1
|
Yu J, Deng J, Ren L, Hua L, Wu T, Hui Y, Shao C, Gong Y. A high content clonogenic survival drug screening identifies maytansine as a potent radiosensitizer for meningiomas. Front Immunol 2025; 16:1557165. [PMID: 40170861 PMCID: PMC11959303 DOI: 10.3389/fimmu.2025.1557165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Purpose Radiation resistance significantly hinders the efficacy of radiotherapy for meningiomas, posing a primary obstacle. The clinical inadequacy of therapeutic drugs and radiosensitizers for treating meningiomas further exacerbates the challenge. Therefore, the aim of this study was to identify potential radiosensitizers for treating meningiomas. Methods A high content clonogenic survival drug screening was employed to evaluate 166 FDA-approved compounds across varied concentration ranges. Cell viability, apoptosis, and radiosensitization were assessed using CCK-8 assays, Annexin V-FITC/PI assays and standard colony formation assays. Transcriptome sequencing, immunofluorescence and cell cycle experiments were conducted to assess transcriptional profile, DNA double-strand break damage and cell cycle distribution. Finally, the radiosensitizing effect of Maytansine was assessed in vivo through subcutaneous tumor implantation in nude mice. Results The proportion of maytansine exhibiting SRF≥1.5 within the detectable concentration range was 100%. CCK-8 assay indicated the IC50 values of maytansine for IOMM-Lee and CH157 were 0.26 ± 0.06 nM and 0.31 ± 0.01 nM, respectively. Standard clonogenic survival assays and Annexin V-FITC/PI assays revealed maytansine had a notable radiosensitizing effect on meningioma cells. Transcriptome sequencing analysis demonstrated that maytansine can modulate cell cycle and DNA damage repair. Immunofluorescence analysis of γ-H2AX and cell cycle experiments demonstrated that Maytansine enhances DNA double-strand breaks and induces G2/M phase arrest. Moreover, in vivo studies had indicated that Maytansine augments the therapeutic efficacy of radiotherapy. Conclusion This study highlighted the potential of maytansine as a potent inhibitor and radiosensitizer for meningiomas by inducing G2/M phase cell cycle arrest and enhancing DNA double-strand break damage. These findings opened up a promising path in the development of radiosensitizers aimed at treating this condition.
Collapse
Affiliation(s)
- Jinxiu Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Leihao Ren
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Tianqi Wu
- Department of Radiotherapy, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
- Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Qian J, Wang Q, Xiao L, Xiong W, Xian M, Su P, Yang M, Zhang C, Li Y, Zhong L, Ganguly S, Zu Y, Yi Q. Development of therapeutic monoclonal antibodies against DKK1 peptide-HLA-A2 complex to treat human cancers. J Immunother Cancer 2024; 12:e008145. [PMID: 38267222 PMCID: PMC10824003 DOI: 10.1136/jitc-2023-008145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Targeted immunotherapy with monoclonal antibodies (mAbs) is an effective and safe method for the treatment of malignancies. Development of mAbs with improved cytotoxicity, targeting new and known tumor-associated antigens, therefore continues to be an active research area. We reported that Dickkopf-1 (DKK1) is a good target for immunotherapy of human cancers based on its wide expression in different cancers but not in normal tissues. As DKK1 is a secreted protein, mAbs binding directly to DKK1 have limited effects on cancer cells in vivo. METHODS The specificity and antibody-binding capacity of DKK1-A2 mAbs were determined using indirect ELISA, confocal imaging, QIFIKIT antibody-binding capacity and cell surface binding assays. The affinity of mAbs was determined using a surface plasmon resonance biosensor. A flow cytometry-based cell death was performed to detect tumor cell apoptosis. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays were used to evaluate the ability of DKK1-A2 mAbs to mediate ADCC and CDC activities against tumor cells in vitro. Flow cytometry data were collected with an FACSymphony A3 cell analyzer and analyzed with FlowJo V.10.1 software. Human cancer xenograft mouse models were used to determine the in vivo therapeutic efficacy and the potential safety and toxicity of DKK1-A2 mAbs. In situ TUNEL assay was performed to detect apoptosis in tumors and mouse organs. RESULTS We generated novel DKK1-A2 mAbs that recognize the DKK1 P20 peptide presented by human HLA-A*0201 (HLA-A2) molecules (DKK1-A2 complexes) that are naturally expressed by HLA-A2+DKK1+ cancer cells. These mAbs directly induced apoptosis in HLA-A2+DKK1+ hematologic and solid cancer cells by activating the caspase-9 cascade, effectively lysed the cancer cells in vitro by mediating CDC and ADCC and were therapeutic against established cancers in their xenograft mouse models. As DKK1 is not detected in most human tissues, DKK1-A2 mAbs neither bound to or killed HLA-A2+ blood cells in vitro nor caused tissue damage in tumor-free or tumor-bearing HLA-A2-transgenic mice. CONCLUSION Our study suggests that DKK1-A2 mAbs may be a promising therapeutic agent to treat human cancers.
Collapse
Affiliation(s)
- Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Maojie Yang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Chuanchao Zhang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yabo Li
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Ling Zhong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Siddhartha Ganguly
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Zafar S, Armaghan M, Khan K, Hassan N, Sharifi-Rad J, Habtemariam S, Kieliszek M, Butnariu M, Bagiu IC, Bagiu RV, Cho WC. New insights into the anticancer therapeutic potential of maytansine and its derivatives. Biomed Pharmacother 2023; 165:115039. [PMID: 37364476 DOI: 10.1016/j.biopha.2023.115039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.
Collapse
Affiliation(s)
- Sameen Zafar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab, Pakistan.
| | - Nazia Hassan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland.
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania.
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania; Preventive Medicine Study Center, Timisoara, Romania
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
Ray U, Orlowski RZ. Antibody-Drug Conjugates for Multiple Myeloma: Just the Beginning, or the Beginning of the End? Pharmaceuticals (Basel) 2023; 16:ph16040590. [PMID: 37111346 PMCID: PMC10145905 DOI: 10.3390/ph16040590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple myeloma is a malignancy of immunoglobulin-secreting plasma cells that is now often treated in the newly diagnosed and relapsed and/or refractory settings with monoclonal antibodies targeting lineage-specific markers used either alone or in rationally designed combination regimens. Among these are the anti-CD38 antibodies daratumumab and isatuximab, and the anti-Signaling lymphocytic activation molecule family member 7 antibody elotuzumab, all of which are used in their unconjugated formats. Single-chain variable fragments from antibodies also form a key element of the chimeric antigen receptors (CARs) in the B-cell maturation antigen (BCMA)-targeted CAR T-cell products idecabtagene vicleucel and ciltacabtagene autoleucel, which are approved in the advanced setting. Most recently, the bispecific anti-BCMA and T-cell-engaging antibody teclistamab has become available, again for patients with relapsed/refractory disease. Another format into which antibodies can be converted to exert anti-tumor efficacy is as antibody-drug conjugates (ADCs), and belantamab mafodotin, which also targets BCMA, represented the first such agent that gained a foothold in myeloma. Negative results from a recent Phase III study have prompted the initiation of a process for withdrawal of its marketing authorization. However, belantamab remains a drug with some promise, and many other ADCs targeting either BCMA or other plasma cell surface markers are in development and showing potential. This contribution will provide an overview of some of the current data supporting the possibility that ADCs will remain a part of our chemotherapeutic armamentarium against myeloma moving forward, and also highlight areas for future development.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX 77030-4009, USA
| |
Collapse
|
5
|
Caracciolo D, Mancuso A, Polerà N, Froio C, D'Aquino G, Riillo C, Tagliaferri P, Tassone P. The emerging scenario of immunotherapy for T-cell Acute Lymphoblastic Leukemia: advances, challenges and future perspectives. Exp Hematol Oncol 2023; 12:5. [PMID: 36624522 PMCID: PMC9828428 DOI: 10.1186/s40164-022-00368-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging pediatric and adult haematologic disease still associated with an unsatisfactory cure rate. Unlike B-ALL, the availability of novel therapeutic options to definitively improve the life expectancy for relapsed/resistant patients is poor. Indeed, the shared expression of surface targets among normal and neoplastic T-cells still limits the efficacy and may induce fratricide effects, hampering the use of innovative immunotherapeutic strategies. However, novel monoclonal antibodies, bispecific T-cell engagers (BTCEs), and chimeric antigen receptors (CAR) T-cells recently showed encouraging results and some of them are in an advanced stage of pre-clinical development or are currently under investigation in clinical trials. Here, we review this exciting scenario focusing on most relevant advances, challenges, and perspectives of the emerging landscape of immunotherapy of T-cell malignancies.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Froio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Tai W, Wahab A, Franco D, Shah Z, Ashraf A, Abid QUA, Mohammed YN, Lal D, Anwer F. Emerging Role of Antibody-Drug Conjugates and Bispecific Antibodies for the Treatment of Multiple Myeloma. Antibodies (Basel) 2022; 11:22. [PMID: 35466275 PMCID: PMC9036234 DOI: 10.3390/antib11020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is characterized by malignant proliferation of malignant plasma cells; it is the second most common hematological malignancy associated with significant morbidity. Genetic intricacy, instability, and diverse clinical presentations remain a barrier to cure. The treatment of MM is modernized with the introduction of newer therapeutics agents, i.e., target-specific monoclonal antibodies. The currently available literature lacks the benefits of newer targeted therapy being developed with an aim to reduce side effects and increase effectiveness, compared to conventional chemotherapy regimens. This article aims to review literature about the current available monoclonal antibodies, antibody-drug conjugates, and bispecific antibodies for the treatment of MM.
