1
|
Ohtsu H. - Invited Review - Challenges and constraints in the sustainability of poultry farming in Japan. Anim Biosci 2025; 38:818-828. [PMID: 39999794 PMCID: PMC11969155 DOI: 10.5713/ab.24.0675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Poultry products such as chicken meat and eggs are among the most common and popular animal products in Japan. Recently, many chickens, such as broilers and layers, have been raised and their related product consumption has increased. However, the number of farms decreased, which is one of the major challenges faced by the Japanese poultry industry. Similar to that in other countries, high-pathogenicity avian influenza (HPAI) outbreaks negatively affected the distribution of poultry products. Low feed selfsufficiency in Japan is also a serious problem because the prices of diets and products are affected by the situation in foreign countries. Rice is a domestic ingredient of the poultry diet in Japan, and recently, its utilization has increased; however, concerns remain. Global warming likely affects the poultry industry in Japan negatively. The objective of this review is to illustrate the recent situation of the Japanese poultry industry, including 1) an overview; 2) the situation of influence of HPAI; 3) situation of ingredients for poultry diet; 4) utilization of rice in poultry diet; 5) heat stress in poultry. Overall, investigation of the effects of heat stress on physiology, such as the biological defense system, and its prevention, should be continued to prevent future decreases in productivity in the Japanese poultry industry.
Collapse
Affiliation(s)
- Haruhiko Ohtsu
- Institute of Livestock and Grassland Science, NARO, Tsukuba,
Japan
| |
Collapse
|
2
|
Wang XQ, Chang YH, Wang XC, Liu RQ, Yang SJ, Hu ZY, Jiang FW, Chen MS, Wang JX, Liu S, Zhu HM, Shi YS, Zhao Y, Li JL. SIRT1 Regulates Fumonisin B1-Induced LMH Cell PANoptosis and Antagonism of Lycopene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4923-4935. [PMID: 39934003 DOI: 10.1021/acs.jafc.4c11658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Mycotoxin contamination is a universal agricultural problem and a critical health issue. Fumonisin B1 (FB1) is one of the most toxic and extensive fumonisins that exist in various agro-products and foods. Lycopene (LYC), as a natural carotenoid, is becoming increasingly favored owing to its oxidation resistance. Here, we aim to explore the mechanism of FB1-induced hepatotoxicity and the antagonism of LYC. In this study, our findings indicated that FB1 induced mitochondrial structure damage and loss of mitochondrial function in chicken hepatocytes. Furthermore, FB1 upregulated the expression of PANoptosis-related signal molecules. FB1 also reduced the levels of SIRT1 and Ac-FOXO1 protein expression, which then inhibited mitophagy. However, LYC relieved these FB1-induced alterations. Most importantly, SIRT1 knockdown inhibited the protective effects of LYC in FB1-induced mitochondrial damage and PANoptosis. Our study provides evidence for the role of LYC in mycotoxin-induced chicken hepatocyte injury and points to SIRT1 as a potential target for liver protection.
Collapse
Affiliation(s)
- Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Chun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
3
|
Wang T, Cui R, Yu HF, Yang D, Zhang S, Nie Y, Teng CB. The impact of aflatoxin B1 on animal health: Metabolic processes, detection methods, and preventive measures. Toxicon 2025; 255:108262. [PMID: 39855607 DOI: 10.1016/j.toxicon.2025.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Aflatoxin (AF) is a toxic metabolite produced by the fungus Aspergillus. The various subtypes of AFs include B1, B2, G1, G2, M1, and M2, with Aflatoxin B1 (AFB1) being the most toxic. These AFs are widespread in the environment, particularly in soil and food crops. The World Health Organization (WHO) has classified AFB1 as a highly potent natural Class 1A carcinogen. Excessive exposure to AFB1 can lead to poisoning in both humans and animals, posing substantial risks to food safety and livestock breeding industries. This review provides an overview of the metabolic processes, detection methods, and the detrimental impacts of AFB1 on animal reproduction, immunity, nerves, intestines, and metabolism. Furthermore, it explores the preventive and control capacities of natural active substances, trace elements, and microorganisms against AFB1. Ultimately, this paper serves as a reference for further research on the pathogenic mechanism of AFB1, the development of preventive drugs, and the selection of effective detoxification measures for AFB1 in animal feed.
