1
|
Zhou SR, Li WG, Yang LD, Xiang H, Jin Y, Feng JB, Xiong HZ, Peng J. PTGS2 Silencing Inhibits Ferroptosis in Staphylococcus Aureus-induced Osteomyelitis By Blocking the IL-17A Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02296-3. [PMID: 40257651 DOI: 10.1007/s10753-025-02296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/19/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE Osteomyelitis caused by Staphylococcus aureus (S. aureus) infection is an inflammatory bone disease characterized by continuous bone destruction, which is difficult to treat. This research aimed to explore the molecular mechanisms of S. aureus-induced osteomyelitis. METHODS Using the GSE166522 and GSE227521 datasets, hub differentially expressed genes (DEGs) were screened by bioinformatics analysis. Hub gene expression levels were validated in S. aureus-induced mouse models. An inhibitor of PTGS2, etoricoxib, was used to assess the role of PTGS2 in the osteomyelitis mouse model. PTGS2 was silenced in an LPS-induced MC3T3-E1 cell model to study its effect on cell function. RESULTS Six hub genes were screened, including ARG1, TIMP1, NOS2, PTGS2, SOCS3, and IL1B, highly expressed in the S. aureus-induced osteomyelitis model. Etoricoxib treatment attenuated the inflammatory infiltration of tibial tissue in mice with osteomyelitis. In vivo and in vitro, etoricoxib treatment and PTGS2 silencing reduced inflammatory factor (TNF-α, IL-1β, and IL-6) levels. PTGS2 silencing promoted LPS-induced MC3T3-E1 cell viability and inhibited apoptosis and ferroptosis. GPX4 and SLC7A11 protein levels were significantly increased after PTGS2 silencing. Mechanistically, IL-17A intervention significantly counteracted the impact of PTGS2 silencing on cell behaviors and secukinumab combined with PTGS2 silencing more effectively suppressed inflammation and ferroptosis, indicating that PTGS2 impeded the osteomyelitis progression by inhibiting the IL-17A pathway. CONCLUSION Silencing PTGS2 reduces ferroptosis in S. aureus-induced osteomyelitis by obstructing the IL-17A pathway, which suggests a new approach for the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Si-Rui Zhou
- Dalian Medical University, Dalian, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Wen-Guang Li
- Department of Joint Surgery and Sports Medicine, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, China
| | - Li-Dan Yang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, People's Republic of China
| | - Hao Xiang
- Dalian Medical University, Dalian, China
| | - Ying Jin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, People's Republic of China
| | - Jian-Bo Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, People's Republic of China
| | - Hua-Zhang Xiong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, People's Republic of China
| | - Jiachen Peng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi, 563003, People's Republic of China.
| |
Collapse
|
2
|
Xia X, Tie X, Hong M, Yin W. Exploration of the causal relationship and mechanisms between serum albumin and venous thrombosis: a bidirectional mendelian randomization analysis and bioinformatics study. Thromb J 2025; 23:17. [PMID: 40033322 DOI: 10.1186/s12959-025-00700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND To explore the causal relationship between serum albumin and venous thromboembolism (VTE) comprises deep vein thrombosis (DVT) and its consequential condition, pulmonary embolism (PE), through Mendelian randomization (MR) design, seeking to clarify the protective roles of albumin in the development of venous thrombosis. METHODS We performed a bidirectional two-sample Mendelian randomization analysis utilizing albumin genome-wide association study (GWAS) data alongside VTE datasets from various sources. Additionally, to minimize heterogeneity across different datasets, a meta-analysis of the Mendelian randomization results was conducted. Furthermore, genes associated with such exposures were identified to unravel how exposure impacts outcomes. This was followed by applying bioinformatics techniques for gene enrichment analysis and employing the Cytoscape software to pinpoint the hub genes. RESULTS The findings from the meta-analysis of the Mendelian randomization indicate that reduced levels of albumin are associated with an elevated risk of VTE (OR = 0.739, 95% CI: 0.695 to 0.787, P = 1.82e-9), DVT (OR = 0.700, 95% CI: 0.646 to 0.772, P = 2.96e-15), and PE (OR = 0.717, 95% CI: 0.647 to 0.793, P = 1.74e-10). Bioinformatics analysis revealed that serum albumin primarily protects against VTE by influencing inflammation and cytokines. CONCLUSIONS Our bidirectional MR analysis confirmed a substantial causal association linking serum albumin to VTE. Bioinformatics analysis revealed that this causal link is mediated by the immune response through inflammation and cytokines.