Collapse
Affiliation(s)
- Waqqas Tai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA;
| | - Ahsan Wahab
- Department of Internal Medicine, Prattville Baptist Hospital, Prattville, AL 36066, USA;
| | - Diana Franco
- Department of Internal Medicine, Loyola MacNeal Hospital, Berwyn, IL 60402, USA;
| | - Zunairah Shah
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA;
| | - Aqsa Ashraf
- Department of Internal Medicine, Northwell Health, Mather Hospital, Port Jefferson, NY 11777, USA;
| | - Qurrat-Ul-Ain Abid
- Department of Internal Medicine, AMITA Health Saint Joseph Hospital, Chicago, IL 60657, USA;
| | - Yaqub Nadeem Mohammed
- Department of Internal Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI 48341, USA;
| | - Darshan Lal
- Department of Internal Medicine, University of Nevada School of Medicine, Las Vegas, NV 89102, USA;
| | - Faiz Anwer
- Taussig Cancer Center, Myeloma Program, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Teicher BA, Morris J. Antibody-Drug Conjugate Targets, Drugs and Linkers. Curr Cancer Drug Targets 2022; 22:463-529. [PMID: 35209819 DOI: 10.2174/1568009622666220224110538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| | - Joel Morris
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| |
Collapse
|
8
|
Cho N, Ko S, Shokeen M. Tissue biodistribution and tumor targeting of near-infrared labelled anti-CD38 antibody-drug conjugate in preclinical multiple myeloma. Oncotarget 2021; 12:2039-2050. [PMID: 34611478 PMCID: PMC8487729 DOI: 10.18632/oncotarget.28074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Daratumumab (DARA) is an FDA-approved high-affinity monoclonal antibody targeting CD38 that has shown promising therapeutic efficacy in double refractory multiple myeloma (MM) patients. Despite the well-established clinical efficacy of DARA, not all heavily pretreated patients respond to single-agent DARA, and the majority of patients who initially respond eventually progress. Antibody-drug conjugates (ADCs) combine the highly targeted tumor antigen recognition of antibodies with the cell killing properties of chemotherapy for effective internalization and processing of the drug. In this study, we evaluated the anti-tumor efficacy of DARA conjugated to the maytansine derivative, mertansine (DM1), linked via a non-cleavable bifunctional linker. The ADC was labelled with the near-infrared (NIR) fluorophore IRDye800 (DARA-DM1-IR) to evaluate its stability, biodistribution and pharmacokinetics in vitro and in vivo. We demonstrated the conjugation of: 1) DM1 enhanced tumor-killing efficacy of the native DARA and 2) IRDye800 allowed for visualization of uptake and tumor targeting ability of the ADC. With the advent of other classes of immunoconjugates for use in MM, we reasoned that such imaging techniques can be utilized to evaluate other promising conjugates in preclinical MM models on a whole-body and cellular level.
Collapse
Affiliation(s)
- Nicholas Cho
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sooah Ko
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
| |
Collapse
|
9
|
Marofi F, Tahmasebi S, Rahman HS, Kaigorodov D, Markov A, Yumashev AV, Shomali N, Chartrand MS, Pathak Y, Mohammed RN, Jarahian M, Motavalli R, Motavalli Khiavi F. Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism. Stem Cell Res Ther 2021; 12:217. [PMID: 33781320 PMCID: PMC8008571 DOI: 10.1186/s13287-021-02283-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite many recent advances on cancer novel therapies, researchers have yet a long way to cure cancer. They have to deal with tough challenges before they can reach success. Nonetheless, it seems that recently developed immunotherapy-based therapy approaches such as adoptive cell transfer (ACT) have emerged as a promising therapeutic strategy against various kinds of tumors even the cancers in the blood (liquid cancers). The hematological (liquid) cancers are hard to be targeted by usual cancer therapies, for they do not form localized solid tumors. Until recently, two types of ACTs have been developed and introduced; tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR)-T cells which the latter is the subject of our discussion. It is interesting about engineered CAR-T cells that they are genetically endowed with unique cancer-specific characteristics, so they can use the potency of the host immune system to fight against either solid or liquid cancers. Multiple myeloma (MM) or simply referred to as myeloma is a type of hematological malignancy that affects the plasma cells. The cancerous plasma cells produce immunoglobulins (antibodies) uncontrollably which consequently damage the tissues and organs and break the immune system function. Although the last few years have seen significant progressions in the treatment of MM, still a complete remission remains unconvincing. MM is a medically challenging and stubborn disease with a disappointingly low rate of survival rate. When comparing the three most occurring blood cancers (i.e., lymphoma, leukemia, and myeloma), myeloma has the lowest 5-year survival rate (around 40%). A low survival rate indicates a high mortality rate with difficulty in treatment. Therefore, novel CAR-T cell-based therapies or combination therapies along with CAT-T cells may bring new hope for multiple myeloma patients. CAR-T cell therapy has a high potential to improve the remission success rate in patients with MM. To date, many preclinical and clinical trial studies have been conducted to investigate the ability and capacity of CAR T cells in targeting the antigens on myeloma cells. Despite the problems and obstacles, CAR-T cell experiments in MM patients revealed a robust therapeutic potential. However, several factors might be considered during CAR-T cell therapy for better response and reduced side effects. Also, incorporating the CAT-T cell method into a combinational treatment schedule may be a promising approach. In this paper, with a greater emphasis on CAR-T cell application in the treatment of MM, we will discuss and introduce CAR-T cell's history and functions, their limitations, and the solutions to defeat the limitations and different types of modifications on CAR-T cells.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Sulaymaniyah, Iraq
| | - Denis Kaigorodov
- Director of Research Institute "MitoKey", Moscow State Medical University, Moscow, Russian Federation
| | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Trubetskaya St., 8-2, Moscow, Russian Federation, 119991
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, 69120, Heidelberg, Germany
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
10
|
Grover NS, Tschernia N, Dotti G, Savoldo B. Extending the Promise of Chimeric Antigen Receptor T-Cell Therapy Beyond Targeting CD19 + Tumors. J Clin Oncol 2021; 39:499-513. [PMID: 33434072 PMCID: PMC8462586 DOI: 10.1200/jco.20.01738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 01/24/2023] Open
Affiliation(s)
- Natalie S. Grover
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nicholas Tschernia
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Departments of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
11
|
Abstract
Introduction: Antibody-drug conjugates (ADC) are a new class of treatment for multiple myeloma (MM) patients, delivering a potent cytotoxic agent directly to the myeloma cell. The target is defined by the specificity of the monoclonal antibody which is linked to the cytotoxic agent. This mechanism of action minimizes bystander cell injury and allows a favorable therapeutic window.Areas covered: This review describes the rationale, pre- and clinical data for ADCs that have been and are currently in development for MM. As the treatment landscape for MM rapidly evolves, the treatment paradigm and a description of novel agents in development including immunotherapies are provided to understand how ADCs may fit in the pathway.Expert opinion: ADCs have a significant potential for the treatment for MM. As they are 'off the shelf' treatments, they can be used across nearly all MM treatment centers and to a wide range of patients. Some ADCs have specific adverse events that may require specialist input to optimally manage. The most clinically advanced ADC is belantamab mafodotin which has demonstrated clinically meaningful responses in patients with heavily pre-treated MM. Additionally, it is being combined with standard of care agents and at earlier lines of treatment.