Collapse
Affiliation(s)
- Tianyang Wang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Runzi Cui
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dian Yang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shuting Zhang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuzhe Nie
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Yang H, Liu Y, Cao G, Liu J, Xiao S, Xiao P, Tao Y, Gao H. Effects of lycopene on the growth performance, meat quality, cecal metagenome, and hepatic untargeted metabolome in heat stressed broilers. Poult Sci 2024; 103:104299. [PMID: 39316987 PMCID: PMC11462354 DOI: 10.1016/j.psj.2024.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
The occurrence of heat stress in poultry houses is inevitable and leads to oxidative stress in the birds. Lycopene, a natural hydrocarbon carotenoid, possesses potent antioxidant properties. This study aimed to investigate the impact of lycopene on growth performance, meat quality, cecal microflora, and liver metabolome in broilers subjected to heat stress. A total of 480 yellow feather broilers were randomly allocated into 4 treatment groups: birds fed standard diet (Con), birds fed standard diet and supplemented with lycopene (Lyc), birds fed standard diet and subjected to heat stress (Hs), and birds fed with lycopene and subjected to heat stress (Hs-Lyc). As compared with the normal temperature groups, Hs decreased the average daily gain (ADG) of birds during d 1 to 28, lowered the pH value either in breast meat or thigh meat, increased the L* value of breast meat, and decreased the a* value of thigh meat. In comparison with non-Lyc feeding birds, Lyc supplement elevated the ADG during d 1 to 56, increased the pH of breast meat, decrease the L* and b* values of thigh meat, simultaneously increase the a* value of thigh meat. The L* of breast meat and pH of thigh meat exhibited significant differences under Hs-Lyc treatment. Lyc-treated birds exhibited higher elasticity, gumminess, and resilience in breast meat than those in non-Lyc feeding birds. The cecal metagenome analysis indicated that Hs-Lyc treatment increased the abundance of Phocaeicola salanitronis and Prevotella sp.CAG:1058, Bacteroides sp.An269, and Bacteroides sp.An19 at the species level compared with other treatments. The hepatic untargeted metabolome analysis showed that administration of Lyc upregulated 20 metabolites and downregulated 60 metabolites compared to the Con birds. Futhermore, the Hs-Lyc treatment upregulated 34 metabolites and downregulated 45 metabolites compared to the Hs birds. The correlation between the metagenome and metabolome showed that Lyc supplementation induced significant alterations in the citrate cycle, metabolism of butanoate, glycolysis/gluconeogenesis, glyoxylate and dicarboxylate, alanine, aspartate, and glutamate compared with standard supplement. In contrast, Hs-Lyc treatment induced alterations in the citrate cycle, metabolism of pyruvate, glyoxylate, and dicarboxylate, glycolysis/gluconeogenesis, arginine, proline, alanine, aspartate, and glutamate compared with the standard supplement of heat-challenged broilers. In summary, dietary Lyc supplementation promoted the growth performance, changed the meat quality, modulated the cecal metagenome and hepatic metabolome in heat-stressed broilers.
Collapse
Affiliation(s)
- Huijuan Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650201, China; Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, China; College of Standardisation, China Jiliang Universtiy, Hangzhou, Zhejiang, 310058, China
| | - Yingsen Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangtian Cao
- College of Standardisation, China Jiliang Universtiy, Hangzhou, Zhejiang, 310058, China
| | - Jinsong Liu
- Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, China
| | - Shiping Xiao
- Zhejiang Huijia Biotechnology Co. Ltd., Anji, Zhejiang, 313307, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunan, 650201, China
| | - Ye Tao
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Hong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunan, 650201, China.
