1
|
Kalamvoki M. HSV-1 virions and related particles: biogenesis and implications in the infection. J Virol 2025; 99:e0107624. [PMID: 39898651 PMCID: PMC11915793 DOI: 10.1128/jvi.01076-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Virion formation and egress are sophisticated processes that rely on the spatial and temporal organization of host cell membranes and the manipulation of host machineries involved in protein sorting, membrane bending, fusion, and fission. These processes result in the formation of infectious virions, defective particles, and various vesicle-like structures. In herpes simplex virus 1 (HSV-1) infections, virions and capsid-less particles, known as light (L)-particles, are formed. HSV-1 infection also stimulates the release of particles that resemble extracellular vesicles (EVs). In productively infected cells, most EVs are generated through the CD63 tetraspanin biogenesis pathway and lack viral components. A smaller subset of EVs, generated through the endosomal sorting complexes required for transport (ESCRT) pathway, contains both viral and host factors. Viral mechanisms tightly regulate EV biogenesis, including the inhibition of autophagy-a process critical for increased production of CD63+ EVs during HSV-1 infection. Mutant viruses that fail to suppress autophagy instead promote microvesicle production from the plasma membrane. Additionally, the viral protein ICP0 (Infected Cell Protein 0) enhances EV biogenesis during HSV-1 infection. The different types of particles can be separated by density gradients due to their distinct biophysical properties. L-particles and ESCRT+ EVs display a pro-viral role, supporting viral replication, whereas CD63+ EVs exhibit antiviral effects. Overall, these studies highlight that HSV-1 infection yields numerous and diverse particles, with their type and composition shaped by the ability of the virus to evade host responses. These particles likely shape the infectious microenvironment and determine disease outcomes.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Van Crombrugge E, Ren X, Glorieux S, Zarak I, Van den Broeck W, Bachert C, Zhang N, Van Zele T, Kim D, Smith GA, Laval K, Nauwynck H. The alphaherpesvirus gE/gI glycoprotein complex and proteases jointly orchestrate invasion across the host's upper respiratory epithelial barrier. mBio 2024; 15:e0187324. [PMID: 39382295 PMCID: PMC11558996 DOI: 10.1128/mbio.01873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), pseudorabies virus (PRV), and bovine herpesvirus type 1 (BoHV-1), are significant pathogens affecting humans and animals. These viruses penetrate the upper respiratory tract mucosa, yet the mechanisms facilitating this invasion are not fully understood. This study investigates the role of the gE/gI glycoprotein complex and proteases in mucosal invasion by these viruses. Using species-specific respiratory mucosal explants, we observed that the removal of extracellular calcium disrupts epithelial junction integrity, enhancing viral infection across all viruses and suggesting a common mechanism of targeting a basolaterally located receptor. PRV exhibited significantly faster replication and deeper invasion compared to HSV-1 and BoHV-1. The gE glycoprotein was consistently polarized at the basement membrane across all viruses, indicating a critical role in the process of viral entry and subsequent spread through the epithelium. In this context, "infection" refers to the virus's attachment to its cell-surface receptor, entry into the cell, and completion of the viral life cycle, culminating in the production of progeny virions. Notably, in gE/gI null mutants of PRV and HSV-1, while the infection was not abortive and the viral life cycle was completed, the infection was delayed, and the invasion into the deeper layers of the epithelium and underlying mucosa was significantly reduced. In BoHV-1 mutants, this effect was even more pronounced, with infection restricted to the apical cells, failing to progress to the basal cells. In addition, PRV and HSV-1 invasion involved serine protease activity, unlike BoHV-1, which correlates with its slower invasion pace. Notably, the protease facilitating PRV invasion was identified as a urokinase plasminogen activator (uPA), while the specific protease for HSV-1 remains unidentified. These findings highlight the critical roles of the gE/gI complex and proteases in alphaherpesvirus pathogenesis, offering potential targets for therapeutic intervention. IMPORTANCE Herpes simplex virus type 1 (HSV-1) infections are a worldwide issue. More than three billion people are infected with HSV-1 globally. Although most infections with HSV-1 occur subclinically, severe symptoms and complications are numerous and can be life-threatening. Complications include encephalitis and blindness. Recently, HSV-1 infections have been associated with the development of Alzheimer's Disease. To date, no effective vaccines against HSV-1 are on the market. Pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1) are two alphaherpesviruses of major veterinary importance. Although efforts have been made to eradicate these viruses from livestock animals, clinical problems still occur, resulting in great economic losses for farmers. It is evident that new insights into the pathogenesis of alphaherpesviruses are needed, to develop effective treatments and novel preventive therapies.
