1
|
Ramos S. Protective Effects of Flavonoids in Diabetic Cardiomyopathy: A Comprehensive Review on the Mechanistic Insights. Mol Nutr Food Res 2025:e70038. [PMID: 40159847 DOI: 10.1002/mnfr.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Diabetic cardiomyopathy (DCM) is one of the leading causes of mortality among diabetic patients. Flavonoid are the most abundant group of phytochemicals in fruits and vegetables, and have received increasing interest as potential chemopreventive antidiabetic agents. Flavonoids might contribute to prevent or delay DCM by regulating the cardiac metabolism, insulin signaling, oxidative stress, apoptosis, autophagy, and inflammation. Among other effects, flavonoids have been proved to enhance glucose uptake, decrease cellular lipid accumulation, or suppress oxidative stress. However, the mechanistic basis of these effects is not fully understood, and many points remain to be clarified. This review provides insight into the molecular mechanisms of flavonoid chemopreventive activity by summarizing cell culture and animal model studies.
Collapse
Affiliation(s)
- Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Bhadana R, Rani V. Effect of Syzygium cumini on Oxidative Stress Induced Cardiac Cellular Anomalies. Cardiovasc Hematol Agents Med Chem 2025; 23:29-40. [PMID: 38299280 DOI: 10.2174/0118715257273859231211112731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Doxorubicin (Dox), an antineoplastic agent is used as a primary anticancerous drug against various types of cancers. However, its associated toxicity to the cardiovascular system is major. Literature has recorded the cases of mortality due to poor validation and lack of prediagnosis of Dox-induced cardiotoxicity. Therapeutic interventions using natural products having cardioprotective properties with low toxic outcomes hold therapeutic potential for future cardio-oncological therapies. Syzygium cumini (Black berry), a traditional Indian herbal plant, has been researched and found to exert cardioprotective, anti-inflammatory, and antioxidant activities, which have been credited due to the presence of polyphenols, flavonoids, and tannins. METHODS In the current research, we investigated the cardioprotective potential of Syzygium cumini against Doxorubicin-induced cardiotoxicity (DIC) in H9C2 cardiomyocytes. Methanolic seed extract preparation of Syzygium cumini was performed using the Soxhlet apparatus. Cell viability and cell death assays were performed to determine the cardiotoxic doses of Doxorubicin. Furthermore, the cardioprotective potential of Syzygium cumini extract against DIC was studied. Morphological and nuclear alterations in H9C2 cells were studied by microscopic assays using Giemsa, Haematoxylin-Eosin stain, and PI. The intracellular stress level and ROS production were studied using DCFH-DA followed by mitochondrial integrity analysis using fluorescent microscopic methods. RESULTS In the results, we investigated that Dox exerted a dose and time-dependent cardiotoxicity on H9C2 cardiomyocytes. Moreover, we observed that morphological and nuclear alterations caused by doxorubicin in dose-dependent manner were prevented by supplementing with Syzygium cumini polyphenols and it attenuated the oxidative stress in H9C2 cardiomyocytes effectively. CONCLUSION Conclusively, Syzygium cumini possesses cardioprotective potential in H9C2 cardiomyocytes in dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Renu Bhadana
- Department of Biotechnology, Center of Excellence in Emerging Diseases, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307, Uttar Pradesh, India
| | - Vibha Rani
- Department of Biotechnology, Center of Excellence in Emerging Diseases, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307, Uttar Pradesh, India
| |
Collapse
|
3
|
Mishra CB, Shalini S, Gusain S, Kumar P, Kumari S, Choi YS, Kumari J, Moku BK, Yadav AK, Prakash A, Jeon R, Tiwari M. Multitarget action of Benzothiazole-piperazine small hybrid molecule against Alzheimer's disease: In silico, In vitro, and In vivo investigation. Biomed Pharmacother 2024; 174:116484. [PMID: 38565058 DOI: 10.1016/j.biopha.2024.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aβ1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aβ1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 μM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aβ, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shruti Shalini
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Pawan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Kumari
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yong-Sung Choi
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea
| | - Jyoti Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Bala Krishna Moku
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anita Kumari Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea.