Collapse
Affiliation(s)
- Annabel McMillan
- Haematology Department, National Institute for Health Research University College Hospital Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Dana Warcel
- Haematology Department, National Institute for Health Research University College Hospital Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rakesh Popat
- Haematology Department, National Institute for Health Research University College Hospital Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Bruins WSC, Zweegman S, Mutis T, van de Donk NWCJ. Targeted Therapy With Immunoconjugates for Multiple Myeloma. Front Immunol 2020; 11:1155. [PMID: 32636838 PMCID: PMC7316960 DOI: 10.3389/fimmu.2020.01155] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The introduction of proteasome inhibitors (PI) and immunomodulatory drugs (IMiD) has markedly increased the survival of multiple myeloma (MM) patients. Also, the unconjugated monoclonal antibodies (mAb) daratumumab (anti-CD38) and elotuzumab (anti-SLAMF7) have revolutionized MM treatment given their clinical efficacy and safety, illustrating the potential of targeted immunotherapy as a powerful treatment strategy for MM. Nonetheless, most patients eventually develop PI-, IMiD-, and mAb-refractory disease because of the selection of resistant MM clones, which associates with a poor prognosis. Accordingly, these patients remain in urgent need of new therapies with novel mechanisms of action. In this respect, mAbs or mAb fragments can also be utilized as carriers of potent effector moieties to specifically target surface antigens on cells of interest. Such immunoconjugates have the potential to exert anti-MM activity in heavily pretreated patients due to their distinct and pleiotropic mechanisms of action. In addition, the fusion of highly cytotoxic compounds to mAbs decreases the off-target toxicity, thereby improving the therapeutic window. According to the effector moiety, immunoconjugates are classified into antibody-drug conjugates, immunotoxins, immunocytokines, or radioimmunoconjugates. This review will focus on the mechanisms of action, safety and efficacy of several promising immunoconjugates that are under investigation in preclinical and/or clinical MM studies. We will also include a discussion on combination therapy with immunoconjugates, resistance mechanisms, and future developments.
Collapse
Affiliation(s)
- Wassilis S C Bruins
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Xue T, Budde LE. Immunotherapies Targeting CD123 for Blastic Plasmacytoid Dendritic Cell Neoplasm. Hematol Oncol Clin North Am 2020; 34:575-587. [DOI: 10.1016/j.hoc.2020.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Paving the Way toward Successful Multiple Myeloma Treatment: Chimeric Antigen Receptor T-Cell Therapy. Cells 2020; 9:cells9040983. [PMID: 32316105 PMCID: PMC7226998 DOI: 10.3390/cells9040983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the significant progress of modern anticancer therapies, multiple myeloma (MM) is still incurable for the majority of patients. Following almost three decades of development, chimeric antigen receptor (CAR) T-cell therapy now has the opportunity to revolutionize the treatment landscape and meet the unmet clinical need. However, there are still several major hurdles to overcome. Here we discuss the recent advances of CAR T-cell therapy for MM with an emphasis on future directions and possible risks. Currently, CAR T-cell therapy for MM is at the first stage of clinical studies, and most studies have focused on CAR T cells targeting B cell maturation antigen (BCMA), but other antigens such as cluster of differentiation 138 (CD138, syndecan-1) are also being evaluated. Although this therapy is associated with side effects, such as cytokine release syndrome and neurotoxicity, and relapses have been observed, the benefit–risk balance and huge potential drive the ongoing clinical progress. To fulfill the promise of recent clinical trial success and maximize the potential of CAR T, future efforts should focus on the reduction of side effects, novel targeted antigens, combinatorial uses of different types of CAR T, and development of CAR T cells targeting more than one antigen.
Collapse
|
15
|
Therapeutic Monoclonal Antibodies and Antibody Products: Current Practices and Development in Multiple Myeloma. Cancers (Basel) 2019; 12:cancers12010015. [PMID: 31861548 PMCID: PMC7017131 DOI: 10.3390/cancers12010015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is the latest innovation for the treatment of multiple myeloma (MM). Monoclonal antibodies (mAbs) entered the clinical practice and are under evaluation in clinical trials. MAbs can target highly selective and specific antigens on the cell surface of MM cells causing cell death (CD38 and CS1), convey specific cytotoxic drugs (antibody-drug conjugates), remove the breaks of the immune system (programmed death 1 (PD-1) and PD-ligand 1/2 (L1/L2) axis), or boost it against myeloma cells (bi-specific mAbs and T cell engagers). Two mAbs have been approved for the treatment of MM: the anti-CD38 daratumumab for newly-diagnosed and relapsed/refractory patients and the anti-CS1 elotuzumab in the relapse setting. These compounds are under investigation in clinical trials to explore their synergy with other anti-MM regimens, both in the front-line and relapse settings. Other antibodies targeting various antigens are under evaluation. B cell maturation antigens (BCMAs), selectively expressed on plasma cells, emerged as a promising target and several compounds targeting it have been developed. Encouraging results have been reported with antibody drug conjugates (e.g., GSK2857916) and bispecific T cell engagers (BiTEs®), including AMG420, which re-directs T cell-mediated cytotoxicity against MM cells. Here, we present an overview on mAbs currently approved for the treatment of MM and promising compounds under investigation.
Collapse
|
16
|
Wu C, Zhang L, Brockman QR, Zhan F, Chen L. Chimeric antigen receptor T cell therapies for multiple myeloma. J Hematol Oncol 2019; 12:120. [PMID: 31752943 PMCID: PMC6873434 DOI: 10.1186/s13045-019-0823-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy and remains incurable despite the advent of numerous new drugs such as proteasome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies. There is an unmet need to develop novel therapies for refractory/relapsed MM. In the past few years, chimeric antigen receptor (CAR)-modified T cell therapy for MM has shown promising efficacy in preclinical and clinical studies. Furthermore, the toxicities of CAR-T cell therapy are manageable. This article summarizes recent developments of CAR-T therapy in MM, focusing on promising targets, new technologies, and new research areas. Additionally, a comprehensive overview of antigen selection is presented along with preliminary results and future directions of CAR-T therapy development.
Collapse
Affiliation(s)
- Chao Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Lina Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qierra R Brockman
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd., Iowa City, IA, 52242, USA.,Molecular Medicine Program, University of Iowa, 585 Newton Rd., Iowa City, IA, 52242, USA
| | - Fenghuang Zhan
- Department of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation and Holden Comprehensive Cancer Center, University of Iowa, 585 Newton Rd., Iowa City, IA, 52242, USA
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
17
|
Li L, Wang L. Multiple Myeloma: What Do We Do About Immunodeficiency? J Cancer 2019; 10:1675-1684. [PMID: 31205523 PMCID: PMC6548011 DOI: 10.7150/jca.29993] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy. Immunodeficiency results in the incapability of immunity to eradicate both tumor cells and pathogens. Immunotherapies along with antibiotics and other anti-infectious agents are applied as substitutes for immunity in MM. Immunotherapies including monoclonal antibodies, immune checkpoints inhibitors, affinity- enhanced T cells, chimeric antigen receptor T cells and dendritic cell vaccines are revolutionizing MM treatment. By suppressing the pro-inflammatory milieu and pathogens, prophylactic and therapeutic antibiotics represent anti-tumor and anti-infection properties. It is expected that deeper understanding of infection, immunity and tumor physio-pathologies in MM will accelerate the optimization of combined therapies, thus improving prognosis in MM.
