1
|
SHI J, PAN F, GE H, YANG Z, ZHAN H. Mechanism of Qigu capsule as a treatment for sarcopenia based on network pharmacology and experimental validation. J TRADIT CHIN MED 2025; 45:399-407. [PMID: 40151126 PMCID: PMC11955765 DOI: 10.19852/j.cnki.jtcm.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/22/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVE To explore the potential molecular mechanism of Qigu capsule (,QGC) in the treatment of sarcopenia through network pharmacology and to verify it experimentally. METHODS The active compounds of QGC and common targets between QGC and sarcopenia were screened from databases. Then the herbs-compounds-targets network, and protein-protein interaction (PPI) network was constructed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed by R software. Next, we used a dexamethasone-induced sarcopenia mouse model to evaluate the anti-sarcopenic mechanism of QGC. RESULTS A total of 57 common targets of QGC and sarcopenia were obtained. Based on the enrichment analysis of GO and KEGG, we took the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway as a key target to explore the mechanism of QGC on sarcopenia. Animal experiments showed that QGC could increase muscle strength and inhibit muscle fiber atrophy. In the model group, the expression of muscle ring finger-1 and Atrogin-1 were increased, while myosin heavy chain was decreased, QGC treatment reversed these changes. Moreover, compared with the model group, the expressions of p-PI3K, p-Akt, p-mammalian target of rapamycin and p-Forkhead box O3 in the QGC group were all upregulated. CONCLUSION QGC exerts an anti-sarcopenic effect by activating PI3K/Akt signaling pathway to regulate skeletal muscle protein metabolism.
Collapse
Affiliation(s)
- Jinyu SHI
- 1 Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- 2 Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200120, China
| | - Fuwei PAN
- 1 Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- 2 Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200120, China
| | - Haiya GE
- 1 Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- 2 Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200120, China
| | - Zongrui YANG
- 1 Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- 2 Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200120, China
| | - Hongsheng ZHAN
- 1 Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- 2 Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
2
|
Gu X, Lu S, Xu S, Li Y, Fan M, Lin G, Liu Y, Zhao Y, Zhao W, Liu X, Dong X, Zhang X. Novel oral compound Z526 mitigates cancer-associated cachexia via intervening NF-κB signaling and oxidative stress. Genes Dis 2025; 12:101292. [PMID: 39759112 PMCID: PMC11697116 DOI: 10.1016/j.gendis.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer-associated cachexia (CAC) is a severe metabolic disorder syndrome mainly characterized by muscle and fat loss, which accounts for one-third of cancer-related deaths. No effective therapeutic approach that could fully reverse CAC is available. NF-κB signaling and oxidative stress play vital roles in both muscle atrophy and fat loss in CAC. Here, we showed that our developed oral compound Z526 exhibited potent anti-CAC efficacy by inhibiting NF-κB signaling and ameliorating oxidative stress. In vitro, Z526 alleviated C2C12 myotube atrophy and 3T3-L1 adipocyte lipolysis induced by conditioned mediums of multiple cachectic tumor cells or pro-cachectic inflammatory cytokines. In vivo, Z526 attenuated the cachectic symptoms of C26 or LLC tumor-bearing mice. Z526 treatment reduced weight loss without impacting tumor growth and improved muscle atrophy, fat loss, and impaired grip force. Besides, serum TNF-α and IL-6 levels were reduced after Z526 treatment in C26 tumor-bearing mice. Of note, Z526 significantly prolonged the survival of LLC tumor-bearing mice. Activated NF-κB signaling and oxidative stress in cachectic muscle and fat tissues were reversed by Z526. Furthermore, Z526 exhibited a promising preclinical safety profile. Thus, oral Z526, which exhibited potent anti-CAC activities in vitro and in vivo, multiple interventions in diverse pathogenic mechanisms (NF-κB signaling and oxidative stress), and a favorable preclinical safety profile, holds the promise to be developed into a novel and beneficial therapeutic option for CAC.
