1
|
Nigjeh SE, Yeap SK, Nordin N, Rahman H, Rosli R. In Vivo Anti-Tumor Effects of Citral on 4T1 Breast Cancer Cells via Induction of Apoptosis and Downregulation of Aldehyde Dehydrogenase Activity. Molecules 2019; 24:molecules24183241. [PMID: 31492037 PMCID: PMC6767168 DOI: 10.3390/molecules24183241] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among females globally. The tumorigenic activities of cancer cells such as aldehyde dehydrogenase (ALDH) activity and differentiation have contributed to relapse and eventual mortality in breast cancer. Thus, current drug discovery research is focused on targeting breast cancer cells with ALDH activity and their capacity to form secondary tumors. Citral (3,7-dimethyl-2,6-octadienal), from lemon grass (Cymbopogoncitrates), has been previously reported to have a cytotoxic effect on breast cancer cells. Hence, this study was conducted to evaluate the in vivo effect of citral in targeting ALDH activity of breast cancer cells. BALB/c mice were challenged with 4T1 breast cancer cells followed by daily oral feeding of 50 mg/kg citral or distilled water for two weeks. The population of ALDH+ tumor cells and their capacity to form secondary tumors in both untreated and citral treated 4T1 challenged mice were assessed by Aldefluor assay and tumor growth upon cell reimplantation in normal mice, respectively. Citral treatment reduced the size and number of cells with ALDH+ activity of the tumors in 4T1-challenged BALB/c mice. Moreover, citral-treated mice were also observed with smaller tumor size and delayed tumorigenicity after reimplantation of the primary tumor cells into normal mice. These findings support the antitumor effect of citral in targeting ALDH+ cells and tumor recurrence in breast cancer cells.
Collapse
Affiliation(s)
- Siyamak Ebrahimi Nigjeh
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Daneshjou Boulevard, Tehran 1983969411, Iran
- Department of Medical Genetics, Tehran University of Medical Sciences, Poursina street, Tehran 1366736511, Iran
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Norshariza Nordin
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Heshu Rahman
- Department of Medical Laboratory Sciences and Technology, College of Health Sciences, Komar University of Science and Technology, Chaq Chaq Qularaese, Sarchinar District, Sulaimani 334, Iraq
- Department of Clinical and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani 334, Iraq
| | - Rozita Rosli
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Alsamri H, El Hasasna H, Al Dhaheri Y, Eid AH, Attoub S, Iratni R. Carnosol, a Natural Polyphenol, Inhibits Migration, Metastasis, and Tumor Growth of Breast Cancer via a ROS-Dependent Proteasome Degradation of STAT3. Front Oncol 2019; 9:743. [PMID: 31456939 PMCID: PMC6698796 DOI: 10.3389/fonc.2019.00743] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
We have previously demonstrated that carnosol, a naturally occurring diterpene, inhibited in vitro cell viability and colony growth, as well as induced cell cycle arrest, autophagy and apoptosis in human triple negative breast cancer (TNBC) cells. In the present study, we evaluated the ability of carnosol to inhibit tumor growth and metastasis in vivo. We found that non-cytotoxic concentrations of carnosol inhibited the migration and invasion of MDA-MB-231 cells in wound healing and matrigel invasion assays. Furthermore, gelatin zymography, ELISA, and RT-PCR assays revealed that carnosol inhibited the activity and downregulation the expression of MMP-9. Mechanistically, we demonstrated that carnosol suppressed the activation of STAT3 signaling pathway through a ROS-dependent targeting of STAT3 to proteasome-degradation in breast cancer cells (MDA-MB-231, Hs578T, MCF-7, and T47D). We show that blockade of proteasome activity, by MG-132 and bortezomib, or ROS accumulation, by N-acetylcysteine (NAC), restored the level of STAT3 protein. In addition, using chick embryo tumor growth assay, we showed that carnosol significantly and markedly suppressed tumor growth and metastasis of breast cancer xenografts. To the best of our knowledge, this is the first report which shows that carnosol specifically targets signal transducer and activator of transcription 3 (STAT3) for proteasome degradation in breast cancer. Our study further provide evidence that carnosol may represent a promising therapeutic candidate that canmodulate breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Halima Alsamri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hussain El Hasasna
