Burkard M, Helling T, Biendl M, Venturelli S. Modulation of the replication of positive-sense RNA viruses by the natural plant metabolite xanthohumol and its derivatives. Crit Rev Food Sci Nutr 2023; 65:429-443. [PMID: 37942943 DOI: 10.1080/10408398.2023.2275169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The COVID-19 pandemic has highlighted the importance of identifying new potent antiviral agents. Nutrients as well as plant-derived substances are promising candidates because they are usually well tolerated by the human body and readily available in nature, and consequently mostly cheap to produce. A variety of antiviral effects have recently been described for the hop chalcone xanthohumol (XN), and to a lesser extent for its derivatives, making these hop compounds particularly attractive for further investigation. Noteworthy, mounting evidence indicated that XN can suppress a wide range of viruses belonging to several virus families, all of which share a common reproductive cycle. As a result, the purpose of this review is to summarize the most recent research on the antiviral properties of XN and its derivatives, with a particular emphasis on the positive-sense RNA viruses human hepatitis C virus (HCV), porcine reproductive and respiratory syndrome virus (PRRSV), and severe acute respiratory syndrome corona virus (SARS-CoV-2).
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Thomas Helling
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Martin Biendl
- HHV Hallertauer Hopfenveredelungsgesellschaft m.b.H, Mainburg, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
9
|
Zhu H, Xu C, Dong Y, Lu S, Guo L. Chai-Gui Decoction and its representative components ameliorate spontaneous hypertension rats by modulating lipid metabolism and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116116. [PMID: 36603783 DOI: 10.1016/j.jep.2022.116116] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypertension coincides with the category of "vertigo" and/or "headache" on the basis clinical manifestations and traditional Chinese medicine (TCM) theory. Chai-Gui Decoction (CGD), which is in usage for relieving "vertigo" and/or "headache", had been demonstrated to be useful in ameliorating hypertension. AIM OF STUDY This study was planned to investigate the mechanism of CGD and its components in hypertension by using spontaneous hypertension rat (SHR). MATERIALS AND METHODS CGD extract and its classification component samples (compounds in plasma, CP; compounds in gut, CG; compounds in plasma and gut, CPG) were prepared for animal experiment. SHR rats were induced with CGD extract (3 g/kg/d BW, 5 g/kg/d BW, 15 g/kg/d BW) and CGD-component classes (CP = 19.501 mg/kg/d, CG = 5.240 mg/kg/d, CPG = 24.741 mg/kg/d) for 4 weeks. Blood pressure (BP) and indexes of renin-angiotensin-aldosterone system (RAAS system) were measured. Histopathology was carried out to assess the efficacy of CGD and its components on aorta tissues. Untargeted metabolomics of lipid from rat serum samples were applied by Ultra-High performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and chemometric analysis to explore the relationship between metabolic pathways and hypertension. 16S rRNA gene sequencing of rat colon content and bioinformatics analysis were used to characterize the effects of CGD and its components on the gut microbiota composition of SHR rats. RESULTS CGD and its component mixtures showed antihypertensive effect on SHR rats, decreased the blood pressure and reduced the aortic wall thickness in SHR rats. CGD and its component mixtures could improve the RAAS in SHR rats, including increase the percentage of angiotensin 1-7 (Ang 1-7), decrease the percentage of angiotensin II (Ang II), and decrease the Ang Ⅱ/Ang 1-7 ratio. CGD and its component mixtures could regulate the metabolome in SHR rats, mainly as decreasing the higher serum levels of Lysophosphatidylcholine (LPC) 16: 0, LPC 20: 4, and LPC 22: 6. In addition, bacteria from family S24-7 were negatively correlated with levels of LPE 16:0, LPE 18:0, LPE 18:1, and LPE 18:2. CONCLUSION CGD and its component mixtures exhibited antihypertensive effect on SHR rats. The underlying mechanism could be related to modulation on RAAS, LPC metabolism and the bacterial abundance of family S24-7 in gut.
Collapse
Affiliation(s)
- Hongjun Zhu
- Nanjing University of Chinese Medicine Wuxi Affiliated Hospital: Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China
| | - Chen Xu
- Nanjing University of Chinese Medicine Wuxi Affiliated Hospital: Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China
| | - Yun Dong
- Nanjing University of Chinese Medicine Wuxi Affiliated Hospital: Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China
| | - Shu Lu
- Nanjing University of Chinese Medicine Wuxi Affiliated Hospital: Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China
| | - Linxiu Guo
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|