Collapse
Affiliation(s)
- E. Van Crombrugge
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - X. Ren
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - S. Glorieux
- Center for Human Body Material, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - I. Zarak
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - W. Van den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - C. Bachert
- Department of Otorhinolaryngology – Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - N. Zhang
- Department of Head and Skin, Upper Airways Research Laboratory, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - T. Van Zele
- Department of Head and Skin, Upper Airways Research Laboratory, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - D. Kim
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - G. A. Smith
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - K. Laval
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| | - H. Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Laboratory of Virology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Zhao Y, Xu K, Shu F, Zhang F. Neurotropic virus infection and neurodegenerative diseases: Potential roles of autophagy pathway. CNS Neurosci Ther 2024; 30:e14548. [PMID: 38082503 PMCID: PMC11163195 DOI: 10.1111/cns.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 06/11/2024] Open
Abstract
Neurodegenerative diseases (NDs) constitute a group of disorders characterized by the progressive deterioration of nervous system functionality. Currently, the precise etiological factors responsible for NDs remain incompletely elucidated, although it is probable that a combination of aging, genetic predisposition, and environmental stressors participate in this process. Accumulating evidence indicates that viral infections, especially neurotropic viruses, can contribute to the onset and progression of NDs. In this review, emerging evidence supporting the association between viral infection and NDs is summarized, and how the autophagy pathway mediated by viral infection can cause pathological aggregation of cellular proteins associated with various NDs is discussed. Furthermore, autophagy-related genes (ARGs) involved in Herpes simplex virus (HSV-1) infection and NDs are analyzed, and whether these genes could link HSV-1 infection to NDs is discussed. Elucidating the mechanisms underlying NDs is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of NDs.
Collapse
Affiliation(s)
- Yu‐jia Zhao
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Kai‐fei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| | - Fu‐xing Shu
- Bioresource Institute for Healthy UtilizationZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
4
|
Dzianok P, Kublik E. PEARL-Neuro Database: EEG, fMRI, health and lifestyle data of middle-aged people at risk of dementia. Sci Data 2024; 11:276. [PMID: 38453963 PMCID: PMC10920678 DOI: 10.1038/s41597-024-03106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Interdisciplinary approaches are needed to understand the relationship between genetic factors and brain structure and function. Here we describe a database that includes genetic data on apolipoprotein E (APOE) and phosphatidylinositol binding clathrin assembly protein (PICALM) genes, both of which are known to increase the risk of late-onset Alzheimer's disease, paired with psychometric (memory, intelligence, mood, personality, stress coping strategies), basic demographic and health data on a cohort of 192 healthy middle-aged (50-63) individuals. Part of the database (~79 participants) also includes blood tests (blood counts, lipid profile, HSV virus) and functional neuroimaging data (EEG/fMRI) recorded with a resting-state protocol (eyes open and eyes closed) and two cognitive tasks (multi-source interference task, MSIT; and Sternberg's memory task). The data were validated and showed overall good quality. This open-science dataset is well suited not only for research relating to susceptibility to Alzheimer's disease but also for more general questions on brain aging or can be used as part of meta-analytical multi-disciplinary projects.
Collapse
Affiliation(s)
- Patrycja Dzianok
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Ewa Kublik
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| |
Collapse
|
6
|
Yu PL, Wu R, Cao SJ, Wen YP, Huang XB, Zhao S, Lang YF, Zhao Q, Lin JC, Du SY, Yu SM, Yan QG. Pseudorabies virus exploits N 6-methyladenosine modification to promote viral replication. Front Microbiol 2023; 14:1087484. [PMID: 36819040 PMCID: PMC9936159 DOI: 10.3389/fmicb.2023.1087484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Pseudorabies virus (PRV) is the pathogenic virus of porcine pseudorabies (PR), belonging to the Herpesviridae family. PRV has a wide range of hosts and in recent years has also been reported to infect humans. N6-methyladenosine (m6A) modification is the major pathway of RNA post-transcriptional modification. Whether m6A modification participates in the regulation of PRV replication is unknown. Methods Here, we investigated that the m6A modification was abundant in the PRV transcripts and PRV infection affected the epitranscriptome of host cells. Knockdown of cellular m6A methyltransferases METTL3 and METTL14 and the specific binding proteins YTHDF2 and YTHDF3 inhibited PRV replication, while silencing of demethylase ALKBH5 promoted PRV output. The overexpression of METTL14 induced more efficient virus proliferation in PRV-infected PK15 cells. Inhibition of m6A modification by 3-deazaadenosine (3-DAA), a m6A modification inhibitor, could significantly reduce viral replication. Results and Discussion Taken together, m6A modification played a positive role in the regulation of PRV replication and gene expression. Our research revealed m6A modification sites in PRV transcripts and determined that m6A modification dynamically mediated the interaction between PRV and host.
Collapse
Affiliation(s)
- Pei-Lun Yu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - San-Jie Cao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yi-Ping Wen
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Bo Huang
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shan Zhao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yi-Fei Lang
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ju-Chun Lin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sen-Yan Du
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shu-Min Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qi-Gui Yan
- Department of Preventive Veterinary Medicine, Swine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China,*Correspondence: Qi-Gui Yan, ✉
| |
Collapse
|