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Vemula S, Gupta MK, Arva Tatireddygari VR, Vadde R. Pancreatic cancer chemoprevention. THERANOSTIC APPROACH FOR PANCREATIC CANCER 2019:245-261. [DOI: 10.1016/b978-0-12-819457-7.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
4
|
Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Song HM, Li X, Liu YY, Lu WP, Cui ZH, Zhou L, Yao D, Zhang HM. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int J Mol Med 2018; 42:193-207. [PMID: 29620148 PMCID: PMC5979837 DOI: 10.3892/ijmm.2018.3593] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of liver damage characterized by abnormal hepatic fat accumulation and inflammatory response. Although the molecular mechanisms responsible for the disease are not yet fully understood, the pathogenesis of NAFLD likely involves multiple signals. The identification of effective therapeutic strategies to target these signals is of utmost importance. Carnosic acid (CA), as a phenolic diterpene with anticancer, anti-bacterial, anti-diabetic and neuroprotective properties, is produced by many species of the Lamiaceae family. Myristoylated alanine-rich C-kinase substrate (MARCKS) is a major protein kinase C (PKC) substrate in many different cell types. In the present study, wild-type C57BL/6 and MARCKS-deficient mice were randomly divided into the normal chow- or high-fat (HF) diet-fed groups. The HF diet increased the fasting glucose and insulin levels, and promoted glucose intolerance in the wild-type mice. MARCKS deficiency further upregulated intolerance, fasting glucose and insulin. The HF diet also promoted hepatic steatosis, serum alanine transaminase (ALT) and aspartate transaminase (AST) activity, inflammation and lipid accumulation in the wild-type mice. These responses were accelerated in the MARCKS-deficient mice. Importantly, increased inflammation and lipid accumulation were associated with phosphoinositide 3-kinase (PI3K)/AKT, NLR family pyrin domain containing 3 (NLRP3)/nuclear factor-κB (NF-κB) and sterol regulatory element binding protein-1c (SREBP-1c) signaling pathway activation. The mice treated with CA exhibited a significantly improved glucose and insulin tolerance. The production of pro-inflammatory cytokines and lipid accumulation were suppressed by CA. Significantly, MARCKS was reduced in mice fed the HF diet. CA treatment upregulated MARCKS expression compared to the HF group. Furthermore, the activation of the PI3K/AKT, NLRP3/NF-κB and SREBP-1c signaling pathways was inhibited by CA. Taken together, our data suggest that CA suppresses inflammation and lipogenesis in mice fed a HF diet through MARCKS regulation. Thus, CA may be prove to be a useful anti-NAFLD agent.
Collapse
Affiliation(s)
- Hong-Mao Song
- Department of Otolaryngology-Head and Neck Surgery, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiang Li
- Department of Clinical Laboratory, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yuan-Yuan Liu
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Wei-Ping Lu
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhao-Hui Cui
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Li Zhou
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Di Yao
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hong-Man Zhang
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
6
|
Carnosol suppresses patient-derived gastric tumor growth by targeting RSK2. Oncotarget 2018; 9:34200-34212. [PMID: 30344937 PMCID: PMC6188138 DOI: 10.18632/oncotarget.24409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022] Open
Abstract
Carnosol is a phenolic diterpene that is isolated from rosemary, sage, and oregano. It has been reported to possess anti-oxidant, anti-inflammatory, and anti-cancer properties. However, the molecular mechanism of carnosol's activity against gastric cancer has not been investigated. Herein, we report that carnosol is an RSK2 inhibitor that attenuates gastric cancer growth. Carnosol reduced anchorage-dependent and -independent gastric cancer growth by inhibiting the RSKs-CREB signaling pathway. The results of in vitro screening and cell-based assays indicated that carnosol represses RSK2 activity and its downstream signaling. Carnosol increased the G2/M phase and decreased S phase cell cycle and also induced apoptosis through the activation of caspases 9 and 7 and inhibition of Bcl-xL expression. Notably, oral administration of carnosol suppressed patient-derived gastric tumor growth in an in vivo mouse model. Our findings suggest that carnosol is an RSK2 inhibitor that could be useful for treating gastric cancer.