Collapse
Affiliation(s)
- Linrong Li
- Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Hematology, ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018; 19:E3533. [PMID: 30423952 PMCID: PMC6275022 DOI: 10.3390/ijms19113533] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
19
|
Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance. Blood Cancer J 2018; 8:92. [PMID: 30301882 PMCID: PMC6177467 DOI: 10.1038/s41408-018-0129-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
We have previously reported that homologous recombination (HR) is dysregulated in multiple myeloma (MM) and contributes to genomic instability and development of drug resistance. We now demonstrate that base excision repair (BER) associated apurinic/apyrimidinic (AP) nucleases (APEX1 and APEX2) contribute to regulation of HR in MM cells. Transgenic as well as chemical inhibition of APEX1 and/or APEX2 inhibits HR activity in MM cells, whereas the overexpression of either nuclease in normal human cells, increases HR activity. Regulation of HR by AP nucleases could be attributed, at least in part, to their ability to regulate recombinase (RAD51) expression. We also show that both nucleases interact with major HR regulators and that APEX1 is involved in P73-mediated regulation of RAD51 expression in MM cells. Consistent with the role in HR, we also show that AP-knockdown or treatment with inhibitor of AP nuclease activity increases sensitivity of MM cells to melphalan and PARP inhibitor. Importantly, although inhibition of AP nuclease activity increases cytotoxicity, it reduces genomic instability caused by melphalan. In summary, we show that APEX1 and APEX2, major BER proteins, also contribute to regulation of HR in MM. These data provide basis for potential use of AP nuclease inhibitors in combination with chemotherapeutics such as melphalan for synergistic cytotoxicity in MM.
Collapse
|
20
|
Investigational Antibody–Drug Conjugates for Treatment of B-lineage Malignancies. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:452-468.e4. [DOI: 10.1016/j.clml.2018.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/01/2023]
|
21
|
Rossi C, Chrétien ML, Casasnovas RO. Antibody–Drug Conjugates for the Treatment of Hematological Malignancies: A Comprehensive Review. Target Oncol 2018; 13:287-308. [DOI: 10.1007/s11523-018-0558-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Kim Y, Uthaman S, Nurunnabi M, Mallick S, Oh KS, Kang SW, Cho S, Kang HC, Lee YK, Huh KM. Synthesis and characterization of bioreducible cationic biarm polymer for efficient gene delivery. Int J Biol Macromol 2018; 110:366-374. [PMID: 29305212 DOI: 10.1016/j.ijbiomac.2017.12.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/13/2017] [Accepted: 12/29/2017] [Indexed: 01/15/2023]
Abstract
We synthesized a new cationic AB2 miktoarm block copolymer consisting of one poly (ethylene glycol) (PEG) block and two cationic poly (l-lysine) (PLL) blocks, wherein the PLL blocks were conjugated to the PEG blocks with or without a bioreducible linker (disulfide bonds). Bioreducible and non-bioreducible miktoarm block copolymers (mPEG-(ss-PLL)2 and mPEG-PLL2) were prepared for efficient gene delivery as a non-viral gene delivery approach. Both cationic copolymers (bioreducible and nonbioreducible) efficiently formed the nanopolyplexes with plasmid DNA (pDNA) through electrostatic interaction at different weight ratio of polymer and pDNA. Gene condensation ability of the polymers and release of the DNA under reduction condition were measured by gel electrophoresis. Dynamic light scattering (DLS) and field-emission transmission electron microscopy (FE-TEM) were used to measure the average hydrodynamic diameter and morphology of the nanoparticles, respectively. The bioreducible nanopolyplexes showed lower cytotoxicity and higher gene expression than the non-reducible nanopolyplexes in cancer cells.
Collapse
Affiliation(s)
- Yugyeong Kim
- Department of Polymer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Md Nurunnabi
- Department of Polymer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sudipta Mallick
- Department of Polymer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Keun Sang Oh
- Department of Polymer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sun-Woong Kang
- Next-generation Pharmaceutical Research Center, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sungpil Cho
- KB Biomed Inc., 50 Daehak-ro, Chungju, Chungbuk 27469, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy & Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yong-Kyu Lee
- Department of Chemical & Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju 27469, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science & Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
23
|
Wolska-Washer A, Robak P, Smolewski P, Robak T. Emerging antibody-drug conjugates for treating lymphoid malignancies. Expert Opin Emerg Drugs 2017; 22:259-273. [PMID: 28792782 DOI: 10.1080/14728214.2017.1366447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Antibody-drug conjugates (ADC) are monoclonal antibodies (Mabs) attached to biologically active drugs through specialized chemical linkers. They deliver and release cytotoxic agents at the tumor site, reducing the likelihood of systemic exposure and therefore toxicity. These agents should improve the potency of chemotherapy by increasing the accumulation of cytotoxic the drug within or near the neoplastic cells with reduced systemic effects. Areas covered: A literature review was conducted of the MEDLINE database PubMed for articles in English examining Mabs, B-cell receptor pathway inhibitors and immunomodulating drugs. Publications from 2000 through April 2017 were scrutinized. Conference proceedings from the previous five years of the American Society of Hematology, European Hematology Association, American Society of Clinical Oncology, and ACR/ARHP Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. Expert opinion: Newer ADCs show promise as treatment for several hematologic malignancies, especially lymphoma, multiple myeloma, and leukemia. However, definitive data from ongoing and future clinical trials will aid in better defining the status of these agents in the treatment of these diseases.
Collapse
Affiliation(s)
| | - Pawel Robak
- b Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Piotr Smolewski
- b Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Tadeusz Robak
- a Department of Hematology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
24
|
Sherbenou DW, Aftab BT, Su Y, Behrens CR, Wiita A, Logan AC, Acosta-Alvear D, Hann BC, Walter P, Shuman MA, Wu X, Atkinson JP, Wolf JL, Martin TG, Liu B. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J Clin Invest 2016; 126:4640-4653. [PMID: 27841764 DOI: 10.1172/jci85856] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 10/06/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells. CD46-ADC also potently eliminated myeloma growth in orthometastatic xenograft models. In primary myeloma cells derived from bone marrow aspirates, CD46-ADC induced apoptosis and cell death, but did not affect the viability of nontumor mononuclear cells. It is of clinical interest that the CD46 gene resides on chromosome 1q, which undergoes genomic amplification in the majority of relapsed myeloma patients. We found that the cell surface expression level of CD46 was markedly higher in patient myeloma cells with 1q gain than in those with normal 1q copy number. Thus, genomic amplification of CD46 may serve as a surrogate for target amplification that could allow patient stratification for tailored CD46-targeted therapy. Overall, these findings indicate that CD46 is a promising target for antibody-based treatment of multiple myeloma, especially in patients with gain of chromosome 1q.
Collapse
|
25
|
Falcone U, Sibai H, Deotare U. A critical review of treatment modalities for blastic plasmacytoid dendritic cell neoplasm. Crit Rev Oncol Hematol 2016; 107:156-162. [PMID: 27823644 DOI: 10.1016/j.critrevonc.2016.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/12/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a clinically aggressive tumor derived from the precursors of plasmacytoid dendritic cells. It is a rare disease presenting across all ages with either skin or both skin and bone marrow involvement often conferring a poor prognosis. Though localized radiation has been used before, acute leukemia based regimens, remains the treatment of choice for induction of remission. Hematopoietic stem cell transplant, either autologous or allogeneic, is further required for attaining sustained remissions. Recently, a number of targeted therapies and newer drugs have been used as the molecular and genetic understanding of the disease have improved.
Collapse
Affiliation(s)
- Umberto Falcone
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hassan Sibai
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Uday Deotare
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| |
Collapse
|
26
|
Al-Hujaily EM, Oldham RAA, Hari P, Medin JA. Development of Novel Immunotherapies for Multiple Myeloma. Int J Mol Sci 2016; 17:E1506. [PMID: 27618026 PMCID: PMC5037783 DOI: 10.3390/ijms17091506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a disorder of terminally differentiated plasma cells characterized by clonal expansion in the bone marrow (BM). It is the second-most common hematologic malignancy. Despite significant advances in therapeutic strategies, MM remains a predominantly incurable disease emphasizing the need for the development of new treatment regimens. Immunotherapy is a promising treatment modality to circumvent challenges in the management of MM. Many novel immunotherapy strategies, such as adoptive cell therapy and monoclonal antibodies, are currently under investigation in clinical trials, with some already demonstrating a positive impact on patient survival. In this review, we will summarize the current standards of care and discuss major new approaches in immunotherapy for MM.