| |
Collapse
|
5
|
Kikusato M, Namai F, Yamada K. Effect of Feeding Sugarcane Bagasse-Extracted Polyphenolic Mixture on the Growth Performance, Meat Quality, and Oxidative and Inflammatory Status of Chronic Heat-Stressed Broiler Chickens. Animals (Basel) 2024; 14:3443. [PMID: 39682409 DOI: 10.3390/ani14233443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the effects of sugarcane bagasse-extracted polyphenolic mixture (SBPM) supplementation on the harmful effects of chronic heat stress (HS) in broiler chickens. METHODS Two hundred and eighty-eight day-old male Ross 308 chicks were fed an SBPM in 0, 75, 150, or 300 ppm-supplemented diets and reared under thermoneutral (TN, 22.1-24.8 °C) or chronic HS (28.3-36.2 °C) conditions from 11 d to 42 d. RESULTS The chronic HS treatment negatively affected body weight, feed intake, and feed conversion ratio (p < 0.05), and these changes were partially attenuated by the SBPM supplementation (p < 0.05). Plasma lipid peroxidation content, inflammatory cytokines [interleukin (IL)-6, IL-β], corticosterone, and uric acid concentrations were significantly increased by HS, and these increases were attenuated by the SBPM supplementation (p < 0.05). Intestinal permeability indicator and serum fluorescein isothiocyanate-dextran levels after oral gavage were increased by HS and were also suppressed by the supplementation (p < 0.05). The HS-decreased muscle drip loss, lipid peroxidation, and glutathione content were also suppressed by the SBPM supplementation. The abovementioned alleviating effects of the SBPM were of a dose-dependent manner in most cases. CONCLUSION This study demonstrated that SBPM supplementation can improve the growth performance, meat quality, inflammation, and intestinal permeability of chronic HS-treated broiler chickens.
Collapse
Affiliation(s)
- Motoi Kikusato
- Laboratory of Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Sendai 980-8572, Miyagi, Japan
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Sendai 980-8572, Miyagi, Japan
| | - Katsushige Yamada
- Advanced Materials Research Laboratories, Toray Industries, Inc., 10-1, Tebiro 6-chome, Kamakura 248-8555, Kanagawa, Japan
| |
Collapse
|
6
|
Fayed RH, Ali SE, Yassin AM, Madian K, Bawish BM. Terminalia bellirica and Andrographis paniculata dietary supplementation in mitigating heat stress-induced behavioral, metabolic and genetic alterations in broiler chickens. BMC Vet Res 2024; 20:388. [PMID: 39227945 PMCID: PMC11370032 DOI: 10.1186/s12917-024-04233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Heat stress (HS) is one of the most significant environmental stressors on poultry production and welfare worldwide. Identification of innovative and effective solutions is necessary. This study evaluated the effects of phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata on behavioral patterns, hematological and biochemical parameters, Oxidative stress biomarkers, and HSP70, I-FABP2, IL10, TLR4, and mTOR genes expression in different organs of broiler chickens under chronic HS conditions. A total of 208 one-day-old Avian-480 broiler chicks were randomly allocated into four treatments (4 replicate/treatment, 52 birds/treatment): Thermoneutral control treatment (TN, fed basal diet); Thermoneutral treatment (TN, fed basal diet + 1 kg/ton feed PHY); Heat stress treatment (HS, fed basal diet); Heat stress treatment (HS, fed basal diet + 1 kg/ton feed PHY). RESULTS The findings of the study indicate that HS led to a decrease in feeding, foraging, walking, and comfort behavior while increasing drinking and resting behavior, also HS increased red, and white blood cells (RBCs and WBCs) counts, and the heterophile/ lymphocyte (H/L) ratio (P < 0.05); while both mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were decreased (P < 0.05). In addition, HS negatively impacted lipid, protein, and glucose levels, liver and kidney function tests, and oxidative biomarkers by increasing malondialdehyde (MDA) levels and decreasing reduced glutathion (GSH) activity (P < 0.05). Heat stress (HS) caused the upregulation in HSP70, duodenal TLR4 gene expression, and the downregulation of I-FABP2, IL10, mTOR in all investigated tissues, and hepatic TLR4 (P < 0.05) compared with the TN treatment. Phytogenic feed additives (PHY) effectively mitigated heat stress's negative impacts on broilers via an improvement of broilers' behavior, hematological, biochemical, and oxidative stress biomarkers with a marked decrease in HSP70 expression levels while all tissues showed increased I-FABP2, IL10, TLR4, and mTOR (except liver) levels (P < 0.05). CONCLUSION Phytogenic feed additives (PHY) containing Terminalia bellirica and Andrographis paniculata have ameliorated the HS-induced oxidative stress and improved the immunity as well as the gut health and welfare of broiler chickens.