Collapse
Affiliation(s)
- Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shanshan Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yiwei Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Guangyu Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yiyuan Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Weili Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Xue Q, Zhang D, Zou J, Wang H, Shi R, Dong L. Treatment advances of sepsis‑induced myopathy (Review). Biomed Rep 2025; 22:19. [PMID: 39651403 PMCID: PMC11621912 DOI: 10.3892/br.2024.1897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024] Open
Abstract
Sepsis-induced myopathy (SIM) is a muscle disease caused by multiple pathological and physiological mechanisms associated with sepsis. The pathogenesis of SIM is extremely complex and still unclear, making treatment challenging. At present, clinical treatment includes early functional exercise, respiratory muscle strength training, regulation of nutritional structure and functional electrical stimulation. Drugs targeting the regulation of the ubiquitin-proteasome system, autophagy-lysosome system, calpain and caspase activation pathways, have provided potential therapeutic targets for the treatment of muscle atrophy. Stem cell transplantation therapy brings new hope for the treatment of SIM.
Collapse
Affiliation(s)
- Qiuli Xue
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Deyou Zhang
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiarui Zou
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haitao Wang
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruiyuan Shi
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lihua Dong
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
4
|
Wang X, Tang X, Wang Y, Zhao S, Xu N, Wang H, Kuang M, Han S, Jiang Z, Zhang W. Plant-Derived Treatments for Different Types of Muscle Atrophy. Phytother Res 2025; 39:1107-1138. [PMID: 39743857 PMCID: PMC11832362 DOI: 10.1002/ptr.8420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
With the development of medicine and chemistry, an increasing number of plant-derived medicines have been shown to exert beneficial therapeutic on the treatment of various physical and psychological diseases. In particular, by using physical chemistry methods, we are able to examine the chemical components of plants and the effects of these substances on the human body. Muscle atrophy (MA) is characterized by decreased muscle mass and function, is caused by multiple factors and severely affects the quality of life of patients. The multifactorial and complex pathogenesis of MA hinders drug research and disease treatment. However, phytotherapy has achieved significant results in the treatment of MA. We searched PubMed and the Web of Science for articles related to plant-derived substances and muscle atrophy. After applying exclusion and inclusion criteria, 166 and 79 articles met the inclusion criteria, respectively. A total of 173 articles were included in the study after excluding duplicates. The important role of phytoactives such as curcumin, resveratrol, and ginsenosides in the treatment of MA (e.g., maintaining a positive nitrogen balance in muscles and exerting anti-inflammatory and antioxidant effects) has been extensively studied. Unfortunately, MA dose not have to a single cause, and each cause has its own unique mechanism of injury. This review focuses on the therapeutic mechanisms of active plant components in MA and provides insights into the personalized treatment of MA.
Collapse
Affiliation(s)
- Xingpeng Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xiaofu Tang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yunhui Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shengyin Zhao
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Ning Xu
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Haoyu Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mingjie Kuang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shijie Han
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Zhensong Jiang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Wen Zhang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
5
|
Ulla A, Rahman MM, Uchida T, Kayaki H, Nishitani Y, Yoshino S, Kuwahara H, Nikawa T. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid mitigates dexamethasone-induced muscle atrophy by attenuating Atrogin-1 and MuRF-1 expression in mouse C2C12 skeletal myotubes. J Clin Biochem Nutr 2025; 76:16-24. [PMID: 39896162 PMCID: PMC11782781 DOI: 10.3164/jcbn.23-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/24/2024] [Indexed: 02/04/2025] Open
Abstract
3-(4-Hydroxy-3-methoxyphenyl) propionic acid is an in vivo metabolite of 4-hydroxy-3-methoxycinnamic acid which is abundantly found in coffee bean, rice bran, fruits, and vegetables. Previous studies reported that polyphenols and their metabolites exhibit positive effects on muscle health. Thus, the effect of 3-(4-hydroxy-3-methoxyphenyl) propionic acid on muscle atrophy induced by dexamethasone was investigated using mouse C2C12 skeletal myotubes. Dexamethasone treatment (10 μM) reduced the diameter and myosin heavy chain protein expression in C2C12 myotubes; it also increased muscle atrophy-associated ubiquitin ligases, such as muscle atrophy F-box protein 1/Atrogin-1 and muscle ring finger protein-1, along with their upstream regulator Krüppel-like factor 15. Dexamethasone dephosphorylated FoxO3a transcription factor and increased total FoxO3a expression. Interestingly, 10 μM 3-(4-hydroxy-3-methoxyphenyl) propionic acid treatment significantly attenuated dexamethasone-induced reduction in myotube thickness and muscle protein degradation and suppressed muscle atrophy-associated ubiquitin ligases. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid also prevented dexamethasone-induced Krüppel-like factor 15 and FoxO3a expression. In conclusion, these results suggest that in vivo metabolite of polyphenols per se could be the real origin of the anti-muscular atrophy activity, as 3-(4-hydroxy-3-methoxyphenyl) propionic acid ameliorated glucocorticoid-induced muscle atrophy by suppressing Atrogin-1 and MuRF-1.