Collapse
Affiliation(s)
- Xuemei Xia
- Department of Critical Care Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Xin Tie
- Department of Critical Care Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Maolin Hong
- Department of Critical Care Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China
| | - Wanhong Yin
- Department of Critical Care Medicine, West China Hospital, Sichuan University, No.37, Guoxue Alley, Wuhou District, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Tsakiroglou M, Evans A, Doce-Carracedo A, Little M, Hornby R, Roberts P, Zhang E, Miyajima F, Pirmohamed M. Gene Expression Dysregulation in Whole Blood of Patients with Clostridioides difficile Infection. Int J Mol Sci 2024; 25:12653. [PMID: 39684365 DOI: 10.3390/ijms252312653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Clostridioides difficile (C. difficile) is a global threat and has significant implications for individuals and health care systems. Little is known about host molecular mechanisms and transcriptional changes in peripheral immune cells. This is the first gene expression study in whole blood from patients with C. difficile infection. We took blood and stool samples from patients with toxigenic C. difficile infection (CDI), non-toxigenic C. difficile infection (GDH), inflammatory bowel disease (IBD), diarrhea from other causes (DC), and healthy controls (HC). We performed transcriptome-wide RNA profiling on peripheral blood to identify diarrhea common and CDI unique gene sets. Diarrhea groups upregulated innate immune responses with neutrophils at the epicenter. The common signature associated with diarrhea was non-specific and shared by various other inflammatory conditions. CDI had a unique 45 gene set reflecting the downregulation of humoral and T cell memory functions. Dysregulation of immunometabolic genes was also abundant and linked to immune cell fate during differentiation. Whole transcriptome analysis of white cells in blood from patients with toxigenic C. difficile infection showed that there is an impairment of adaptive immunity and immunometabolism.
Collapse
Affiliation(s)
- Maria Tsakiroglou
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony Evans
- Computational Biology Facility, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Alejandra Doce-Carracedo
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Clinical Directorate, GCP Laboratories, University of Liverpool, Liverpool L7 8TX, UK
| | - Margaret Little
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Rachel Hornby
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Paul Roberts
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Faculty of Science and Engineering, School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LZ, UK
| | - Eunice Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Fabio Miyajima
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio 61773-270, Brazil
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
5
|
Li X, Wu W, He H, Guan L, Chen G, Lin Z, Li H, Jiang J, Dong X, Guan Z, Chen P, Pan Z, Huang W, Yu R, Song W, Lu L, Yang Z, Chen Z, Wang L, Xian S, Chen J. Analysis and validation of hub genes in neutrophil extracellular traps for the long-term prognosis of myocardial infarction. Gene 2024; 914:148369. [PMID: 38485036 DOI: 10.1016/j.gene.2024.148369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION The study focuses on the long-term prognosis of myocardial infarction (MI) influenced by neutrophil extracellular traps (NETs). It also aims to analyze and validate relative hub genes in this process, in order to further explore new therapeutic targets that can improve the prognosis of MI. MATERIALS AND METHODS We established a MI model in mice by ligating the left anterior descending branch (LAD) and conducted an 8-week continuous observation to study the dynamic changes in the structure and function of the heart in these mice. Meanwhile, we administered Apocynin, an inhibitor of NADPH Oxidase, which has also been shown to inhibit the formation of NETs, to mice undergoing MI surgery in order to compare. This study employed hematoxylin-eosin (HE) staining, echocardiography, immunofluorescence, and real-time quantitative PCR (RT-qPCR) to examine the impact of NETs on the long-term prognosis of MI. Next, datasets related to MI and NETs were downloaded from the GEO database, respectively. The Limma package of R software was used to identify differentially expressed genes (DEGs). After analyzing the "Robust Rank Aggregation (RRA)" package, we conducted a screening for robust differentially expressed genes (DEGs) and performed pathway enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to determine the functional roles of these robust DEGs. The protein-protein interaction (PPI) network was visualized and hub genes were filtered using Cytoscape. RESULTS Immunofluorescence and qPCR results showed an increase in the expression of Myeloperoxidase (MPO) at week 1 and week 8 in the hearts of mice after MI. HE staining reveals a series of pathological manifestations in the heart of the MI group during 8 weeks, including enlarged size, disordered arrangement of cardiomyocytes, infiltration of inflammatory cells, and excessive deposition of collagen fibers, among others. The utilization of Apocynin could significantly improve these poor performances. The echocardiography displayed the cardiac function of the heart in mice. The MI group has a reduced range of heart movement and decreased ejection ability. Moreover, the ventricular systolic movement was found to be abnormal, and its wall thickening rate decreased over time, indicating a progressive worsening of myocardial ischemia. The Apocynin group, on the contrary, showed fewer abnormal changes in the aforementioned aspects. A total of 81 DEGs and 4 hub genes (FOS, EGR1, PTGS2, and HIST1H4H) were obtained. The results of RT-qPCR demonstrated abnormal expression of these four genes in the MI group, which could be reversed by treatment of Apocynin. CONCLUSION The NETs formation could be highly related to MI and the long-term prognosis of MI can be significantly influenced by the NETs formation. Four hub genes, namely FOS, EGR1, PTGS2, and HIST1H4H, have the potential to be key genes related to this process. They could also serve as biomarkers for predicting MI prognosis and as targets for gene therapy.
Collapse
Affiliation(s)
- Xuan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Wenyu Wu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huan He
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Lin Guan
- Shandong Province Hospital of Traditional Chinese Medicine, Jinan 250011, China
| | - Guancheng Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zhijun Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Huan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Jialin Jiang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Xin Dong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zhuoji Guan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Pinliang Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zigang Pan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Weiwei Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Runjia Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Wenxin Song
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Lu Lu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zhongqi Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China
| | - Zixin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Lingjun Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Shaoxiang Xian
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| | - Jie Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; National Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou 510405, China.
| |
Collapse
|