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
4
|
Singhal S, Rani V. Therapeutic Potential of Syzygium aromaticum in Gut Dysbiosis via TMAO Associated Diabetic Cardiomyopathy. Cardiovasc Hematol Agents Med Chem 2024; 22:441-455. [PMID: 37608671 DOI: 10.2174/1871525721666230822100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Dysbiosis of the gastrointestinal microbiota is not only related to the pathogenesis of intestinal disorders but also associated with extra-intestinal diseases. Various studies have revealed the role of an imbalance of intestinal microbiota and their metabolites including bile acids, indole derivatives, polyamines, and trimethylamine in the progression of various diseases. The elevated plasma level of the oxidized form of trimethylamine is associated with the increased risk of cardiovascular diseases. Literature supports that herbal medicines can modulate human health by altering the diversity of gut microbiota and their metabolites and proposes the use of prebiotics to improve dysbiotic conditions as a new way of therapeutic strategy. METHODS In silico studies including drug likeliness, toxicity prediction, and molecular interaction of phytochemicals against trimethylamine lyase enzyme have been done. Antimicrobial activity of extracts of selected plant i.e. Syzygium aromaticum was done by disc diffusion and the protective effects of plant compounds were examined on trimethylamine-n-oxide a bacterial metabolic product and high glucose induced toxicity. RESULTS The current study has found that the phytochemicals of S. aromaticum identified as nontoxic and followed the standard rules of drug likeliness and showed a significant binding affinity against trimethylamine-n-oxide producing enzymes. Furthermore, S. aromaticum extract was found to have antimicrobial potential and cardioprotective effects by reducing the production of intracellular reactive oxygen species and correcting the distorted nuclear morphology in the presence of high trimethylamine-n-oxide. CONCLUSION Conclusively, our study explored the herbal intervention in intestinal dysbiosis and suggested a natural therapy against dysbiosis associated with cardiac disease, and S, aromaticum was found to have exceptional cardioprotective potential against TMAO induced gut dysbiosis, which provides a novel future therapeutic intervention for treating cardiovascular complications.
Collapse
Affiliation(s)
- Shivani Singhal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Vibha Rani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| |
Collapse
|
5
|
Singhal S, Rani V. Cardioprotective Role of Tinospora cordifolia against Trimethylamine-N-Oxide and Glucose Induced Stress in Rat Cardiomyocytes. Cardiovasc Hematol Agents Med Chem 2024; 22:475-494. [PMID: 37907489 DOI: 10.2174/0118715257270512231013064533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Type 2 diabetes has become a concern issue that affects the quality of life and can increase the risk of cardiac insufficiency elevating the threat to the life safety of patients. A recognized cause of cardiac insufficiency is diabetic cardiomyopathy, chronic hyperglycemia, and myocardial lipotoxicity which can reduce the myocardial contractile performance, and enhance the cardiomyocyte hypertrophy and interstitial fibrosis. The cause of diabetic cardiomyopathy is multi-factorial which includes oxidative stress, insulin resistance, inflammation, apoptosis, and autophagy. Recent clinical studies have suggested the dysbiosis of gut microbiota, secretion of metabolites, and their diffusion in to the host as to have direct detrimental effects on the cardiac contractility. MATERIALS AND METHODS In the present paper, we have done in silico studies including molecular interaction of phytoconstituents of Tinospora cordifolia against reactive oxygen species producing proteins. Whereas, in vitro studies were conducted on H9C2 cardiac cells including cell morphological examination, level of reactive oxygen species, cell count-viability, apoptotic status, in the presence of high glucose, trimethylamine-n-oxide, and plant extracts which were determined through cell analyzer and microscopic assays. RESULTS The treatment of high glucose and trimethylamine-n-oxide was found to be increase the cardiac stress approximately two fold by attenuating hypertrophic conditions, oxidative stress, and apoptosis in rat cardiomyocytes, and Tinospora cordifolia was found to be a cardioprotective agent. CONCLUSION Conclusively, our study has reported that the Indian medicinal plant Tinospora cordifolia has the ability to treat diabetic cardiomyopathy. Our study can open up a new herbal therapeutic strategy against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shivani Singhal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Vibha Rani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| |
Collapse
|
6
|
Punica granatum L. Polyphenolic Extract as an Antioxidant to Prevent Kidney Injury in Metabolic Syndrome Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6144967. [PMID: 36644578 PMCID: PMC9836814 DOI: 10.1155/2023/6144967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