Collapse
Affiliation(s)
- Ensaf M Al-Hujaily
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Robyn A A Oldham
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Parameswaran Hari
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
- The Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
27
|
Robak P, Robak T. Management of Multiple Myeloma with Second-Generation Antibody-Drug Conjugates. BioDrugs 2016; 30:87-93. [DOI: 10.1007/s40259-016-0165-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Atanackovic D, Radhakrishnan SV, Bhardwaj N, Luetkens T. Chimeric Antigen Receptor (CAR) therapy for multiple myeloma. Br J Haematol 2016; 172:685-98. [DOI: 10.1111/bjh.13889] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Djordje Atanackovic
- Multiple Myeloma Program, Hematology and Hematologic Malignancies; University of Utah/Huntsman Cancer Institute; Salt Lake City UT USA
| | - Sabarinath V. Radhakrishnan
- Multiple Myeloma Program, Hematology and Hematologic Malignancies; University of Utah/Huntsman Cancer Institute; Salt Lake City UT USA
| | - Neelam Bhardwaj
- Multiple Myeloma Program, Hematology and Hematologic Malignancies; University of Utah/Huntsman Cancer Institute; Salt Lake City UT USA
| | - Tim Luetkens
- Multiple Myeloma Program, Hematology and Hematologic Malignancies; University of Utah/Huntsman Cancer Institute; Salt Lake City UT USA
| |
Collapse
|
29
|
Magarotto V, Salvini M, Bonello F, Bringhen S, Palumbo A. Strategy for the treatment of multiple myeloma utilizing monoclonal antibodies: A new era begins. Leuk Lymphoma 2015; 57:537-56. [DOI: 10.3109/10428194.2015.1102245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Valeria Magarotto
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Marco Salvini
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Bonello
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonio Palumbo
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
30
|
Zaidi SZA, Motabi IH, Al-Shanqeeti A. CD56 and RUNX1 isoforms in AML prognosis and their therapeutic potential. Hematol Oncol Stem Cell Ther 2015; 9:129-30. [PMID: 26706848 DOI: 10.1016/j.hemonc.2015.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 11/30/2022] Open
Abstract
Neural cell adhesion molecule (NCAM/CD56) expression in acute myeloid leukemia (AML) has been associated with extramedullary leukemia, multidrug resistance, shorter remission and survival. Recently, Bloomfield et al. published a succinct review of issues surrounding the AML prognostication and current therapeutics. However, we want to reiterate the prognostic value and therapeutic potential of CD56 that is frequently expressed in AML as was also reported by their own group earlier. In addition, novel RUNX1 isoforms contribute in controlling CD56 expression in AML cells. Anti-CD56 antibody therapy deserves exploration as an arsenal against AML patients expressing CD56. Relevantly, targeting RNA splicing machinery or RUNX1 isoform-specific siRNA may also become part of future therapeutic strategies for AML with CD56 overexpression.
Collapse
Affiliation(s)
- Syed Z A Zaidi
- Department of Adult Hematology/BMT, King Fahad Medical City, Riyadh, Saudi Arabia; Faculty of Medicine, King Saud Bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia.
| | - Ibraheem H Motabi
- Department of Adult Hematology/BMT, King Fahad Medical City, Riyadh, Saudi Arabia; Faculty of Medicine, King Saud Bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Ali Al-Shanqeeti
- National Blood and Cancer Center, Riyadh, Saudi Arabia; King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Ayed AO, Chang LJ, Moreb JS. Immunotherapy for multiple myeloma: Current status and future directions. Crit Rev Oncol Hematol 2015; 96:399-412. [DOI: 10.1016/j.critrevonc.2015.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/26/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023] Open
|
32
|
Eaton JS, Miller PE, Mannis MJ, Murphy CJ. Ocular Adverse Events Associated with Antibody-Drug Conjugates in Human Clinical Trials. J Ocul Pharmacol Ther 2015; 31:589-604. [PMID: 26539624 DOI: 10.1089/jop.2015.0064] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This article reviews ocular adverse events (AEs) reported in association with administration of antibody-drug conjugates (ADCs) in human clinical trials. References reporting ocular toxicity or AEs associated with ADCs were collected using online publication searches. Articles, abstracts, or citations were included if they cited ocular toxicities or vision-impairing AEs with a confirmed or suspected association with ADC administration. Twenty-two references were found citing ocular or vision-impairing AEs in association with ADC administration. All references reported use of ADCs in human clinical trials for treatment of various malignancies. The molecular target and cytotoxic agent varied depending on the ADC used. Ocular AEs affected a diversity of ocular tissues. The most commonly reported AEs involved the ocular surface and included blurred vision, dry eye, and corneal abnormalities (including microcystic corneal disease). Most ocular AEs were not severe (≤ grade 2) or dose limiting. Clinical outcomes were not consistently reported, but when specified, most AEs improved or resolved with cessation of treatment or with ameliorative therapy. A diverse range of ocular AEs are reported in association with administration of ADCs for the treatment of cancer. The toxicologic mechanism(s) and pathogenesis of such events are not well understood, but most are mild in severity and reversible. Drug development and medical professionals should be aware of the clinical features of these events to facilitate early recognition and intervention in the assessment of preclinical development programs and in human clinical trials.
Collapse
Affiliation(s)
| | - Paul E Miller
- 1 Ocular Services On Demand (OSOD), LLC , Madison, Wisconsin.,2 Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison , Madison, Wisconsin
| | - Mark J Mannis
- 3 Department of Ophthalmology and Vision Sciences, School of Medicine, University of California , Davis, Sacramento, California
| | - Christopher J Murphy
- 1 Ocular Services On Demand (OSOD), LLC , Madison, Wisconsin.,3 Department of Ophthalmology and Vision Sciences, School of Medicine, University of California , Davis, Sacramento, California.,4 Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California , Davis, Davis, California
| |
Collapse
|
33
|
Jelinek T, Hajek R. Monoclonal antibodies - A new era in the treatment of multiple myeloma. Blood Rev 2015; 30:101-10. [PMID: 26362528 DOI: 10.1016/j.blre.2015.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/02/2015] [Accepted: 08/17/2015] [Indexed: 11/16/2022]
Abstract
Monoclonal antibodies (mAbs) are currently the most investigated therapeutic compounds in oncology, but there is no monoclonal antibody approved in the treatment of multiple myeloma (MM). Nevertheless several really promising molecules are under investigation in phase III clinical trials. Dominantly daratumumab (anti-CD38) and elotuzumab (anti-CS1) showed extraordinary effectiveness in phase I/II trials. The toxicity was acceptable which is important for their addition to standard anti-myeloma agents like proteasome inhibitors or immunomodulatory drugs. Monoclonal antibodies such as denosumab (anti-RANKL) or BHQ880 (anti-DKK-1) are investigated also in the management of myeloma bone disease. This review is focused on the most promising mAbs, their mechanisms of action and the rationale of use. Practically all available results have been described. If the ongoing trials confirm the efficacy and safety of mAbs, they would become an important part of MM treatment that would be translated in the further improvement of therapeutic outcomes.
