1
|
Abdulshafea M, Ahmed T, Gopala Pillai SK. Multifocal epithelioid haemangioma of the lower limb bones in a child: an unusual presentation. BMJ Case Rep 2025; 18:e262089. [PMID: 40086847 DOI: 10.1136/bcr-2024-262089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
A previously healthy female patient in her mid-childhood presented to the paediatric emergency department with pain and a limp in the right leg for the past 1 month. She was initially diagnosed with growing pains, and the lower limb X-rays showed multiple lytic lesions on the bones. A whole-body MRI scan revealed multifocal lesions in both lower limb bones, and the biopsy confirmed the lesions to be epithelioid haemangioma. Because of the multifocal involvement, the child required ongoing multidisciplinary management. This case study discusses this locally aggressive neoplasm, its ubiquitous nature, histopathology and differential diagnosis.
Collapse
Affiliation(s)
| | - Thahseen Ahmed
- Emergency Medicine, Swansea Bay University Health Board, Swansea, UK
| | | |
Collapse
|
2
|
Wang Z, Guo Z, Wang W, Zhang Q, Song S, Xue Y, Zhang Z, Wang J. Prediction of tuberculosis treatment outcomes using biochemical makers with machine learning. BMC Infect Dis 2025; 25:229. [PMID: 39962412 PMCID: PMC11834319 DOI: 10.1186/s12879-025-10609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Tuberculosis (TB) continues to pose a significant threat to global public health. Enhancing patient prognosis is essential for alleviating the disease burden. OBJECTIVE This study aims to evaluate TB prognosis by incorporating treatment discontinuation into the assessment framework, expanding beyond mortality and drug resistance. METHODS Seven feature selection methods and twelve machine learning algorithms were utilized to analyze admission test data from TB patients, identifying predictive features and building prognostic models. SHapley Additive exPlanations (SHAP) were applied to evaluate feature importance in top-performing models. RESULTS Analysis of 1,086 TB cases showed that a K-Nearest Neighbor classifier with Mutual Information feature selection achieved an area under the receiver operation curve (AUC) of 0.87 (95% CI: 0.83-0.92). Key predictors of treatment failure included elevated levels of 5'-nucleotidase, uric acid, globulin, creatinine, cystatin C, and aspartate transaminase. SHAP analysis highlighted 5'-nucleotidase, uric acid, and globulin as having the most significant influence on predicting treatment discontinuation. CONCLUSION Our model provides valuable insights into TB outcomes based on initial patient tests, potentially guiding prevention and control strategies. Elevated biomarker levels before therapy are associated with increased risk of treatment discontinuation, indicating their potential as early warning indicators.
Collapse
Affiliation(s)
- Zheyue Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing, 211166, China
| | - Zhenpeng Guo
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
| | - Weijia Wang
- School of Information and Software, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, 211166, China
| | - Suya Song
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
- Department of Pulmonary Diseases, The Third People's Hospital of Changzhou, Changzhou, 213001, China
| | - Yuan Xue
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China
| | - Zhixin Zhang
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China.
- Department of Pulmonary Diseases, The Third People's Hospital of Changzhou, Changzhou, 213001, China.
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213004, China.
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Wang Y, Qin Y, Xu X, Li Y, Zhu X, Yang G, Xu Y, Yao F, Guo G. Effects of Baduanjin exercise on cancer-related fatigue in patients with prostate cancer treated with androgen deprivation therapy in Shanghai, China: a study protocol for a randomised controlled trial. BMJ Open 2024; 14:e092363. [PMID: 39537565 PMCID: PMC11574484 DOI: 10.1136/bmjopen-2024-092363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Cancer-related fatigue (CRF) is one of the most common and painful symptoms in patients with prostate cancer (PCa). Moreover, PCa patients who receive the androgen deprivation therapy (ADT) are more likely to develop CRF. Baduanjin exercise has been shown to improve CRF in some cancers. However, such effects have not been verified in patients with PCa treated with the ADT. So, this study was designed as a randomised controlled trial (RCT) to explore the effects of Baduanjin exercise on CRF in PCa patients treated with the ADT. METHODS AND ANALYSIS This study will be a single-centre, assessor and statistician blinded, RCT consisting of a 12 week intervention and 12 week follow-up. Patients with PCa who meet the inclusion criteria will be recruited from Shanghai Hudong Hospital. Participants will be randomly assigned to Baduanjin exercise group (n=42) and the control group (n=42), performing 12 weeks of Baduanjin exercise or reeiving the standard care. The primary outcome will be the clinical effect of Baduanjin exercise on CRF in PCa patients, which will be measured using the Piper Fatigue Self-Assessment (PFS) scale, a multidimensional measure of CRF using three different dimensions: somatic, emotional and cognitive. The secondary outcome will be the clinical effect of the Baduanjin exercise on the patient's level of fatigue, sleep, depression and life quality at the time, which will be assessed by the Brief Fatigue Inventory (BFI), the Pittsburgh Sleep Quality Index (PSQI), the Beck Depression Inventory (BDI) and the Functional Assessment of Cancer Therapy-Prostate (FACT-P). ETHICS AND DISSEMINATION This study has been approved by Shanghai Hudong Hospital Ethics Committee, Shanghai province (2022 SHHDKY08). The trial results will be submitted to conferences and peer-reviewed journals. TRAIL REGISTRATION NUMBER ChiCTR2300074293.