Collapse
Affiliation(s)
- Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - K Madian
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Basma M Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
7
|
He Q, Lu S, Wang J, Xu C, Qu W, Nawaz S, Ataya FS, Wu Y, Li K. Lactobacillus salivarius and Berberine Alleviated Yak Calves' Diarrhea via Accommodating Oxidation Resistance, Inflammatory Factors, and Intestinal Microbiota. Animals (Basel) 2024; 14:2419. [PMID: 39199953 PMCID: PMC11350718 DOI: 10.3390/ani14162419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Yaks are important food animals in China; however, bacterial diarrheal diseases frequently occur on the plateau, with limited effective therapies. The objective of this research was to evaluate the effectiveness of Lactobacillus salivarius (LS) and berberine in alleviating diarrhea in yak calves. For this purpose, eighteen healthy yak calves were divided into control (JC), infected (JM), and treatment (JT) groups. Yaks in the JT group were treated with 2 × 1010 CFU/calf L. salivarius and 20 mg/kg berberine, and yaks in the JM and JT groups were induced with multi-drug-resistant Escherichia coli. The results showed that the weight growth rate in the JM group was significantly lower than that in the JC and JT groups. The diarrhea score in the JM group was significantly higher than that in both the JC and JT groups. Additionally, the contents of T-AOC, SOD, GSH-Px, and IL-10 were significantly lower in the JM group than those in the JC and JT groups, while MDA, TNF-α, IL-1β, and IL-6 were significantly higher in the JM group. Microbiota sequencing identified two phyla and twenty-seven genera as significant among the yak groups. Notably, probiotic genera such as Faecalibaculum and Parvibacter were observed, alongside harmful genera, including Marvinbryantia and Lachnospiraceae UCG-001. Our findings indicate that treatment with L. salivarius and berberine significantly reduced diarrhea incidence, improved growth performance, and positively modulated intestinal microbiota, which could provide novel insights for developing new therapies for ruminant diarrhea.
Collapse
Affiliation(s)
- Qing He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Feng Yuan Road, Panlong District, Kunming 650201, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yi Wu
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Feng Yuan Road, Panlong District, Kunming 650201, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Jiménez Bolaño DC, Insuasty D, Rodríguez Macías JD, Grande-Tovar CD. Potential Use of Tomato Peel, a Rich Source of Lycopene, for Cancer Treatment. Molecules 2024; 29:3079. [PMID: 38999031 PMCID: PMC11243680 DOI: 10.3390/molecules29133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Tomatoes are well known for their impressive nutritional value among vegetables. However, the industrial processing of tomatoes generates a significant amount of waste. Specifically, 10% to 18% of the raw materials used in tomato processing become waste. This waste can seriously affect ecosystems, such as freshwater bodies, wetlands, rivers, and other natural environments, if not properly managed. Interestingly, tomato waste, specifically the skin, contains lycopene, a potent antioxidant and antimutagenic that offers a range of health benefits. This makes it a valuable ingredient in industries such as food and cosmetics. In addition, researchers are exploring the potential of lycopene in the treatment of various types of cancer. This systematic review, guided by the PRISMA 2020 methodology, examined studies exploring the possibility of tomato peel as a source of lycopene and carotenoids for cancer treatment. The findings suggest that tomato peel extracts exhibit promising anticancer properties, underscoring the need for further investigation of possible therapeutic applications. The compiled literature reveals significant potential for using tomato peel to create new cancer treatments, which could potentially revolutionize the field of oncology. This underscores the importance of continued research and exploration, emphasizing the urgency and importance of the scientific community's contribution to this promising area of study.
Collapse
Affiliation(s)
- Diana Carolina Jiménez Bolaño
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Juan David Rodríguez Macías
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
9
|
Li M, Tang S, Peng X, Sharma G, Yin S, Hao Z, Li J, Shen J, Dai C. Lycopene as a Therapeutic Agent against Aflatoxin B1-Related Toxicity: Mechanistic Insights and Future Directions. Antioxidants (Basel) 2024; 13:452. [PMID: 38671900 PMCID: PMC11047733 DOI: 10.3390/antiox13040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation, and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450) enzymes. This review provides an overview of the protective effects of lycopene against AFB1 exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores the safety profile and potential clinical applications of lycopene. The present review underscores lycopene's potential as a promising detoxification agent against AFB1 exposure, with the intent to stimulate further research and practical utilization in this domain.