Collapse
|
7
|
Maione F, Cantone V, Pace S, Chini MG, Bisio A, Romussi G, Pieretti S, Werz O, Koeberle A, Mascolo N, Bifulco G. Anti-inflammatory and analgesic activity of carnosol and carnosic acid in vivo and in vitro and in silico analysis of their target interactions. Br J Pharmacol 2017; 174:1497-1508. [PMID: 27464306 PMCID: PMC5429324 DOI: 10.1111/bph.13545] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/25/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE The diterpenoids carnosol (CS) and carnosic acid (CA) from Salvia spp. exert prominent anti-inflammatory activities but their molecular mechanisms remained unclear. Here we investigated the effectiveness of CS and CA in inflammatory pain and the cellular interference with their putative molecular targets. EXPERIMENTAL APPROACH The effects of CS and CA in different models of inflammatory pain were investigated. The inhibition of key enzymes in eicosanoid biosynthesis, namely microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO) was confirmed by CS and CA, and we determined the consequence on the eicosanoid network in activated human primary monocytes and neutrophils. Molecular interactions and binding modes of CS and CA to target enzymes were analyzed by docking studies. KEY RESULTS CS and CA displayed significant and dose-dependent anti-inflammatory and anti-nociceptive effects in carrageenan-induced mouse hyperalgesia 4 h post injection of the stimuli, and also inhibited the analgesic response in the late phase of the formalin test. Moreover, both compounds potently inhibited cell-free mPGES-1 and 5-LO activity and preferentially suppressed the formation of mPGES-1 and 5-LO-derived products in cellular studies. Our in silico analysis for mPGES-1 and 5-LO supports that CS and CA are dual 5-LO/mPGES-1 inhibitors. CONCLUSION AND IMPLICATIONS In summary, we propose that the combined inhibition of mPGES-1 and 5-LO by CS and CA essentially contributes to the bioactivity of these diterpenoids. Our findings pave the way for a rational use of Salvia spp., traditionally used as anti-inflammatory remedy, in the continuous expanding context of nutraceuticals. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Francesco Maione
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | - Simona Pace
- Institute of PharmacyFriedrich Schiller University JenaJenaGermany
| | | | - Angela Bisio
- Department of PharmacyUniversity of GenoaGenoaItaly
| | | | - Stefano Pieretti
- Department of Therapeutic Research and Medicine EvaluationIstituto Superiore di SanitàRomeItaly
| | - Oliver Werz
- Institute of PharmacyFriedrich Schiller University JenaJenaGermany
| | - Andreas Koeberle
- Institute of PharmacyFriedrich Schiller University JenaJenaGermany
| | - Nicola Mascolo
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | |
Collapse
|
8
|
Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. JOURNAL OF ONCOLOGY 2017; 2017:7351976. [PMID: 28555156 PMCID: PMC5438845 DOI: 10.1155/2017/7351976] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association.
Collapse
Affiliation(s)
- Lamia Mouhid
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Marta Corzo-Martínez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Carlos Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
9
|
Kashyap D, Kumar G, Sharma A, Sak K, Tuli HS, Mukherjee TK. Mechanistic insight into carnosol-mediated pharmacological effects: Recent trends and advancements. Life Sci 2017; 169:27-36. [PMID: 27871947 DOI: 10.1016/j.lfs.2016.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/30/2022]
Abstract
For several decades, bioactive phytochemicals have been appreciated to prevent and cure various lethal diseases. Many studies have proven the ability of dietary phytochemicals to avoid and retard tumor initiation and progression. Among the pharmacologically active moieties, terpenoids are considered one of the most important classes. Carnosol, is also a kind of diterpenoid, which known to possess a range of therapeutic effects such as anti-cancer, anti-inflammatory, and anti-oxidant activities. All these effects are mediated via modulating different signaling cascades, including apoptosis regulating molecules (Bax/Bcl2), prosurvival-proproliferative molecules (Akt/mTOR, MAPK), transcription factors like NF-kappaB, STAT3-6, and steroid receptors, such as androgen and estrogen receptors. The present review highlights the recent trends and advancements have been done in the field of research by using carnosol.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Gaurav Kumar
- School of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-Kharwarian, Hamirpur, Himachal Pradesh 17604, India
| | - Katrin Sak
- Department of Hematology and Oncology, Institute of Clinical Medicine, University of Tartu, Estonia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India.