Collapse
Affiliation(s)
- Yihang Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Qin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Hudong Hospital, Shanghai, China
| | - Xiruo Xu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yali Li
- The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xuanying Zhu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangpu Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Xu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Yao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangxin Guo
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Moura DS, López López D, di Lernia D, Martin-Ruiz M, Lopez-Alvarez M, Ramos R, Merino J, Dopazo J, Lopez-Guerrero J, Mondaza-Hernandez JL, Romero P, Hindi N, Garcia-Foncillas J, Martin-Broto J. Shared germline genomic variants in two patients with double primary gastrointestinal stromal tumours (GISTs). J Med Genet 2024; 61:927-934. [PMID: 39153853 DOI: 10.1136/jmg-2024-110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Gastrointestinal stromal tumours (GISTs) are prevalent mesenchymal tumours of the gastrointestinal tract, commonly exhibiting structural variations in KIT and PDGFRA genes. While the mutational profiling of somatic tumours is well described, the genes behind the susceptibility to develop GIST are not yet fully discovered. This study explores the genomic landscape of two primary GIST cases, aiming to identify shared germline pathogenic variants and shed light on potential key players in tumourigenesis. METHODS Two patients with distinct genotypically and phenotypically GISTs underwent germline whole genome sequencing. CNV and single nucleotide variant (SNV) analyses were performed. RESULTS Both patients harbouring low-risk GISTs with different mutations (PDGFRA and KIT) shared homozygous germline pathogenic deletions in both CFHR1 and CFHR3 genes. CNV analysis revealed additional shared pathogenic deletions in other genes such as SLC25A24. No particular pathogenic SNV shared by both patients was detected. CONCLUSION Our study provides new insights into germline variants that can be associated with the development of GISTs, namely, CFHR1 and CFHR3 deep deletions. Further functional validation is warranted to elucidate the precise contributions of identified germline mutations in GIST development.
Collapse
Affiliation(s)
- David S Moura
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Daniel López López
- Computational Medicine Platform, Fundación progreso y salud (FPS), Hospital Virgen del Rocío, Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
| | - Davide di Lernia
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Marta Martin-Ruiz
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | | | - Rafael Ramos
- Pathology Department, University Hospital Son Espases, Mallorca, Spain
| | - Jose Merino
- Pathology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Joaquin Dopazo
- Computational Medicine Platform, Fundación progreso y salud (FPS), Hospital Virgen del Rocío, Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS; HUVR, CSIC, US), Sevilla, Spain
| | - Jose Lopez-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncologia, Valencia, Spain
| | - Jose L Mondaza-Hernandez
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Pablo Romero
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Nadia Hindi
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- General de Villalba University Hospital, Madrid, Spain
| | - Jesus Garcia-Foncillas
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Javier Martin-Broto
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- General de Villalba University Hospital, Madrid, Spain
| |
Collapse
|
5
|
Alashkar Alhamwe B, Ponath V, Alhamdan F, Dörsam B, Landwehr C, Linder M, Pauck K, Miethe S, Garn H, Finkernagel F, Brichkina A, Lauth M, Tiwari DK, Buchholz M, Bachurski D, Elmshäuser S, Nist A, Stiewe T, Pogge von Strandmann L, Szymański W, Beutgen V, Graumann J, Teply-Szymanski J, Keber C, Denkert C, Jacob R, Preußer C, Pogge von Strandmann E. BAG6 restricts pancreatic cancer progression by suppressing the release of IL33-presenting extracellular vesicles and the activation of mast cells. Cell Mol Immunol 2024; 21:918-931. [PMID: 38942797 PMCID: PMC11291976 DOI: 10.1038/s41423-024-01195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024] Open
Abstract
