1
|
Abdul Kari Z, Sukri SAM, Téllez-Isaías G, Bottje WG, Khoo MI, Guru A, Tayyeb JZ, Kabir MA, Eissa ESH, Tahiluddin AB, Wei LS. Effects of dietary powdered Ficus deltoidea on the growth and health performance of African catfish, Clarias gariepinus production. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2563-2582. [PMID: 39298109 DOI: 10.1007/s10695-024-01403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/30/2024] [Indexed: 09/21/2024]
Abstract
Intensive aquaculture causes a decline in the health status of fish, resulting in an increased disease incidence. To counteract this, feed additives have been utilized to improve the growth performance and health of aquaculture species. This work specifically investigates the impact of powdered Ficus deltoidea (FD) on various parameters related to growth, blood parameters, liver and intestine morphology, body proximate analysis, digestive enzymes, antioxidant capacity, and disease resistance to motile Aeromonad Septicemia (MAS) caused by Aeromonas hydrophila infection in African catfish, Clarias gariepinus. Four formulated diets were prepared: T1 (0% FD), T2 (0.5% FD), T3 (0.75% FD), and T4 (1% FD). After 8 weeks, the African catfish's growth performance fed with the T2 diet exhibited a substantial improvement (p < 0.05), along with a remarkably lower (p < 0.05) feed conversion ratio (FCR) when compared to the other treatment groups. Blood parameter analysis revealed notably higher (p < 0.05) levels of white blood cell (WBC), lymphocytosis (LYM), hemoglobin (HGB), albumin (ALB), globulin (GLOB), as well as total protein (TP) in the T2 diet group. While all treatment groups displayed normal intestinal morphology, liver deterioration was observed in groups supplemented with higher FD. The T2 diet group recorded the highest villus length, width, and crypt depth. Protease and lipase levels were also notably improved in the T2 diet group compared to other treatment groups. Additionally, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were remarkably elevated in all FD diet groups than in the control group. The expression of immune-related genes, including transforming growth factor beta 1, heat shock protein 90, nuclear factor kappa-B gene, and lysozyme G, was upregulated in all treatments. Overall, the results of this study indicate that incorporating dietary FD at 0.5% concentration in the diet of African catfish may enhance their productivity in intensive farming.
Collapse
Affiliation(s)
- Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | | | - Walter G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Malaysia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Jehad Zuhair Tayyeb
- Division of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Muhammad Anamul Kabir
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
- Department of Aquaculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45516, Egypt
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, 7500, Bongao, Tawi-Tawi, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, Kastamonu, 37200, Türkiye
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| |
Collapse
|
2
|
N. R, Varghese T, Jana P, Brighty R. J. A, Sethupathy A. M, S. S, Alrashdi YBA, Ibrahim AE, El Deeb S. Current Status and Global Research Trend Patterns of Insect Meal in Aquaculture From Scientometric Perspective: (2013-2022). AQUACULTURE NUTRITION 2024; 2024:5466604. [PMID: 39555523 PMCID: PMC11521589 DOI: 10.1155/2024/5466604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 11/19/2024]
Abstract
In the past decade, insect meal has gained popularity in the animal feed industry, particularly in aquafeed, due to rising costs and decreased availability of fish meal (FM) and fish oil. Initially met with skepticism, insect meal is now seen as a promising ingredient because of its high nutrient profile. Research worldwide is exploring its potential as a FM replacement. Insects are abundant, nutritious, and environmentally friendly, as they can be reared on organic waste, minimizing the need for land, water, and energy. This research aims at obtaining a comprehensive and in-depth understanding of the current status and research trend patterns in this research field. To achieve this goal, this study conducts a mini systematic review and scientometric analysis of the global research published from 2013 to 2022 on the usage of insect meal in aquaculture. In the scientometric analysis, a total of 354 papers published by 1800 authors in 124 different journals from the Web of Science (WoS) core collection were analyzed, evaluating the number of publications, most relevant authors, organizations, top cited countries, most globally cited publications, and trending research themes in this field. The result showed that the University of Turin was the leading organization in insect meal research, whereas aquaculture was the leading journal, and author Laura Gasco was the prominent researcher in this field in the studied time frame (2013-2022). Italy was the leading country in Europe, while China dominated Asia in terms of the number of publications. The annual growth rate in insect meal research was found to be positive (23.11%), with 36.95 average citations per document. This study helps practitioners and scholars understand the current state of insect meal in aquaculture and identifies research requirements that can benefit both academia and industry.
Collapse
Affiliation(s)
- Raghuvaran N.
- Fish Nutrition, Biochemistry and Physiology Division, ICAR—Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India
| | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR—Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India
| | - Prasanta Jana
- Fish Nutrition, Biochemistry and Physiology Division, ICAR—Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India
- Department of Aquaculture, College of Fisheries Science, Birsa Agricultural University, Gumla, Ranchi 835207, Jharkhand, India
| | - Angela Brighty R. J.
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR—Central Institute of Fisheries Education (CIFE), Mumbai 400061, Maharashtra, India
| | - Muthiah Sethupathy A.
- Department of Aquatic Environment Management, TNJFU Dr. MGR Fisheries College and Research Institute, Thalainayeru 614712, Tamil Nadu, India
| | - Sudarshan S.