| | - Tapan K Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India
| |
Collapse
|
10
|
Terpenoids as anti-colon cancer agents - A comprehensive review on its mechanistic perspectives. Eur J Pharmacol 2016; 795:169-178. [PMID: 27940056 DOI: 10.1016/j.ejphar.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023]
Abstract
Multistep model of colon carcinogenesis has provided the framework to advance our understanding of the molecular basis of colon cancer. This multistage process of carcinogenesis takes a long period to transform from a normal epithelial cell to invasive carcinoma. Thus, it provides enough time to intervene the process of carcinogenesis especially through dietary modification. In spite of the in-depth understanding of the colon cancer etiology and pathophysiology and its association with diet, colon cancer remains a major cause of cancer mortality worldwide. Phytochemicals and their derivatives are gaining attention in cancer prevention and treatment strategies because of cancer chemotherapy associated adverse effects. Being the largest group of phytochemicals traditionally used for medicinal purpose in India and China, terpenoids are recently being explored as anticancer agents. Anticancer properties of terpenoids are associated with various mechanisms like counteraction of oxidative stress, potentiating endogenous antioxidants, improving detoxification potential, disrupting cell survival pathways and inducing apoptosis. This review gives a comprehensive idea of naturally occurring terpenoids as useful agents for the prevention of colon cancer with reference to their classes, sources and molecular targets. Based on the explored molecular targets further research in colon cancer chemoprevention is warranted.
Collapse
|
11
|
Valdés A, García-Cañas V, Artemenko KA, Simó C, Bergquist J, Cifuentes A. Nano-liquid Chromatography-orbitrap MS-based Quantitative Proteomics Reveals Differences Between the Mechanisms of Action of Carnosic Acid and Carnosol in Colon Cancer Cells. Mol Cell Proteomics 2016; 16:8-22. [PMID: 27834734 DOI: 10.1074/mcp.m116.061481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Carnosic acid (CA) and carnosol (CS) are two structurally related diterpenes present in rosemary herb (Rosmarinus officinalis). Although several studies have demonstrated that both diterpenes can scavenge free radicals and interfere in cellular processes such as cell proliferation, they may not necessarily exert the same effects at the molecular level. In this work, a shotgun proteomics study based on stable isotope dimethyl labeling (DML) and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) has been performed to identify the relative changes in proteins and to gain some light on the specific molecular targets and mechanisms of action of CA and CS in HT-29 colon cancer cells. Protein profiles revealed that CA and CS induce different Nrf2-mediated response. Furthermore, examination of our data revealed that each diterpene affects protein homeostasis by different mechanisms. CA treatment induces the expression of proteins involved in the unfolded protein response in a concentration dependent manner reflecting ER stress, whereas CS directly inhibits chymotrypsin-like activity of the 20S proteasome. In conclusion, the unbiased proteomics-wide method applied in the present study has demonstrated to be a powerful tool to reveal differences on the mechanisms of action of two related bioactive compounds in the same biological model.
Collapse
Affiliation(s)
- Alberto Valdés
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Virginia García-Cañas
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - Konstantin A Artemenko
- §Analytical Chemistry, Department of Chemistry-BMC and SciLifeLab, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Carolina Simó
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Jonas Bergquist
- §Analytical Chemistry, Department of Chemistry-BMC and SciLifeLab, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Alejandro Cifuentes
- From the ‡Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Calle Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
12
|
Schwager J, Richard N, Fowler A, Seifert N, Raederstorff D. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes. Molecules 2016; 21:465. [PMID: 27070563 PMCID: PMC6274263 DOI: 10.3390/molecules21040465] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/02/2022] Open
Abstract
Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL), carnosic acid (CA), carnosic acid-12-methylether (CAME), 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT) in murine macrophages (RAW264.7 cells) and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production in LPS-stimulated macrophages (i.e., acute inflammation). They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6) and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis.