Collapse
Affiliation(s)
- Anayt Ulla
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Md Mizanur Rahman
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiroyuki Kayaki
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Yosuke Nishitani
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Susumu Yoshino
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Hiroshige Kuwahara
- Research Center, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinichi-cho, Fukuyama, Hiroshima 729-3102, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
6
|
Kim JT, Jeon DH, Lee HJ. Molecular mechanism of skeletal muscle loss and its prevention by natural resources. Food Sci Biotechnol 2024; 33:3387-3400. [PMID: 39493391 PMCID: PMC11525361 DOI: 10.1007/s10068-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 11/05/2024] Open
Abstract
A skeletal muscle disorder has drawn attention due to the global aging issues. The loss of skeletal muscle mass has been suggested to be from the reduced muscle regeneration by dysfunction of muscle satellite cell/fibro-adipogenic progenitor cells and the muscle atrophy by dysfunction of mitochondria, ubiquitin-proteasome system, and autophagy. In this review, we highlighted the underlying mechanisms of skeletal muscle mass loss including Notch signaling, Wnt/β-catenin signaling, Hedgehog signaling, AMP-activated protein kinase (AMPK) signaling, and mammalian target of rapamycin (mTOR) signaling. In addition, we summarized accumulated studies of natural resources investigating their roles in ameliorating the loss of skeletal muscle mass and demonstrating the underlying mechanisms in vitro and in vivo. In conclusion, following the studies of natural resources exerting the preventive activity in muscle mass loss, the signaling-based approaches may accelerate the development of functional foods for sarcopenia prevention.
Collapse
Affiliation(s)
- Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546 South Korea
| | - Dong Hyeon Jeon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546 South Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, 17546 South Korea
| |
Collapse
|
7
|
Lee DH, Lee HJ, Yang G, Kim DY, Kim JU, Yook TH, Lee JH, Kim HJ. A novel treatment strategy targeting cellular pathways with natural products to alleviate sarcopenia. Phytother Res 2024; 38:5033-5051. [PMID: 39099170 DOI: 10.1002/ptr.8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.
Collapse
Affiliation(s)
- Da Hee Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Hye Jin Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Dae Yong Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jong Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Tae Han Yook
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si, Republic of Korea
| | - Hong Jun Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| |
Collapse
|
8
|
Kim YI, Lee H, Kim MJ, Jung CH, Kim YS, Ahn J. Identification of Peucedanum japonicum Thunb. extract components and their protective effects against dexamethasone-induced muscle atrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155449. [PMID: 38518644 DOI: 10.1016/j.phymed.2024.155449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 02/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Peucedanum japonicum Thunb. (PJ) is a vegetable widely consumed in East Asia and is known to have anticancer and anti-inflammatory effects. However, the effect of PJ on muscle atrophy remains elusive. PURPOSE This study aimed to investigate the effect of PJ and its active compound on dexamethasone (DEX)-induced muscle atrophy. METHODS We performed qualitative and quantitative analysis of PJ using ultra-performance liquid chromatography-mass spectrometry tandem mass spectrometry (UPLC-MS/MS) and high-performance liquid chromatography (HPLC), respectively. The efficacy of PJ and its main compound 4-caffeoylquinic acid (CQA) on muscle atrophy was evaluated in DEX-induced myotube atrophy and DEX-induced muscle atrophy in mouse myoblasts (C2C12) and C57BL/6 mice, in vitro and in vivo, respectively. RESULTS The UPLC-MS/MS and HPLC data showed that the concentration of 4-CQA in PJ was 18.845 mg/g. PJ and 4-CQA treatments significantly inhibited DEX-induced myotube atrophy by decreasing protein synthesis and glucocorticoid translocation to the nucleus in C2C12 myotubes. In addition, PJ enhanced myogenesis by upregulating myogenin and myogenic differentiation 1 in C2C12 cells. PJ supplementation effectively increased muscle function and mass, downregulated atrogenes, and decreased proteasome activity in C57BL/6 mice. Additionally, PJ effectively decreased the nuclear translocation of forkhead transcription factor 3 alpha by inhibiting glucocorticoid receptor. CONCLUSION Overall, PJ and its active compound 4-CQA alleviated skeletal muscle atrophy by inhibiting protein degradation. Hence, our findings present PJ as a potential novel pharmaceutical candidate for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Young In Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea; Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Hyunjung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea
| | - Min Jung Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, South Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
9
|
Nguyen NB, Le TT, Kang SW, Cha KH, Choi S, Youn HY, Jung SH, Kim M. Cornflower Extract and Its Active Components Alleviate Dexamethasone-Induced Muscle Wasting by Targeting Cannabinoid Receptors and Modulating Gut Microbiota. Nutrients 2024; 16:1130. [PMID: 38674820 PMCID: PMC11054969 DOI: 10.3390/nu16081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia, a decline in muscle mass and strength, can be triggered by aging or medications like glucocorticoids. This study investigated cornflower (Centaurea cyanus) water extract (CC) as a potential protective agent against DEX-induced muscle wasting in vitro and in vivo. CC and its isolated compounds mitigated oxidative stress, promoted myofiber growth, and boosted ATP production in C2C12 myotubes. Mechanistically, CC reduced protein degradation markers, increased mitochondrial content, and activated protein synthesis signaling. Docking analysis suggested cannabinoid receptors (CB) 1 and 2 as potential targets of CC compounds. Specifically, graveobioside A from CC inhibited CB1 and upregulated CB2, subsequently stimulating protein synthesis and suppressing degradation. In vivo, CC treatment attenuated DEX-induced muscle wasting, as evidenced by enhanced grip strength, exercise performance, and modulation of muscle gene expression related to differentiation, protein turnover, and exercise performance. Moreover, CC enriched gut microbial diversity, and the abundance of Clostridium sensu stricto 1 positively correlated with muscle mass. These findings suggest a multifaceted mode of action for CC: (1) direct modulation of the muscle cannabinoid receptor system favoring anabolic processes and (2) indirect modulation of muscle health through the gut microbiome. Overall, CC presents a promising therapeutic strategy for preventing and treating muscle atrophy.
Collapse
Affiliation(s)
- Ngoc Bao Nguyen
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Department of Biochemistry and Molecular Biology, College of Dentistry, Gangneung Wonju National University, Gangneung 25451, Republic of Korea
| | - Tam Thi Le
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Suk Woo Kang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Sowoon Choi
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Hye-Young Youn
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Myungsuk Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (N.B.N.); (T.T.L.); (S.W.K.); (S.C.); (H.-Y.Y.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| |
Collapse
|
10
|
Son RH, Kim MI, Kim HM, Guo S, Lee DH, Lim GM, Kim SM, Kim JY, Kim CY. Potential of Lycii Radicis Cortex as an Ameliorative Agent for Skeletal Muscle Atrophy. Pharmaceuticals (Basel) 2024; 17:462. [PMID: 38675422 PMCID: PMC11054743 DOI: 10.3390/ph17040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Lycii Radicis Cortex (LRC) is a traditional medicine in East Asia with various beneficial effects, including antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and anti-depressant properties. However, its potential effects on skeletal muscle atrophy have not been studied. In this study, the protective effects of LRC extract (LRCE) on dexamethasone (DEX)-induced muscle atrophy were investigated in C2C12 myotubes and mice. We evaluated the effect of LRCE on improving muscle atrophy using a variety of methods, including immunofluorescence staining, quantitative polymerase chain reaction (qPCR), Western blot, measurements of oxidative stress, apoptosis, ATP levels, and muscle tissue analysis. The results showed that LRCE improved myotube diameter, fusion index, superoxide dismutase (SOD) activity, mitochondrial content, ATP levels, expression of myogenin and myosin heavy chain (MHC), and reduced reactive oxygen species (ROS) production in dexamethasone-induced C2C12 myotubes. LRCE also enhanced protein synthesis and reduced protein degradation in the myotubes. In mice treated with DEX, LRCE restored calf thickness, decreased mRNA levels of muscle-specific RING finger protein 1 (MuRF1) and atrogin-1, and increased insulin-like growth factor 1 (IGF-1) mRNA level. Moreover, LRCE also repaired gastrocnemius muscle atrophy caused by DEX. Although human studies are not available, various preclinical studies have identified potential protective effects of LRCE against muscle atrophy, suggesting that it could be utilized in the prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Rak Ho Son
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea;
| | - Myeong Il Kim
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea;
| | - Hye Mi Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| | - Shuo Guo
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| | - Do Hyun Lee
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| | - Gyu Min Lim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| | - Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 88 Dongnae-ro, Daegu 41061, Republic of Korea;
| | - Jae-Yong Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea;
| | - Chul Young Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea; (R.H.S.); (H.M.K.); (S.G.); (D.H.L.); (G.M.L.)