Collapse
Affiliation(s)
- Tomas Jelinek
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic.
| | - Roman Hajek
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic.
| |
Collapse
|
34
|
Zhang M, He J, Liu Z, Lu Y, Zheng Y, Li H, Xu J, Liu H, Qian J, Orlowski RZ, Kwak LW, Yi Q, Yang J. Anti-β₂-microglobulin monoclonal antibodies overcome bortezomib resistance in multiple myeloma by inhibiting autophagy. Oncotarget 2015; 6:8567-78. [PMID: 25895124 PMCID: PMC4496167 DOI: 10.18632/oncotarget.3251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/29/2015] [Indexed: 01/19/2023] Open
Abstract
Our previous studies showed that anti-β2M monoclonal antibodies (mAbs) have strong and direct apoptotic effects on multiple myeloma (MM) cells, suggesting that anti-β2M mAbs might be developed as a novel therapeutic agent. In this study, we investigated the anti-MM effects of combination treatment with anti-β2M mAbs and bortezomib (BTZ). Our results showed that anti-β2M mAbs enhanced BTZ-induced apoptosis of MM cell lines and primary MM cells. Combination treatment could also induce apoptosis of BTZ-resistant MM cells, and the enhanced effect depended on the surface expression of β2M on MM cells. BTZ up-regulated the expression of autophagy proteins, whereas combination with anti-β2M mAbs inhibited autophagy. Sequence analysis of the promoter region of beclin 1 identified 3 putative NF-κB-binding sites from -615 to -789 bp. BTZ treatment increased, whereas combination with anti-β2M mAbs reduced, NF-κB transcription activities in MM cells, and combination treatment inhibited NF-κB p65 binding to the beclin 1 promoter. Furthermore, anti-β2M mAbs and BTZ combination treatment had anti-MM activities in an established MM mouse model. Thus, our studies provide new insight and support for the clinical development of an anti-β2M mAb and BTZ combination treatment to overcome BTZ drug resistance and improve MM patient survival.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/biosynthesis
- Apoptosis Regulatory Proteins/genetics
- Autophagy/drug effects
- Beclin-1
- Bortezomib/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- Drug Screening Assays, Antitumor
- Drug Synergism
- Humans
- Lysosomal Membrane Proteins/biosynthesis
- Lysosomal Membrane Proteins/genetics
- Male
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mice
- Mice, SCID
- Microtubule-Associated Proteins/biosynthesis
- Microtubule-Associated Proteins/genetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- RNA, Bacterial
- RNA, Small Interfering/genetics
- Signal Transduction/drug effects
- Transcription Factor RelA/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- beta 2-Microglobulin/antagonists & inhibitors
- beta 2-Microglobulin/biosynthesis
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/immunology
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jin He
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhiqiang Liu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yong Lu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yuhuan Zheng
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Haiyan Li
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jingda Xu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Huan Liu
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianfei Qian
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert Z. Orlowski
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Larry W. Kwak
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Yi
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Yang
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Bornstein GG. Antibody Drug Conjugates: Preclinical Considerations. AAPS JOURNAL 2015; 17:525-34. [PMID: 25724883 DOI: 10.1208/s12248-015-9738-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/09/2015] [Indexed: 01/29/2023]
Abstract
The development path for antibody drug conjugates (ADCs) is more complex and challenging than for unmodified antibodies. While many of the preclinical considerations for both unmodified and antibody drug conjugates are shared, special considerations must be taken into account when developing an ADC. Unlike unmodified antibodies, an ADC must preferentially bind to tumor cells, internalize, and traffic to the appropriate intracellular compartment to release the payload. Parameters that can impact the pharmacological properties of this class of therapeutics include the selection of the payload, the type of linker, and the methodology for payload drug conjugation. Despite a plethora of in vitro assays and in vivo models to screen and evaluate ADCs, the challenge remains to develop improved preclinical tools that will be more predictive of clinical outcome. This review will focus on preclinical considerations for clinically validated small molecule ADCs. In addition, the lessons learned from Mylotarg®, the first in class FDA-approved ADC, are highlighted.
Collapse
Affiliation(s)
- Gadi G Bornstein
- Centers for Therapeutic Innovation (CTI), Pfizer Inc., 450 East 29th Street, New York, New York, 10016, USA,
| |
Collapse
|
36
|
Klute K, Nackos E, Tasaki S, Nguyen DP, Bander NH, Tagawa ST. Microtubule inhibitor-based antibody-drug conjugates for cancer therapy. Onco Targets Ther 2014; 7:2227-36. [PMID: 25506226 PMCID: PMC4259504 DOI: 10.2147/ott.s46887] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The specificity of monoclonal antibodies represents a potential therapeutic advantage, but their use as single agents in oncology has proven limited to date. The development of antibody-drug conjugates (ADCs) takes advantage of the specificity of the monoclonal antibody and potent cytotoxic effect of chemotherapy, leading to enhanced cytotoxicity in target cells and limiting toxicity to normal tissue. Microtubules represent a validated oncologic target in a range of tumor types, with a number of anti-microtubule targeting cytotoxic drugs approved for cancer use. The systemic use of potent microtubule-binding agents is limited by their effects in normal cells, which leads to toxicity including myelosuppression and peripheral neuropathy. Linking these agents to monoclonal antibodies may limit toxicity to normal tissues and increase drug concentration in target tissues, also allowing the use of more potent agents which would be too toxic to administer in their unbound form. Two such ADCs have been approved for clinical use and many others are in development. Here we review the characteristics of each of the ADC components that have led to efficacious therapies and discuss some of the tubulin inhibitor-based ADCs in development for cancer therapy.
Collapse
Affiliation(s)
- Kelsey Klute
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Eleni Nackos
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Shinsuke Tasaki
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Daniel P Nguyen
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Neil H Bander
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Scott T Tagawa
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA ; Department of Urology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
37
|
Using the Lessons Learned From the Clinic to Improve the Preclinical Development of Antibody Drug Conjugates. Pharm Res 2014; 32:3458-69. [PMID: 25339341 PMCID: PMC4596896 DOI: 10.1007/s11095-014-1536-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
Abstract
The treatment options for cancer patients include surgery, chemotherapeutics, radiation therapy, antibody therapy and various combinations of these therapies. The challenge with each therapy is finding the balance between maximizing the anti-tumor efficacy while minimizing the dose limiting toxicities. Antibodies, unlike small molecule chemotherapeutics, selectively bind to cell surface tumor antigens and can be used to deliver radionucleotides or small molecule chemotherapeutic drugs directly to the tumor. Advances in antibody engineering, linker chemistry and the identification of potent cytotoxic drugs led to the recent approval of two antibody drug conjugates to treat breast cancer and lymphoma patients. We will discuss how the observations from the clinical development of antibody drug conjugates can guide the preclinical development of the next generation of antibody drug conjugates.
Collapse
|
38
|
Abstract
Antibody drug conjugates (ADCs) are an emerging class of targeted therapeutics with the potential to improve therapeutic index over traditional chemotherapy. Drugs and linkers have been the current focus of ADC development, in addition to antibody and target selection. Recently, however, the importance of conjugate homogeneity has been realized. The current methods for drug attachment lead to a heterogeneous mixture, and some populations of that mixture have poor in vivo performance. New methods for site-specific drug attachment lead to more homogeneous conjugates and allow control of the site of drug attachment. These subtle improvements can have profound effects on in vivo efficacy and therapeutic index. This review examines current methods for site-specific drug conjugation to antibodies, and compares in vivo results with their non-specifically conjugated counterparts. The apparent improvement in pharmacokinetics and the reduced off target toxicity warrant further development of this site-specific modification approach for future ADC development.
Collapse
|
39
|
Sherbenou DW, Behrens CR, Su Y, Wolf JL, Martin TG, Liu B. The development of potential antibody-based therapies for myeloma. Blood Rev 2014; 29:81-91. [PMID: 25294123 DOI: 10.1016/j.blre.2014.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 01/27/2023]
Abstract
With optimal target antigen selection antibody-based therapeutics can be very effective agents for hematologic malignancies, but none have yet been approved for myeloma. Rituximab and brentuximab vedotin are examples of success for the naked antibody and antibody-drug conjugate classes, respectively. Plasma cell myeloma is an attractive disease for antibody-based targeting due to target cell accessibility and the complementary mechanism of action with approved therapies. Initial antibodies tested in myeloma were disappointing. However, recent results from targeting well-characterized antigens have been more encouraging. In particular, the CD38 and CD138 targeted therapies are showing single-agent activity in early phase clinical trials. Here we will review the development pipeline for naked antibodies and antibody-drug conjugates for myeloma. There is clear clinical need for new treatments, as myeloma inevitably becomes refractory to standard agents. The full impact is yet to be established, but we are optimistic that the first FDA-approved antibody therapeutic(s) for this disease will emerge in the near future.