Collapse
Affiliation(s)
- Joseph Schwager
- DSM Nutritional Products, Wurmisweg 576, P. O. Box 2676, Basel 4002, Switzerland.
| | - Nathalie Richard
- DSM Nutritional Products, Wurmisweg 576, P. O. Box 2676, Basel 4002, Switzerland.
| | - Ann Fowler
- DSM Nutritional Products, Wurmisweg 576, P. O. Box 2676, Basel 4002, Switzerland.
| | - Nicole Seifert
- DSM Nutritional Products, Wurmisweg 576, P. O. Box 2676, Basel 4002, Switzerland.
| | - Daniel Raederstorff
- DSM Nutritional Products, Wurmisweg 576, P. O. Box 2676, Basel 4002, Switzerland.
| |
Collapse
|
13
|
de la Roche M, Ibrahim AEK, Mieszczanek J, Bienz M. LEF1 and B9L shield β-catenin from inactivation by Axin, desensitizing colorectal cancer cells to tankyrase inhibitors. Cancer Res 2014; 74:1495-505. [PMID: 24419084 PMCID: PMC3947273 DOI: 10.1158/0008-5472.can-13-2682] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hyperactive β-catenin drives colorectal cancer, yet inhibiting its activity remains a formidable challenge. Interest is mounting in tankyrase inhibitors (TNKSi), which destabilize β-catenin through stabilizing Axin. Here, we confirm that TNKSi inhibit Wnt-induced transcription, similarly to carnosate, which reduces the transcriptional activity of β-catenin by blocking its binding to BCL9, and attenuates intestinal tumors in Apc(Min) mice. By contrast, β-catenin's activity is unresponsive to TNKSi in colorectal cancer cells and in cells after prolonged Wnt stimulation. This TNKSi insensitivity is conferred by β-catenin's association with LEF1 and BCL9-2/B9L, which accumulate during Wnt stimulation, thereby providing a feed-forward loop that converts transient into chronic β-catenin signaling. This limits the therapeutic value of TNKSi in colorectal carcinomas, most of which express high LEF1 levels. Our study provides proof-of-concept that the successful inhibition of oncogenic β-catenin in colorectal cancer requires the targeting of its interaction with LEF1 and/or BCL9/B9L, as exemplified by carnosate.
Collapse
Affiliation(s)
- Marc de la Roche
- corresponding authors Phone +44 1223 267 093, +44 1223 746 851 Fax +44 1223 268 305 ,
| | - Ashraf E. K. Ibrahim
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Juliusz Mieszczanek
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
14
|
Misikangas M, Pajari AM, Päivärinta E, Oikarinen SI, Rajakangas J, Marttinen M, Tanayama H, Törrönen R, Mutanen M. Three Nordic berries inhibit intestinal tumorigenesis in multiple intestinal neoplasia/+ mice by modulating beta-catenin signaling in the tumor and transcription in the mucosa. J Nutr 2007; 137:2285-90. [PMID: 17885012 DOI: 10.1093/jn/137.10.2285] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Berries contain a number of compounds that are proposed to have anticarcinogenic properties. We studied the effects and molecular mechanisms of wild berries with different phenolic profiles on intestinal tumorigenesis in multiple intestinal neoplasia/+ mice. The mice were fed a high-fat AIN93-G diet (Con) or AIN93-G diets containing 10% (w:w) freeze-dried bilberry, lingonberry (LB), or cloudberry (CB) for 10 wk. All 3 berries significantly inhibited the formation of intestinal adenomas as indicated by a 15-30% reduction in tumor number (P < 0.05). CB and LB also reduced tumor burden by over 60% (P < 0.05). Compared to Con, CB and LB resulted in a larger (P < 0.05) proportion of small adenomas (43, 69, and 64%, respectively) and a smaller proportion of large adenomas (56, 29, and 33%, respectively). Beta-catenin and cyclin D1 in the small and large adenomas and in the normal-appearing mucosa were measured by Western blotting and immunohistochemistry. CB resulted in decreased levels of nuclear beta-catenin and cyclin D1 and LB in the level of cyclin D1 in the large adenomas (P < 0.05). Early changes in gene expression in the normal-appearing mucosa were analyzed by Affymetrix microarrays, which revealed changes in genes implicated in colon carcinogenesis, including the decreased expression of the adenosine deaminase, ecto-5'-nucleotidase, and prostaglandin E2 receptor subtype EP4. Our results indicate that berries are potentially a rich source of chemopreventive components.