- Department of Aquatic Environment Management, TNJFU Dr. MGR Fisheries College and Research Institute, Thalainayeru 614712, Tamil Nadu, India
| | | | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Wei LS, Téllez-Isaías G, Abdul Kari Z, Tahiluddin AB, Wee W, Kabir MA, Abdul Hamid NK, Cheadoloh R. Role of Phytobiotics in Modulating Transcriptomic Profile in Carps: A Mini-Review. Biochem Genet 2024; 62:3285-3304. [PMID: 38167984 DOI: 10.1007/s10528-023-10606-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Carp is a key aquaculture species worldwide. The intensification of carp farming, aimed at meeting the high demand for protein sources for human consumption, has resulted in adverse effects such as poor water quality, increased stress, and disease outbreaks. While antibiotics have been utilized to mitigate these issues, their use poses risks to both public health and the environment. As a result, alternative and more sustainable practices have been adopted to manage the health of farmed carp, including the use of probiotics, prebiotics, phytobiotics, and vaccines to prevent disease outbreaks. Phytobiotics, being both cost-effective and abundant, have gained widespread acceptance. They offer various benefits in carp farming, such as improved growth performance, enhanced immune system, increased antioxidant capacity, stress alleviation from abiotic factors, and enhanced disease resistance. Currently, a focal point of research involves employing molecular approaches to assess the impacts of phytobiotics in aquatic animals. Gene expression, the process by which genetic information encoded is translated into function, along with transcription profiling, serves as a crucial tool for detecting changes in gene expression within cells. These changes provide valuable insights into the growth rate, immune system, and flesh quality of aquatic animals. This review delves into the positive impacts of phytobiotics on immune responses, growth, antioxidant capabilities, and flesh quality, all discerned through gene expression changes in carp species. Furthermore, this paper explores existing research gaps and outlines future prospects for the utilization of phytobiotics in aquaculture.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | | | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, 7500, Bongao, Tawi-Tawi, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, 37200, Kastamonu, Türkiye
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | | | - Romalee Cheadoloh
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala Province, 133 Thetsaban 3 Rd, Sateng, Mueang, 95000, Thailand
| |
Collapse
|
4
|
Wei LS, Adrian Susin AA, Tahiluddin AB, Kien LV, Wee W. Exploring the potential of black fungus, Auricularia auricula, as a feed additive in African catfish, Clarias gariepinus, farming. Heliyon 2024; 10:e33810. [PMID: 39071570 PMCID: PMC11283112 DOI: 10.1016/j.heliyon.2024.e33810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
This study explores the beneficial effects of Auricularia auricula (AA) as a feed additive in promoting growth, digestive enzyme activities, antioxidative responses, heat tolerance, and disease resistance against Edwardsiella tarda in African catfish (Clarias gariepinus) farming. The application of feed additives is a hot topic in recent aquaculture studies aimed at promoting the growth and health of aquaculture species. After 8 weeks of feeding trial, the results of the present study revealed that fish-fed AA diets performed significantly better (p < 0.05) compared to the control group in growth performances, including final weight, weight gain, and specific growth rate. The highest performances were observed in the fish-fed AA at 3 and 4 %. A similar trend was also observed in the values of feed conversion ratio, hepatosomatic index, and visceral somatic index, with the lowest values (p < 0.05) in the fish-fed AA at 3 and 4 %. AA diets enhanced the activities of all tested digestive enzymes (amylase, protease, and lipase) significantly (p < 0.05), with the highest activities in the fish-fed AA at 3 and 4 %. Meanwhile, fish-fed AA diets exhibited significantly higher (p < 0.05) catalase, superoxide dismutase, and glutathione peroxidase activities both before and after heat stress, with the highest activities in the fish that received AA at 3 and 4 %. Furthermore, AA diets stimulated disease resistance in African catfish, with the fish-fed AA at 4 % performing the highest cumulative survival rate (73.3 ± 5.77 %) post-infection with E. tarda in African catfish. The findings of the current study suggest that AA has huge potential as a feed additive in African catfish farming.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Alvin Amos Adrian Susin
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Albaris B. Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga Bongao, Tawi-Tawi 7500 Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, Kastamonu 37200, Turkiye
| | - Liew Vui Kien
- Department of Johor State Fisheries Complex, Pendas Laut Road, 81550, Gelang Patah, Johor, Malaysia
| | - Wendy Wee
- Center for Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
6
|
Seong Wei L, Rahim MSAA, Yeu Hooi K, Khoo MI, Mohamad Nor A, Wee W. Comparative analysis of growth and health of juvenile African catfish ( Clarias gariepinus) fed with different starch diets. Heliyon 2024; 10:e28224. [PMID: 38560210 PMCID: PMC10981047 DOI: 10.1016/j.heliyon.2024.e28224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
This study evaluated the effects of potato, wheat, rice, and corn starch on growth performance, blood parameters, digestive enzyme activity, antioxidative response, and gut microbiota of African catfish, Clarias gariepinus. A control diet (a commercial fish diet) and four different starch (potato, PO; wheat, WH; corn, CO; rice, RC) formulations were fed to African catfish with average weight of 10.5g (n = 30) for eight weeks. The experiment was conducted in triplicates. At the end of the feeding trial, the growth performance of African catfish fed with potato starch (PO) was significantly higher than other treatment groups. Furthermore, this group recorded significant and lowest feed conversion ratio (FCR) compared to other groups. Meanwhile, there were no significant differences in all tested hematological parameters and antioxidative response between the groups. Digestive enzyme activities in the fish intestines, including amylase, lipase, and protease, were significantly higher in African catfish fed with the PO diet. In addition, this group demonstrated substantially lower viscerosomatic index (VSI) and hepatosomatic index (HSI) than other groups, indicating that the fish has more meat on its body. The PO diet group also recorded significantly higher Akkermansia muciniphila, a good gut microbiota. Therefore, the PO diet potentially improves African catfish's growth performance and health status.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Mohd Shaiful Azman Abdul Rahim
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Kon Yeu Hooi
- Department of Johor State Fisheries Complex, Pendas Laut Road, 81550, Gelang Patah, Johor, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150, Malaysia
| | - Azra Mohamad Nor
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus, 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, 83352, Indonesia
| | - Wendy Wee
- Center for Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|