Collapse
Affiliation(s)
- Daniel W Sherbenou
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA; Department of UCSF Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Christopher R Behrens
- Department of Anesthesia, University of California San Francisco, San Francisco, CA 94110, USA
| | - Yang Su
- Department of Anesthesia, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jeffrey L Wolf
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA; Department of UCSF Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Thomas G Martin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA; Department of UCSF Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Bin Liu
- Department of Anesthesia, University of California San Francisco, San Francisco, CA 94110, USA; Department of UCSF Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
40
|
Zhang M, Qian J, Lan Y, Lu Y, Li H, Hong B, Zheng Y, He J, Yang J, Yi Q. Anti-β₂M monoclonal antibodies kill myeloma cells via cell- and complement-mediated cytotoxicity. Int J Cancer 2014; 135:1132-41. [PMID: 24474467 DOI: 10.1002/ijc.28745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/15/2014] [Indexed: 12/26/2022]
Abstract
Our previous studies showed that anti-β2M monoclonal antibodies (mAbs) at high doses have direct apoptotic effects on myeloma cells, suggesting that anti-β2M mAbs might be developed as a novel therapeutic agent. In this study, we investigated the ability of the mAbs at much lower concentrations to indirectly kill myeloma cells by utilizing immune effector cells or molecules. Our results showed that anti-β2M mAbs effectively lysed MM cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which were correlated with and dependent on the surface expression of β2M on MM cells. The presence of MM bone marrow stromal cells or addition of IL-6 did not attenuate anti-β2M mAb-induced ADCC and CDC activities against MM cells. Furthermore, anti-β2M mAbs only showed limited cytotoxicity toward normal B cells and nontumorous mesenchymal stem cells, indicating that the ADCC and CDC activities of the anti-β2M mAbs were more prone to the tumor cells. Lenalidomide potentiated in vitro ADCC activity against MM cells and in vivo tumor inhibition capacity induced by the anti-β2M mAbs by enhancing the activity of NK cells. These results support clinical development of anti-β2M mAbs, both as a monotherapy and in combination with lenalidomide, to improve MM patient outcome.
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Whiteman KR, Johnson HA, Mayo MF, Audette CA, Carrigan CN, LaBelle A, Zukerberg L, Lambert JM, Lutz RJ. Lorvotuzumab mertansine, a CD56-targeting antibody-drug conjugate with potent antitumor activity against small cell lung cancer in human xenograft models. MAbs 2014; 6:556-66. [PMID: 24492307 DOI: 10.4161/mabs.27756] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lorvotuzumab mertansine (LM) is an antibody-drug conjugate composed of a humanized anti-CD56 antibody, lorvotuzumab, linked via a cleavable disulfide linker to the tubulin-binding maytansinoid DM1. CD56 is expressed on most small cell lung cancers (SCLC), providing a promising therapeutic target for treatment of this aggressive cancer, which has a poor five-year survival rate of only 5-10%. We performed immunohistochemical staining on SCLC tumor microarrays, which confirmed that CD56 is expressed at high levels on most (~74%) SCLC tumors. Conjugation of lorvotuzumab with DM1 did not alter its specific binding to cells and LM demonstrated potent target-dependent cytotoxicity against CD56-positive SCLC cells in vitro. The anti-tumor activity of LM was evaluated against SCLC xenograft models in mice, both as monotherapy and in combination with platinum/etoposide and paclitaxel/carboplatin. Dose-dependent and antigen-specific anti-tumor activity of LM monotherapy was demonstrated at doses as low as 3 mg/kg. LM was highly active in combination with standard-of-care platinum/etoposide therapies, even in relatively resistant xenograft models. LM demonstrated outstanding anti-tumor activity in combination with carboplatin/etoposide, with superior activity over chemotherapy alone when LM was used in combinations at significantly reduced doses (6-fold below the minimally efficacious dose for LM monotherapy). The combination of LM with carboplatin/paclitaxel was also highly active. This study provides the rationale for clinical evaluation of LM as a promising novel targeted therapy for SCLC, both as monotherapy and in combination with chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lawrence Zukerberg
- Harvard Medical School and Massachusetts General Hospital; Boston, MA USA
| | | | | |
Collapse
|
42
|
Lambert JM. Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol 2013; 76:248-62. [PMID: 23173552 PMCID: PMC3731599 DOI: 10.1111/bcp.12044] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/25/2012] [Indexed: 12/27/2022] Open
Abstract
Despite considerable effort, application of monoclonal antibody technology has had only modest success in improving treatment outcomes in patients with solid tumours. Enhancing the cancer cell-killing activity of antibodies through conjugation to highly potent cytotoxic 'payloads' to create antibody-drug conjuates (ADCs) offers a strategy for developing anti-cancer drugs of great promise. Early ADCs exhibited side-effect profiles similar to those of 'classical' chemotherapeutic agents and their performance in clinical trials in cancer patients was generally poor. However, the recent clinical development of ADCs that have highly potent tubulin-acting agents as their payloads have profoundly changed the outlook for ADC technology. Twenty-five such ADCs are in clinical development and one, brentuximab vedotin, was approved by the FDA in August, 2011, for the treatment of patients with Hodgkin's lymphoma and patients with anaplastic large cell lymphoma, based on a high rate of durable responses in single arm phase II clinical trials. More recently, a second ADC, trastuzumab emtansine, has shown excellent anti-tumour activity with the presentation of results of a 991-patient randomized phase III trial in patients with HER2-positive metastatic breast cancer. Treatment with this ADC (single agent) resulted in a significantly improved progression-free survival of 9.6 months compared with 6.4 months for lapatinib plus capecitabine in the comparator arm and significantly prolonged overall survival. Besides demonstrating excellent efficacy, these ADCs were remarkably well tolerated. Thus these, and other ADCs in development, promise to achieve the long sought goal of ADC technology, that is, of having compounds with high anti-tumour activity at doses where adverse effects are generally mild.
Collapse
Affiliation(s)
- John M Lambert
- ImmunoGen, Inc, 830 Winter Street, Waltham, MA 02451, USA.
| |
Collapse
|
43
|
Jeffrey SC, Burke PJ, Lyon RP, Meyer DW, Sussman D, Anderson M, Hunter JH, Leiske CI, Miyamoto JB, Nicholas ND, Okeley NM, Sanderson RJ, Stone IJ, Zeng W, Gregson SJ, Masterson L, Tiberghien AC, Howard PW, Thurston DE, Law CL, Senter PD. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem 2013; 24:1256-63. [PMID: 23808985 DOI: 10.1021/bc400217g] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly cytotoxic DNA cross-linking pyrrolobenzodiazepine (PBD) dimer with a valine-alanine dipeptide linker was conjugated to the anti-CD70 h1F6 mAb either through endogenous interchain cysteines or, site-specifically, through engineered cysteines at position 239 of the heavy chains. The h1F6239C-PBD conjugation strategy proved to be superior to interchain cysteine conjugation, affording an antibody-drug conjugate (ADC) with high uniformity in drug-loading and low levels of aggregation. In vitro cytotoxicity experiments demonstrated that the h1F6239C-PBD was potent and immunologically specific on CD70-positive renal cell carcinoma (RCC) and non-Hodgkin lymphoma (NHL) cell lines. The conjugate was resistant to drug loss in plasma and in circulation, and had a pharmacokinetic profile closely matching that of the parental h1F6239C antibody capped with N-ethylmaleimide (NEM). Evaluation in CD70-positive RCC and NHL mouse xenograft models showed pronounced antitumor activities at single or weekly doses as low as 0.1 mg/kg of ADC. The ADC was tolerated at 2.5 mg/kg. These results demonstrate that PBDs can be effectively used for antibody-targeted therapy.
Collapse
Affiliation(s)
- Scott C Jeffrey
- Department of Research & Translational Medicine, Seattle Genetics, Inc., Bothell, WA 98021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Amodio N, Di Martino MT, Neri A, Tagliaferri P, Tassone P. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther 2013; 13 Suppl 1:S125-37. [PMID: 23692413 DOI: 10.1517/14712598.2013.796356] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Increasing evidence indicates that non-coding RNAs (ncRNAs) are aberrantly expressed and/or functionally deregulated in hematological malignancies, including multiple myeloma. Harnessing these abnormalities by either replacing or inhibiting ncRNAs is emerging as novel therapeutic option. AREAS COVERED We review the recent remarkable advancement in the understanding of the biological functions of human ncRNAs in multiple myeloma, including the biogenesis, the mechanisms of expression, the relevance as biomarkers, and mostly, the therapeutic potential. Special emphasis is given to microRNAs, the best characterized class of ncRNAs. EXPERT OPINION An improved understanding of the role of ncRNAs in multiple myeloma would provide valuable information about key cancer-promoting pathways and might be highly useful for diagnostic and prognostic assessments. This knowledge might also lead to advancement in the management of multiple myeloma through the development of novel personalized ncRNA-based therapies.