Collapse
Affiliation(s)
- Marjo Misikangas
- Department of Applied Chemistry and Microbiology (Nutrition), University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, Roodenrys S, Keogh JB, Clifton PM, Williams PG, Fazio VA, Inge KE. Health benefits of herbs and spices: the past, the present, the future. Med J Aust 2006; 185:S1-S24. [PMID: 17022438 DOI: 10.5694/j.1326-5377.2006.tb00548.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
UNLABELLED Herbs and spices have a traditional history of use, with strong roles in cultural heritage, and in the appreciation of food and its links to health. Demonstrating the benefits of foods by scientific means remains a challenge, particularly when compared with standards applied for assessing pharmaceutical agents. Pharmaceuticals are small-molecular-weight compounds consumed in a purified and concentrated form. Food is eaten in combinations, in relatively large, unmeasured quantities under highly socialised conditions. The real challenge lies not in proving whether foods, such as herbs and spices, have health benefits, but in defining what these benefits are and developing the methods to expose them by scientific means. CULTURAL ASPECTS The place of herbs and spices in the diet needs to be considered in reviewing health benefits. This includes definitions of the food category and the way in which benefits might be viewed, and therefore researched. Research may focus on identifying bioactive substances in herbs and spices, or on their properties as a whole food, and/or be set in the context of a dietary cuisine. THE ROLE OF HERBS AND SPICES IN HEALTH The antioxidant properties of herbs and spices are of particular interest in view of the impact of oxidative modification of low-density lipoprotein cholesterol in the development of atherosclerosis. There is level III-3 evidence (National Health and Medical Research Council [NHMRC] levels of evidence) that consuming a half to one clove of garlic (or equivalent) daily may have a cholesterol-lowering effect of up to 9%. There is level III-1 evidence that 7.2 g of aged garlic extract has been associated with anticlotting (in-vivo studies), as well as modest reductions in blood pressure (an approximate 5.5% decrease in systolic blood pressure). A range of bioactive compounds in herbs and spices have been studied for anticarcinogenic properties in animals, but the challenge lies in integrating this knowledge to ascertain whether any effects can be observed in humans, and within defined cuisines. Research on the effects of herbs and spices on mental health should distinguish between cognitive decline associated with ageing and the acute effects of psychological and cognitive function. There is level I and II evidence for the effect of some herbal supplements on psychological and cognitive function. There is very limited scientific evidence for the effects of herbs and spices on type 2 diabetes mellitus, with the best evidence being available for the effect of ginseng on glycaemia, albeit based on four studies. More research is required, particularly examining the effects of chronic consumption patterns. With increasing interest in alternatives to non-steroidal anti-inflammatory agents in the management of chronic inflammation, research is emerging on the use of food extracts. There is level II evidence for the use of ginger in ameliorating arthritic knee pain; however, the improvement is modest and the efficacy of ginger treatment is ranked below that of ibuprofen. More definitive research is required. PUBLIC HEALTH AND DIETARY IMPLICATIONS Recommendations for intakes of food in the Australian guide to healthy eating do not yet include suggested intakes of herbs and spices. Future consideration should be given to including more explicit recommendations about their place in a healthy diet. In addition to delivering antioxidant and other properties, herbs and spices can be used in recipes to partially or wholly replace less desirable ingredients such as salt, sugar and added saturated fat in, for example, marinades and dressings, stir-fry dishes, casseroles, soups, curries and Mediterranean-style cooking. Vegetable dishes and vegetarian options may be more appetising when prepared with herbs and spices. FUTURE DIRECTIONS As several metabolic diseases and age-related degenerative disorders are closely associated with oxidative processes in the body, the use of herbs and spices as a source of antioxidants to combat oxidation warrants further attention. Immediate studies should focus on validating the antioxidant capacity of herbs and spices after harvest, as well as testing their effects on markers of oxidation. This will work in parallel with clinical trials that are aiming to establish antioxidants as mediators of disease prevention. From a dietary perspective, the functionality of herbs and spices will be exposed through consideration of their properties as foods. As with most foods, the real benefits of including them in the diet are likely to emerge with a better understanding of the attributes of health that are best supported by food, and in methodological developments addressing the evidence base for their effects. These developments are well underway through evidence-based frameworks for substantiating health claims related to foods. At present, recommendations are warranted to support the consumption of foods rich in bioactive components, such as herbs and spices. With time, we can expect to see a greater body of scientific evidence supporting the benefits of herbs and spices in the overall maintenance of health and protection from disease.
Collapse
Affiliation(s)
- Linda C Tapsell
- National Centre of Excellence in Functional Foods, University of Wollongong, NSW
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|