| |
Collapse
|
11
|
Luo S, Zhao H, Gan X, He Y, Wu C, Ying Y. Nomogram model for predicting frailty of patients with hematologic malignancies - A cross-sectional survey. Asia Pac J Oncol Nurs 2023; 10:100307. [PMID: 37928413 PMCID: PMC10622625 DOI: 10.1016/j.apjon.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/09/2023] [Indexed: 11/07/2023] Open
Abstract
Objective This study aimed to develop and validate an assessment tool for predicting and mitigating the risk of frailty in patients diagnosed with hematologic malignancies. Methods A total of 342 patients with hematologic malignancies participated in this study, providing data on various demographics, disease-related information, daily activities, nutritional status, psychological well-being, frailty assessments, and laboratory indicators. The participants were randomly divided into training and validation groups at a 7:3 ratio. We employed Lasso regression analysis and cross-validation techniques to identify predictive factors. Subsequently, a nomogram prediction model was developed using multivariable logistic regression analysis. Discrimination ability, accuracy, and clinical utility were assessed through receiver operating characteristic (ROC) curves, C-index, calibration curves, and decision curve analysis (DCA). Results Seven predictors, namely disease duration of 6-12 months, disease duration exceeding 12 months, Charlson Comorbidity Index (CCI), prealbumin levels, hemoglobin levels, Generalized Anxiety Disorder-7 (GAD-7) scores, and Patient Health Questionnaire-9 (PHQ-9) scores, were identified as influential factors for frailty through Lasso regression analysis. The area under the ROC curve was 0.893 for the training set and 0.891 for the validation set. The Hosmer-Lemeshow goodness-of-fit test confirmed a good model fit. The C-index values for the training and validation sets were 0.889 and 0.811, respectively. The DCA curve illustrated a higher net benefit when using the nomogram prediction model within patients threshold probabilities ranging from 10% to 98%. Conclusions This study has successfully developed and validated an effective nomogram model for predicting frailty in patients diagnosed with hematologic malignancies. The model incorporates disease duration (6-12 months and>12 months), CCI, prealbumin and hemoglobin levels, GAD-7, and PHQ-9 scores as predictive variables.
Collapse
Affiliation(s)
- Shuangli Luo
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huihan Zhao
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao Gan
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu He
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, China
| | - Caijiao Wu
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanping Ying
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Kim JY, Kim HM, Kim JH, Guo S, Lee DH, Lim GM, Kim W, Kim CY. Salvia plebeia R.Br. and Rosmarinic Acid Attenuate Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes. Int J Mol Sci 2023; 24:ijms24031876. [PMID: 36768200 PMCID: PMC9915874 DOI: 10.3390/ijms24031876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Skeletal muscle atrophy occurs when protein degradation exceeds protein synthesis and is associated with increased circulating glucocorticoid levels. Salvia plebeia R.Br. (SPR) has been used as herbal remedy for a variety of inflammatory diseases and has various biological actions such as antioxidant and anti-inflammatory activities. However, there are no reports on the effects of SPR and its bioactive components on muscle atrophy. Herein, we investigated the anti-atrophic effect of SPR and rosmarinic acid (RosA), a major compound of SPR, on dexamethasone (DEX)-induced skeletal muscle atrophy in C2C12 myotubes. Myotubes were treated with 10 μM DEX in the presence or absence of SPR or RosA at different concentrations for 24 h and subjected to immunocytochemistry, western blot, and measurements of ROS and ATP levels. SPR and RosA increased viability and inhibited protein degradation in DEX-treated C2C12 myotubes. In addition, RosA promoted the Akt/p70S6K/mTOR pathway and reduced ROS production, and apoptosis. Furthermore, the treatment of RosA significantly recovered SOD activity, autophagy activity, mitochondrial contents, and APT levels in DEX-treated myotubes. These findings suggest that SPR and RosA may provide protective effects against DEX-induced muscle atrophy and have promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wondong Kim
- Correspondence: (W.K.); (C.Y.K.); Tel.: +82-31-400-5817 (W.K.); +82-31-400-5809 (C.Y.K.); Fax: +82-31-400-5958 (C.Y.K.)