Recent studies reveal a critical role of tumor cell-released extracellular vesicles (EVs) in pancreatic cancer (PC) progression. However, driver genes that direct EV function, the EV-recipient cells, and their cellular response to EV uptake remain to be identified. Therefore, we studied the role of Bcl-2-associated-anthanogene 6 (BAG6), a regulator of EV biogenesis for cancer progression. We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment (TME) changes in mouse models for pancreatic ductal adenocarcinoma (PDAC) in a Bag6 pro- or deficient background. In vivo data were validated using mouse and human organoids and patient samples. Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release. Mechanistically, this was attributed to mast cell (MC) activation via EV-associated IL33. Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration. Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73. Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance. The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC. Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth. MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration. EVs derived from BAG6-deficient pancreatic cancer cells induce MC activation via IL33/Il1rl1. The secretome of activated MCs induces tumor proliferation and changes in the TME, particularly shifting fibroblasts into an inflammatory cancer-associated fibroblast (iCAF) phenotype. Blocking EVs or depleting MCs restricts tumor growth.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Fahd Alhamdan
- Department of Anesthesiology, Critical Care, and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
- Department of Immunology and Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Bastian Dörsam
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Clara Landwehr
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Manuel Linder
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Kim Pauck
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Florian Finkernagel
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Bioinformatics, Philipps-University, 35043, Marburg, Germany
| | - Anna Brichkina
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
- Institute of Systems Immunology, Philipps-University, 35043, Marburg, Germany
| | - Matthias Lauth
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Dinesh Kumar Tiwari
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Andrea Nist
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
- Institute of Lung Health, Justus Liebig University, 35392, Giessen, Germany
| | - Lisa Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Witold Szymański
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Vanessa Beutgen
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Corinna Keber
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University, 35043, Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany.
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany.
| |
Collapse
|
6
|
Ning Z, Liu K, Zhang H, Dong G, Wang X, Xiong H. Platelets induce CD39 expression in tumor cells to facilitate tumor metastasis. Br J Cancer 2024; 130:1542-1551. [PMID: 38461171 PMCID: PMC11058827 DOI: 10.1038/s41416-024-02640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Tumor cells continue to evolve the metastatic potential in response to signals provided by the external microenvironment during metastasis. Platelets closely interact with tumor cells during hematogenous metastasis and facilitate tumor development. However, the molecular mechanisms underlying this process are not fully understood. METHODS RNA-sequencing was performed to screen differentially expressed genes mediated by platelets. The effects of platelet and CD39 on tumor metastasis were determined by experimental metastasis models with WT, NCG and CD39-/- mice. RESULTS RNA-sequencing results showed that platelets significantly up-regulated CD39 expression in tumor cells. CD39 is a novel immune checkpoint molecule and a key driver of immunosuppression. Our data provided evidence that the expression of CD39 was enhanced by platelets in a platelet-tumor cell contact dependent manner. Although the role of CD39 expressed by immune cells is well established, the effect of CD39 expressed by tumor cells on tumor cell behavior, anti-tumor immunity and tumor metastasis is unclear. We found that CD39 promoted tumor cell invasion, but had no effect on proliferation and migration. Notably, we showed that the ability of platelets to prime tumor cells for metastasis depends on CD39 in the experimental tumor metastasis model. CD39 silencing resulted in fewer experimental metastasis formation, and this anti-metastasis effect was significantly reduced in platelet-depleted mice. Furthermore, overexpression of CD39 in tumor cells promoted metastasis. In order to eliminate the effect of CD39 expressed in cells other than tumor cells, we detected tumor metastasis in CD39-/- mice and obtained similar results. Moreover, overexpression of CD39 in tumor cells inhibited antitumor immunity. Finally, the data from human samples also supported our findings. CONCLUSIONS Our study shows that direct contact with platelets induces CD39 expression in tumor cells, leading to immune suppression and promotion of metastasis.
Collapse
Affiliation(s)
- Zhaochen Ning
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Keyan Liu
- Department of Public Health, Jining Medical University, Jining, 272067, China
| | - Hui Zhang
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Guanjun Dong
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Xiaotong Wang
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Huabao Xiong
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China.
| |
Collapse
|