Collapse
Affiliation(s)
- Meng Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264000, China;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Shutao Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China;
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| |
Collapse
|
10
|
Long Y, Paengkoum S, Lu S, Niu X, Thongpea S, Taethaisong N, Han Y, Paengkoum P. Physicochemical properties, mechanism of action of lycopene and its application in poultry and ruminant production. Front Vet Sci 2024; 11:1364589. [PMID: 38562916 PMCID: PMC10983797 DOI: 10.3389/fvets.2024.1364589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Lycopene is a kind of natural carotenoid that could achieve antioxidant, anti-cancer, lipid-lowering and immune-improving effects by up-regulating or down-regulating genes related to antioxidant, anti-cancer, lipid-lowering and immunity. Furthermore, lycopene is natural, pollution-free, and has no toxic side effects. The application of lycopene in animal production has shown that it could improve livestock production performance, slaughter performance, immunity, antioxidant capacity, intestinal health, and meat quality. Therefore, lycopene as a new type of feed additive, has broader application prospects in many antibiotic-forbidden environments. This article serves as a reference for the use of lycopene as a health feed additive in animal production by going over its physical and chemical characteristics, antioxidant, lipid-lowering, anti-cancer, and application in animal production.
Collapse
Affiliation(s)
- Yong Long
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Shengyong Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Xinran Niu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nittaya Taethaisong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yong Han
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
11
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
12
|
Mahasneh ZMH, Abuajamieh M, Abedal-Majed MA, Al-Qaisi M, Abdelqader A, Al-Fataftah ARA. Effects of medical plants on alleviating the effects of heat stress on chickens. Poult Sci 2024; 103:103391. [PMID: 38242055 PMCID: PMC10828596 DOI: 10.1016/j.psj.2023.103391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024] Open
Abstract
Over the past decades, global climate change has led to a significant increase in the average ambient temperature causing heat stress (HS) waves. This increase has resulted in more frequent heat waves during the summer periods. HS can have detrimental effects on poultry, including growth retardation, imbalance in immune/antioxidant pathways, inflammation, intestinal dysfunction, and economic losses in the poultry industry. Therefore, it is crucial to find an effective, safe, applicable, and economically efficient method for reducing these negative influences. Medicinal plants (MPs) contain various bioactive compounds with antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory effects. Due to the biological activities of MPs, it could be used as promising thermotolerance agents in poultry diets during HS conditions. Nutritional supplementation with MPs has been shown to improve growth performance, antioxidant status, immunity, and intestinal health in heat-exposed chickens. As a result, several types of herbs have been supplemented to mitigate the harmful effects of heat stress in chickens. Therefore, several types of herbs have been supplemented to mitigate the harmful effects of heat stress in chickens. This review aims to discuss the negative consequences of HS in poultry and explore the use of different traditional MPs to enhance the health status of chickens.
Collapse
Affiliation(s)
- Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan.
| | - Mohannad Abuajamieh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | - Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | - Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman, 11942, Jordan
| | | |
Collapse
|
13
|
Wu H, Wang S, Xie J, Ji F, Peng W, Qian J, Shen Q, Hou G. Effects of Dietary Lycopene on the Growth Performance, Antioxidant Capacity, Meat Quality, Intestine Histomorphology, and Cecal Microbiota in Broiler Chickens. Animals (Basel) 2024; 14:203. [PMID: 38254372 PMCID: PMC10812500 DOI: 10.3390/ani14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The experiment aimed to investigate the effects of dietary lycopene on the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens. We randomly divided five hundred and seventy-six one-day-old male broilers into four groups each with six replicates and 24 chickens in each replicate. The control group (CG) was fed the basal diet, and the other groups were given powder lycopene of 10, 20, and 30 mg/kg lycopene (LP10, LP20, and LP30, respectively). Compared with the control group, (1) the dietary lycopene increased (p = 0.001) the average daily gain and decreased (p = 0.033) the feed conversion ratio in the experimental groups; (2) the glutathione peroxidase enzyme contents in LP20 were higher (p =< 0.001) in myocardium; (3) the crude protein contents were higher (p = 0.007) in the group treated with 30 mg/kg dietary lycopene; (4) the jejunum villous height was higher (p = 0.040) in LP20; (5) the Unclassified-f-Ruminococcaceae relative abundance was significantly higher (p = 0.043) in LP20. In this study, adding 20 mg/kg dietary lycopene to the broiler chickens' diets improved the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens.
Collapse
Affiliation(s)
- Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Sibo Wang
- Abna Management (Shangai) Co., Ltd., Shanghai 200050, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiajun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weiqi Peng
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinyu Qian
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qian Shen
- Hainan Xuhuai Technology Co., Ltd., Haikou 571127, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|