| | - Chul Young Kim
- Correspondence: (W.K.); (C.Y.K.); Tel.: +82-31-400-5817 (W.K.); +82-31-400-5809 (C.Y.K.); Fax: +82-31-400-5958 (C.Y.K.)
| |
Collapse
|
13
|
Kim JY, Kim HM, Kim JH, Lee JH, Zhang K, Guo S, Lee DH, Gao EM, Son RH, Kim SM, Kim CY. Preventive effects of the butanol fraction of Justicia procumbens L. against dexamethasone-induced muscle atrophy in C2C12 myotubes. Heliyon 2022; 8:e11597. [DOI: 10.1016/j.heliyon.2022.e11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
14
|
Ulla A, Ozaki K, Rahman MM, Nakao R, Uchida T, Maru I, Mawatari K, Fukawa T, Kanayama HO, Sakakibara I, Hirasaka K, Nikawa T. Morin improves dexamethasone-induced muscle atrophy by modulating atrophy-related genes and oxidative stress in female mice. Biosci Biotechnol Biochem 2022; 86:1448-1458. [PMID: 35977398 DOI: 10.1093/bbb/zbac140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 11/12/2022]
Abstract
This study investigated the effect of morin, a flavonoid, on dexamethasone-induced muscle atrophy in C57BL/6J female mice. Dexamethasone (10 mg/kg body weight) for 10 days significantly reduced body weight, gastrocnemius and tibialis anterior muscle mass, and muscle protein in mice. Dexamethasone significantly upregulated muscle atrophy-associated ubiquitin ligases, including atrogin-1 and MuRF-1, and the upstream transcription factors FoxO3a and Klf15. Additionally, dexamethasone significantly induced the expression of oxidative stress-sensitive ubiquitin ligase Cbl-b and the accumulation of the oxidative stress markers malondialdehyde and advanced protein oxidation products in both the plasma and skeletal muscle samples. Intriguingly, morin treatment (20 mg/kg body weight) for 17 days effectively attenuated the loss of muscle mass and muscle protein and suppressed the expression of ubiquitin ligases while reducing the expression of upstream transcriptional factors. Therefore, morin might act as a potential therapeutic agent to attenuate muscle atrophy by modulating atrophy inducing genes and preventing oxidative stress.
Collapse
Affiliation(s)
- Anayt Ulla
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Kanae Ozaki
- Bizen Chemical Co. Ltd., Okayama, 709-0716, Japan
| | - Md Mizanur Rahman
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Isafumi Maru
- Bizen Chemical Co. Ltd., Okayama, 709-0716, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoya Fukawa
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiro-Omi Kanayama
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Iori Sakakibara
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuya Hirasaka
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
15
|
Wastag M, Bieżuńska-Kusiak K, Szewczyk A, Szlasa W, Grimling B, Kulbacka J. Celastrol and Rhynchophylline in the mitigation of simulated muscle atrophy under in vitro. Saudi Pharm J 2022; 30:1387-1395. [PMID: 36387339 PMCID: PMC9649342 DOI: 10.1016/j.jsps.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Muscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.
Collapse
Affiliation(s)
- Maksymilian Wastag
- Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland
| | - Katarzyna Bieżuńska-Kusiak
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A 50-556, Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A 50-556, Wroclaw, Poland
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Bożena Grimling
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A 50-556, Wroclaw, Poland
- Corresponding author at: Borowska 211A, 50-556 Wroclaw, Poland.
| |
Collapse
|