Collapse
Affiliation(s)
- Nicola Amodio
- Magna Graecia University and T. Campanella Cancer Center, Department of Experimental and Clinical Medicine, Medical Oncology Unit, Viale Europa, 88100 Catanzaro, Italy
| | | | | | | | | |
Collapse
|
45
|
Characterization of the drug-to-antibody ratio distribution for antibody–drug conjugates in plasma/serum. Bioanalysis 2013; 5:1057-71. [DOI: 10.4155/bio.13.66] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Antibody–drug conjugates (ADCs) are a new class of cancer therapeutics that deliver potent cytotoxins specifically to tumors to minimize systemic toxicity. However, undesirable release of covalently linked drugs in circulation can affect safety and efficacy. The objective of this manuscript was to propose and assess the assays that allow for the characterization of the drug deconjugation in plasma/serum. Results: ADCs of three main drug conjugation platforms, linked via lysine, site-specific engineered cysteine or reduced interchain disulfide cysteine residues, were analyzed using affinity capture for sample enrichment coupled with LC–MS or hydrophobic interaction chromatography–UV for detection. These novel approaches enabled measurement of the relative abundance of individual ADC species with different drug-to-antibody ratios, while maintaining their structural integrity. Conclusion: The characterization data generated by affinity capture LC–MS or hydrophobic interaction chromatography–UV provided critical mechanistic insights into understanding the stability and bioactivity of ADCs in vivo, and also helped the development of appropriate quantitative ELISAs.
Collapse
|
46
|
Allegra A, Penna G, Alonci A, Russo S, Greve B, Innao V, Minardi V, Musolino C. Monoclonal antibodies: potential new therapeutic treatment against multiple myeloma. Eur J Haematol 2013; 90:441-68. [DOI: 10.1111/ejh.12107] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Giuseppa Penna
- Division of Haematology; University of Messina; Messina; Italy
| | - Andrea Alonci
- Division of Haematology; University of Messina; Messina; Italy
| | - Sabina Russo
- Division of Haematology; University of Messina; Messina; Italy
| | - Bruna Greve
- Division of Haematology; University of Messina; Messina; Italy
| | - Vanessa Innao
- Division of Haematology; University of Messina; Messina; Italy
| | - Viviana Minardi
- Division of Haematology; University of Messina; Messina; Italy
| | | |
Collapse
|
47
|
Tassone P, Neri P, Burger R, Di Martino MT, Leone E, Amodio N, Caraglia M, Tagliaferri P. Mouse models as a translational platform for the development of new therapeutic agents in multiple myeloma. Curr Cancer Drug Targets 2013; 12:814-22. [PMID: 22671927 PMCID: PMC3587184 DOI: 10.2174/156800912802429292] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 11/25/2011] [Accepted: 12/08/2011] [Indexed: 12/22/2022]
Abstract
Mouse models of multiple myeloma (MM) are basic tools for translational research and play a fundamental role in the development of new therapeutics against plasma cell malignancies. All available models, including transplantable murine tumors in syngenic mice, xenografts of established human cell lines in immunocompromised mice and transgenic models that mirror specific steps of MM pathogenesis, have demonstrated some weaknesses in predicting clinical results, particularly for new drugs targeting the human bone marrow microenvironment (huBMM). The recent interest to models recapitulating the in vivo growth of primary MM cells in a human (SCID-hu) or humanized (SCID-synth-hu) host recipient has provided powerful platforms for the investigation of new compounds targeting MM and/or its huBMM. Here, we review and discuss strengths and weaknesses of the key in vivo models that are currently utilized in the MM preclinical investigation.
Collapse
Affiliation(s)
- P Tassone
- Medical Oncology, Magna Græcia University, Viale Europa, Campus Salvatore Venuta, 88100 Catanzaro, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Danylesko I, Beider K, Shimoni A, Nagler A. Monoclonal antibody-based immunotherapy for multiple myeloma. Immunotherapy 2013; 4:919-38. [PMID: 23046236 DOI: 10.2217/imt.12.82] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is a life-threatening hematological malignancy. High-dose chemotherapy followed by autologous stem cell transplantation is a relatively effective treatment, but disease recurrence remains a major obstacle. Allogeneic transplantation may result in durable responses and cure due to antitumor immunity mediated by donor lymphocytes. However, morbidity and mortality related to graft-versus-host disease remain a challenge. Recent advances in understanding the interaction between the immune system of the patient and the malignant cells are influencing the design of clinically more efficient study protocols for MM. This review will focus on MM antigens and their specific antibodies. These monoclonal antibodies are an attractive therapeutic tool for MM humoral immunotherapy, with most promising preclinical results.
Collapse
Affiliation(s)
- Ivetta Danylesko
- Division of Hematology, Bone Marrow Transplantation & Cord Blood Bank, Chaim Sheba Medical Center, Tel Hashomer & Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
49
|
Abstract
Antibody-drug conjugates (ADCs), which combine the specificity, favorable pharmacokinetics, and biodistribution of a monoclonal antibody (mAb) with the cytotoxic potency of a drug, are promising new therapies for cancer. Along with the development of monoclonal antibodies (mAbs) and cytotoxic drugs, the design of the linker is of essential importance, because it impacts the efficacy and tolerability of ADCs. The linker needs to provide sufficient stability during systemic circulation but allow for the rapid and efficient release of the cytotoxic drug in an active form inside the tumor cells. This review provides an overview of linker technologies currently used for ADCs and advances that have resulted in linkers with improved properties. Also provided is a brief summary of some considerations for the conjugation of antibody and drug linker such as drug-to-antibody ratio and site of conjugation.
Collapse
Affiliation(s)
- Birte Nolting
- Biotherapeutics Research and Development, Pfizer, Pearl River, NY, USA
| |
Collapse
|
50
|
Beck A, Lambert J, Sun M, Lin K. Fourth World Antibody-Drug Conjugate Summit: February 29-March 1, 2012, Frankfurt, Germany. MAbs 2012; 4:637-47. [PMID: 22909934 PMCID: PMC3502230 DOI: 10.4161/mabs.21697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 4th World Antibody Drug Conjugate (WADC) Summit, organized by Hanson Wade was held on February 29‑March 1, 2012 in Frankfurt, Germany, which was also the location for the Antibody Drug Conjugate Summit Europe held in February 2011. During the one year between these meetings, antibody drug conjugates (ADCs) have confirmed their technological maturity and their clinical efficacy in oncology. Brentuximab vedotin (ADCETRISTM) gained approval by the US Food and Drug Administration in August 2011 and trastuzumab emtansine (T-DM1) confirmed impressive clinical efficacy responses in a large cohort of breast cancer patients. During the 4th WADC meeting, antibody-maytansinoid conjugates were showcased by representatives of ImmunoGen (T-DM1, SAR3419, lorvotuzumab mertansine/IMGN801, IMGN529 and IMG853) and Biotest (BT-062). Data on antibody-auristatin conjugates were presented by scientists and clinicians from Seattle Genetics and Takeda (brentuximab vedotin), Pfizer (5T4-MMAF), Agensys/Astella (AGS-16M8F), Progenics (PSMA-ADC) and Genmab (anti-TF ADCs). Alternative payloads such as calicheamicins and duocarmycin used for preparation of ADCs were discussed by Pfizer and Synthon representatives, respectively. In addition, emerging technologies, including site-directed conjugation (Ambrx), a protein toxin as payload (Viventia), hapten-binding bispecific antibodies (Roche), and use of light activated drugs (Photobiotics), were also presented. Last but not least, progresses in solving Chemistry Manufacturing and Control, and pharmacokinetic issues were addressed by scientists from Genentech, Pfizer, Novartis and Pierre Fabre.
Collapse
Affiliation(s)
- Alain Beck
- Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France.
| | | | | | | |
Collapse
|