Introduction Obesity and metabolic syndrome (MetS) constitute a rapidly increasing health problem and contribute to the development of multiple comorbidities like acute and chronic kidney disease. Insulin resistance, inappropriate lipolysis, and excess of free fatty acids (FFAs) are associated with glomerulus hyperfiltration and atherosclerosis. The important component of MetS, oxidative stress, is also involved in the destabilization of kidney function and the progression of kidney injury. Natural polyphenols have the ability to reduce the harmful effect of reactive oxygen and nitrogen species (ROS/RNS). Extract derived from Punica granatum L. is rich in punicalagin that demonstrates positive effects in MetS and its associated diseases. The aim of the study was to investigate the effect of bioactive substances of pomegranate peel to kidney damage associated with the MetS. Methods In this study, we compared biomarkers of oxidative stress in kidney tissue of adult male Zucker Diabetic Fatty (ZDF) rats with MetS and healthy controls that were treated with Punica granatum L. extract at a dose of 100 or 200 mg/kg. Additionally, we evaluated the effect of polyphenolic extract on kidney injury markers and remodeling. The concentration of ROS/RNS, oxLDL, glutathione (GSH), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), metalloproteinase 2 and 9 (MMP-2, MMP-9), and the activity of superoxide dismutase (SOD) and catalase (CAT) were measured. Results The data showed significant differences in oxidative stress markers between treated and untreated MetS rats. ROS/RNS levels, oxLDL concentration, and SOD activity were lower, whereas CAT activity was higher in rats with MetS receiving polyphenolic extract. After administration of the extract, markers for kidney injury (NGAL, KIM-1) decreased. Conclusion Our study confirmed the usefulness of pomegranate polyphenols in the treatment of MetS and the prevention of kidney damage. However, further, more detailed research is required to establish the mechanism of polyphenol protection.
Collapse
|
7
|
Duan X, Li J, Cui J, Wen H, Xin X, Aisa HA. A network pharmacology strategy combined with in vitro experiments to investigate the potential anti-inflammatory mechanism of Prunus cerasifera Ehrhart. J Food Biochem 2022; 46:e14396. [PMID: 36169283 DOI: 10.1111/jfbc.14396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the anti-inflammatory activity of Prunus cerasifera Ehrhart (EHP). LC-MS/MS, network pharmacology, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis methods were used to investigate the chemical composition and the anti-inflammatory mechanism of EHP. The LC-MS/MS results showed that flavonoids and phenolic acids were the major compounds in EHP. The network pharmacology analysis results indicated that EHP was related to TNF, inflammatory cytokine, and MAPK signaling pathway. ELISA and Western blot results showed that EHP impeded the increase in inflammatory factors, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), nuclear transcription factors κB (p65), MAPK pathway, pyrolytic relevant proteins nod-like receptor family pyrin domain-containing 3 (NLRP3), and interleukin-1β (IL-1β) induced by lipopolysaccharide (LPS) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway. Therefore, this research highlighted the potential application of P. cerasifera in the development of anti-inflammatory foods that prevented inflammatory diseases. PRACTICAL APPLICATIONS: In recent years, many synthetic drugs with anti-inflammatory effect have the disadvantages of high price and side effects. Thus, the development of anti-inflammatory drugs from natural resources has its application value. In this study, LPS-stimulated RAW264.7 cells were used to establish inflammatory model to verify the anti-inflammatory effect of Prunus cerasifera (EHP). The results showed that P. cerasifera possessed anti-inflammatory activity through inhibiting pro-inflammatory cytokines secretion, NF-κB, MAPK pathway, and NLRP3 inflammasome activation. Therefore, P. cerasifera has the potential to develop into functional food to prevent the progress of various inflammatory-related diseases.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huizheng Wen
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haji Akber Aisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Kumar M, Hasan M, Lorenzo JM, Dhumal S, Nishad J, Rais N, Verma A, Changan S, Barbhai MD, Radha, Chandran D, Pandiselvam R, Senapathy M, Dey A, Pradhan PC, Mohankumar P, Deshmukh VP, Amarowicz R, Mekhemar M, Zhang B. Jamun (Syzygium cumini (L.) Skeels) seed bioactives and its biological activities: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Tak Y, Kaur M, Jain MC, Samota MK, Meena NK, Kaur G, Kumar R, Sharma D, Lorenzo JM, Amarowicz R. Jamun Seed: A Review on Bioactive Constituents, Nutritional Value and Health Benefits. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Amir Rawa MS, Mazlan MKN, Ahmad R, Nogawa T, Wahab HA. Roles of Syzygium in Anti-Cholinesterase, Anti-Diabetic, Anti-Inflammatory, and Antioxidant: From Alzheimer's Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:1476. [PMID: 35684249 PMCID: PMC9183156 DOI: 10.3390/plants11111476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) causes progressive memory loss and cognitive dysfunction. It is triggered by multifaceted burdens such as cholinergic toxicity, insulin resistance, neuroinflammation, and oxidative stress. Syzygium plants are ethnomedicinally used in treating inflammation, diabetes, as well as memory impairment. They are rich in antioxidant phenolic compounds, which can be multi-target neuroprotective agents against AD. This review attempts to review the pharmacological importance of the Syzygium genus in neuroprotection, focusing on anti-cholinesterase, anti-diabetic, anti-inflammatory, and antioxidant properties. Articles published in bibliographic databases within recent years relevant to neuroprotection were reviewed. About 10 species were examined for their anti-cholinesterase capacity. Most studies were conducted in the form of extracts rather than compounds. Syzygium aromaticum (particularly its essential oil and eugenol component) represents the most studied species owing to its economic significance in food and therapy. The molecular mechanisms of Syzygium species in neuroprotection include the inhibition of AChE to correct cholinergic transmission, suppression of pro-inflammatory mediators, oxidative stress markers, RIS production, enhancement of antioxidant enzymes, the restoration of brain ions homeostasis, the inhibition of microglial invasion, the modulation of ß-cell insulin release, the enhancement of lipid accumulation, glucose uptake, and adiponectin secretion via the activation of the insulin signaling pathway. Additional efforts are warranted to explore less studied species, including the Australian and Western Syzygium species. The effectiveness of the Syzygium genus in neuroprotective responses is markedly established, but further compound isolation, in silico, and clinical studies are demanded.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Mohd Khairul Nizam Mazlan
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Rosliza Ahmad
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Toshihiko Nogawa
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Technology Platform Division, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Habibah A. Wahab
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| |
Collapse
|
11
|
Kumar N, Srivastava R, Mongre RK, Mishra CB, Kumar A, Khatoon R, Banerjee A, Ashraf-Uz-Zaman M, Singh H, Lynn AM, Lee MS, Prakash A. Identifying the Novel Inhibitors Against the Mycolic Acid Biosynthesis Pathway Target "mtFabH" of Mycobacterium tuberculosis. Front Microbiol 2022; 13:818714. [PMID: 35602011 PMCID: PMC9121832 DOI: 10.3389/fmicb.2022.818714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Mycolic acids are the key constituents of mycobacterial cell wall, which protect the bacteria from antibiotic susceptibility, helping to subvert and escape from the host immune system. Thus, the enzymes involved in regulating and biosynthesis of mycolic acids can be explored as potential drug targets to kill Mycobacterium tuberculosis (Mtb). Herein, Kyoto Encyclopedia of Genes and Genomes is used to understand the fatty acid metabolism signaling pathway and integrative computational approach to identify the novel lead molecules against the mtFabH (β-ketoacyl-acyl carrier protein synthase III), the key regulatory enzyme of the mycolic acid pathway. The structure-based virtual screening of antimycobacterial compounds from ChEMBL library against mtFabH results in the selection of 10 lead molecules. Molecular binding and drug-likeness properties of lead molecules compared with mtFabH inhibitor suggest that only two compounds, ChEMBL414848 (C1) and ChEMBL363794 (C2), may be explored as potential lead molecules. However, the spatial stability and binding free energy estimation of thiolactomycin (TLM) and compounds C1 and C2 with mtFabH using molecular dynamics simulation, followed by molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) indicate the better activity of C2 (ΔG = -14.18 kcal/mol) as compared with TLM (ΔG = -9.21 kcal/mol) and C1 (ΔG = -13.50 kcal/mol). Thus, compound C1 may be explored as promising drug candidate for the structure-based drug designing of mtFabH inhibitors in the therapy of Mtb.
Collapse
Affiliation(s)
- Niranjan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Srivastava
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Raj Kumar Mongre
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women’s University, Seoul, South Korea
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Chandra Bhushan Mishra
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| | - Amit Kumar
- Indian Council of Medical Research–Computational Genomics Centre, All India Institute of Medical Research, New Delhi, India
- Amity Institute of Integrative Sciences and Health, Amity University, Gurugram, India
| | - Rosy Khatoon
- Amity Institute of Biotechnology, Amity University, Gurugram, India
| | - Atanu Banerjee
- Amity Institute of Biotechnology, Amity University, Gurugram, India
| | - Md Ashraf-Uz-Zaman
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| | - Harpreet Singh
- Indian Council of Medical Research–Computational Genomics Centre, All India Institute of Medical Research, New Delhi, India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women’s University, Seoul, South Korea
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University, Gurugram, India
| |
Collapse
|